Insulating Material Patents (Class 257/701)
  • Patent number: 9041160
    Abstract: A semiconductor integrated circuit device includes: a rectangular shaped semiconductor substrate; a metal wiring layer formed on or over the semiconductor substrate; and a passivation layer covering the metal wiring layer. A corner non-wiring region where no portion of the metal wiring layer is formed is disposed in a corner of the semiconductor substrate. A slit is formed in a portion of the metal wiring layer which is close to the corner of the semiconductor substrate. The passivation layer includes a first passivation layer which is formed on the metal wiring layer and a second passivation layer which is formed on the first passivation layer. The first passivation layer is formed of a material that is softer than a material of the second passivation layer.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: May 26, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Mitsuru Okazaki, Youichi Kajiwara, Naoki Takahashi, Akira Shimizu
  • Patent number: 9041211
    Abstract: A semiconductor package includes a first semiconductor chip including a target circuit surface and a side surface, a first sealing insulating layer including a first surface positioned toward the target circuit surface and a second surface positioned opposite to the first surface, the first sealing insulating layer sealing the target circuit surface and the side surface, a wiring layer formed on the first surface of the first sealing insulating layer, an insulating layer formed on the wiring layer, a second semiconductor chip mounted on the second surface of the first sealing insulating layer, and a second sealing insulating layer formed on the second surface and sealing the second semiconductor chip.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 26, 2015
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Kenta Uchiyama
  • Patent number: 9041033
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting layer, a second semiconductor layer, a p-side electrode, a plurality of n-side electrodes, a first insulating film, a p-side interconnect unit, and an n-side interconnect unit. The p-side interconnect unit is provided on the first insulating film to connect to the p-side electrode through a first via piercing the first insulating film. The n-side interconnect unit is provided on the first insulating film to commonly connect to the plurality of n-side electrodes through a second via piercing the first insulating film. The plurality of n-side regions is separated from each other without being linked at the second surface. The p-side region is provided around each of the n-side regions at the second surface.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Akimoto, Yoshiaki Sugizaki, Akihiro Kojima, Miyoko Shimada, Hideyuki Tomizawa, Hideto Furuyama
  • Publication number: 20150130044
    Abstract: The present disclosure relates to a bump processing method and/or resulting MEMS-CMOS structure, in which one or more anti-stiction bumps are formed within a substrate prior to the formation of a cavity in which the one or more anti-stiction bumps reside. By forming the one or more anti-stiction bumps prior to a cavity, the sidewall angle and the top critical dimension (i.e., surface area) of the one or more anti-stiction bumps are reduced. The reduction in sidewall angle and critical dimension reduces stiction between a substrate and a moveable part of a MEMS device. By reducing the size of the anti-stiction bumps through a processing sequence change, lithographic problems such as reduction of the lithographic processing window and bump photoresist collapse are avoided.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Inventors: Chris Kuo, Lee-Chuan Tseng
  • Patent number: 9030017
    Abstract: An assembly includes a substrate having a substrate conductor and a contact at a first surface and a terminal at a second surface for electrically interconnecting the assembly with a component external to the assembly, at least one of the substrate conductor or the contact being electrically connected with the terminal; a first element having a first surface facing the first surface of the substrate and having a first conductor at the first surface and a second conductor at a second surface, an interconnect structure extending through the first element electrically connecting the first and second conductors; an adhesive layer bonding the first surfaces of the first element and the substrate, at least portions of the first conductor and the substrate conductor being disposed beyond an edge of the adhesive layer; and a continuous electroless plated metal region extending between the first conductor and the substrate conductor.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 12, 2015
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Cyprian Emeka Uzoh
  • Patent number: 9018752
    Abstract: Provided is a circuit board, which may include a base layer, an adhesive film, a conductive circuit, and a through via. The adhesive film and the conductive circuit may be provided in plurality to be alternately stacked on the base layer. The through via may be formed through soldering. Since the base layer is not damaged during the soldering, the through via may include various conductive materials. The through via makes it possible to easily connect the conductive circuits having different functions to one another. Accordingly, the circuit board may have multi functions. Thicknesses of the conductive circuits may be adjusted to protect the conductive circuits from folding or bending of the base layer. The circuit board having a multi-layered structure can function not only as a fabric or clothes but also as an electronic circuit.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 28, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Ji Eun Kim, Yong Ki Son, Baesun Kim, Il Yeon Cho
  • Patent number: 9017808
    Abstract: A method of manufacturing a thermal interface material, comprising providing a sheet comprising nano-scale fibers, the sheet having at least one exposed surface; and stabilizing the fibers with a stabilizing material disposed in at least a portion of a void space between the fibers in the sheet. The fibers may be CNT's or metallic nano-wires. Stabilizing may include infiltrating the fibers with a polymerizable material. The polymerizable material may be mixed with nano- or micro-particles. The composite system may include two films, with the fibers in between, to create a sandwich. Each capping film may include two sub films: a palladium film closer to the stabilizing material to improve adhesion; and a nano-particle film for contact with a device to be cooled or a heat sink.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 28, 2015
    Assignee: The Research Foundation for The State University of New York
    Inventors: Hao Wang, Bahgat Sammakia, Yayong Liu, Kaikun Yang
  • Patent number: 9013034
    Abstract: A semiconductor package, wherein, in bonding of members constituting the semiconductor package, by using bonding layers containing copper and a low-melting-point metal such as tin, the bonding is performed in a temperature range where the occurrence of warpage or distortion of the members is suppressed, and after the bonding, a high melting point is obtained; and by configuring the members so that all the surfaces of the members which become bonding surfaces of bonding layers are parallel to each other, all the thickness directions of the bonding layers are aligned to be in the same direction, and during the formation of the bonding layers, the pressing direction is set to be one-way direction which is the direction of laminating the members.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 9006884
    Abstract: A semiconductor device includes a substrate in which a cell region and a contact region are defined, a pad structure including a plurality of first conductive layers and a plurality of first insulating layers formed alternately with each other in the contact region of the substrate, wherein an end of the pad structure is patterned stepwise, portions of the first conductive layers exposed at the end of the pad structure are defined as a plurality of pad portions, and the plurality of pad portions have a greater thickness than unexposed portions of the plurality of first conductive layers.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 14, 2015
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Seok Min Jeon
  • Patent number: 9006875
    Abstract: Provided is a semiconductor device and method of fabricating the semiconductor memory device. The semiconductor device may be formed by forming a first welding groove along outside edges of one case of a pair of upper and lower cases, forming a first welding protrusion along outside edges of the other case, the first welding protrusion being formed to correspond to the first welding groove and having a volume larger than a volume of the first welding groove. The method may further include inserting the first welding protrusion into the first welding groove to enclose a memory module in an inner accommodating space of the upper and lower cases, melting the first welding protrusion so that a first portion of the first welding protrusion fills the first welding groove and a second portion of the first welding protrusion fills a space between welding portions of the upper case and the lower case, and solidifying the first and second portions of the first welding protrusion.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronis Co., Ltd.
    Inventor: Jae-Hwan Han
  • Patent number: 8999753
    Abstract: A semiconductor mounting device including a first substrate having first insulation layers, first conductor layers formed on the first insulation layers and via conductors connecting the first conductor layers, a second substrate having a core substrate, second conductor layers, through-hole conductors and buildup layers having second insulation layers and third conductor layers, first bumps connecting the first and second substrates and formed on the outermost first conductor layer on the outermost first insulation layer, and second bumps positioned to connect a semiconductor element and formed on the outermost third conductor layer on the outermost second insulation layer.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 7, 2015
    Assignee: Ibiden Co., Ltd.
    Inventors: Hiroyuki Watanabe, Masahiro Kaneko
  • Patent number: 8981553
    Abstract: A power semiconductor module includes a first printed circuit board having a first insulation carrier, and a first upper metallization and a first lower metallization applied to the first insulation carrier on mutually opposite sides, and a second printed circuit board having a second insulation carrier and a second upper metallization applied to the second insulation carrier. The second printed circuit board is spaced apart from the first printed circuit board in a vertical direction oriented perpendicular to the opposite sides of the first insulation carrier. A semiconductor chip is disposed between the printed circuit boards and electrically conductively connected at least to the second upper metallization. The first lower metallization and the second upper metallization face one another. The first printed circuit board has a first thick conductor layer at least partly embedded in the first insulation carrier and which has a thickness of at least 100 ?m.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Michael Georg Schwarzer, Daniel Bolowski
  • Patent number: 8982574
    Abstract: Contactless differential coupling structures can be used to communicate signals between circuits located on separate chips or from one chip to a probing device. The contactless coupling structures avoid problems (breaks, erosion, corrosion) that can degrade the performance of ohmic-type contact pads. The contactless coupling structures comprise pairs of conductive pads placed in close proximity. Differential signals are applied across a first pair of differential pads, and the signals are coupled wirelessly to a mating pair of conductive pads. Circuitry for generating and receiving differential signals is described.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: March 17, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Mauro Scandiuzzo, Luca Perilli, Roberto Canegallo
  • Patent number: 8975741
    Abstract: A device includes an inter-layer dielectric, a device die under the inter-layer dielectric; and a die-attach film under the inter-layer dielectric and over the device die, wherein the die-attach film is attached to the device die. A plurality of redistribution lines includes portions level with the die-attach film. A plurality of Z-interconnects is electronically coupled to the device die and the plurality of redistribution lines. A polymer-comprising material is under the inter-layer dielectric. The device die, the die-attach film, and the plurality of Z-interconnects are disposed in the polymer-comprising material.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lin, Ming-Da Cheng, Meng-Tse Chen, Wen-Hsiung Lu, Kuei-Wei Huang, Chung-Shi Liu
  • Patent number: 8963315
    Abstract: A semiconductor device includes a plate-shaped semiconductor element and an electrically insulating resin member. The semiconductor element has a front-surface electrode on its front surface and a back-surface electrode on its back surface. The resin member encapsulates the semiconductor element. The front-surface electrode is exposed to a front side of an outer surface of the resin member. The back-surface electrode is exposed to a back side of the outer surface of the resin member. The resin member has an extension portion that covers the entire side surface of the semiconductor element and extends from the side surface of the semiconductor element in a direction parallel to the front surface of the semiconductor element.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: February 24, 2015
    Assignee: DENSO CORPORATION
    Inventors: Daisuke Fukuoka, Takanori Teshima, Kuniaki Mamitsu
  • Patent number: 8952538
    Abstract: A semiconductor device includes: an integrated circuit having an electrode pad; a first insulating layer disposed on the integrated circuit; a redistribution layer including a plurality of wirings and disposed on the first insulating layer, at least one of the plurality of wirings being electrically coupled to the electrode pad; a second insulating layer having a opening on at least a portion of the plurality of wirings; a metal film disposed on the opening and on the second insulating layer, and electrically coupled to at least one of the plurality of wirings; and a solder bump the solder bump overhanging at least one of the plurality of wirings not electrically coupled to the metal film.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 10, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hirohisa Matsuki
  • Patent number: 8952527
    Abstract: Of three chips (2A), (2B), and (2C) mounted on a main surface of a package substrate (1) in a multi-chip module (MCM), a chip (2A) with a DRAM formed thereon and a chip (2B) with a flash memory formed thereon are electrically connected to wiring lines (5) of the package substrate (1) through Au bumps (4), and a gap formed between main surfaces (lower surfaces) of the chips (2A), (2B) and a main surface of the package substrate (1) is filled with an under-fill resin (6). A chip (2C) with a high-speed microprocessor formed thereon is mounted over the two chips (2A) and (2B) and is electrically connected to bonding pads (9) of the package substrate (1) through Au wires (8).
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: February 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Kado, Takahiro Naito, Toshihiko Sato, Hikaru Ikegami, Takafumi Kikuchi
  • Patent number: 8946892
    Abstract: A semiconductor package includes a package substrate including a first wiring embedded in the package substrate, a second wiring embedded in the package substrate, the second wiring electrically insulated from the first wiring, and a capacitor embedded in the package substrate, the capacitor including a first electrode electrically connected to the first wiring and a second electrode electrically connected to the second wiring. At least a first semiconductor chip is disposed on the package substrate. A plurality of connection terminals are disposed between the package substrate and the first semiconductor chip and contact the package substrate, and form at least a first group of at least two connection terminals formed continuously adjacent to each other and electrically connected to the first wiring, and at least a second group of at least two connection terminals formed continuously adjacent to each other and electrically connected to the second wiring.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yonghoon Kim, Jihyun Lee
  • Patent number: 8946904
    Abstract: A substrate comprising a plurality of layers, a first side and a second side; and a via extending through the substrate from the first side to the second side. The via comprises:a first substrate via extending through a first layer of the plurality of layers, the first substrate via having a first cross-sectional area; a first capture pad disposed under the first substrate via, wherein the first capture pad physically contacts the first substrate via; a second substrate via extending through a second layer of the plurality of layers, the second substrate via physically contacting the first capture pad, the second substrate via having a second cross-sectional area that is greater than the first cross-sectional area; and a second thermal and electrical contact pad disposed under the second dielectric layer, wherein the second contact pad physically contacts the second substrate via.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Tarak A. Railkar, Ashish Alawani, Ray Parkhurst
  • Patent number: 8941231
    Abstract: Provided are an electronic chip and a method of fabricating the same. The semiconductor chip may include a substrate, an active device integrated on the substrate, a lower interlayered insulating layer covering the resulting structure provided with the active device, a passive device provided on the lower interlayered insulating layer, an upper interlayered insulating layer covering the resulting structure provided with the passive device, and a ground electrode provided on the upper interlayered insulating layer. The upper interlayered insulating layer may be formed of a material, whose dielectric constant may be higher than that of the lower interlayered insulating layer.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: January 27, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Rak Park, Sang Choon Ko, Byoung-Gue Min, Jong-Won Lim, Hokyun Ahn, Sung-Bum Bae, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8937382
    Abstract: The present disclosure relates to the field of fabricating microelectronic device packages and, more particularly, to microelectronic device packages having bumpless build-up layer (BBUL) designs, wherein at least one secondary device is disposed within the thickness (i.e. the z-direction or z-height) of the microelectronic device of the microelectronic device package.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: January 20, 2015
    Assignee: Intel Corporation
    Inventors: Weng Hong Teh, John S. Guzek
  • Patent number: 8912640
    Abstract: A semiconductor device is inhibited from being degraded in reliability. The semiconductor device has a tab including a top surface, a bottom surface, and a plurality of side surfaces. Each of the side surfaces of the tab has a first portion continued to the bottom surface of the tab, a second portion located outwardly of the first portion and continued to the top surface of the tab, and a third portion located outwardly of the second portion and continued to the top surface of the tab to face the same direction as each of the first and second portions. In planar view, the outer edge of the semiconductor chip is located between the third portion and the second portion of the tab, and the outer edge of an adhesive material fixing the semiconductor chip to the tab is located between the semiconductor chip and the second portion.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: December 16, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Keita Takada, Tadatoshi Danno, Hirokazu Kato
  • Patent number: 8912639
    Abstract: Aspects of a method and system for configuring a transformer embedded in a multi-layer integrated circuit package are provided. In this regard, a windings ratio of a transformer embedded in a multi-layer IC package bonded to an IC may be configured, via logic, circuitry, and/or code in the IC, based on signal levels at one or more terminals of the transformer. The transformer may comprise a plurality of inductive loops fabricated in transmission line media. The integrated circuit may be flip-chip bonded to the multi-layer package. The IC may comprise a signal strength indicator enabled to measure signal levels input to or output by the transformer. The windings ratio may be configured via one or more switches in the IC and/or in the multi-layer package. The IC and/or the multi-layer package may comprise ferromagnetic material which may improve magnetic coupling of the transformer.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 16, 2014
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 8900989
    Abstract: The present disclosure provides a method for forming a semiconductor device. The method includes forming first conductive layer structures in a first dielectric layer on a substrate; forming a patterned photoresist layer having portions that are each disposed over a respective one of the first conductive layer structures; forming an energy removable film (ERF) on the sidewalls of each of the portions; forming a second dielectric layer over the ERFs, the portions of the patterned photoresist layer, and the first dielectric layer; removing the portions to leave behind a plurality of openings; filling a conductive material in the openings, the conductive material defining second conductive layer structures; forming a ceiling layer over the second conductive layer structures, the ERFs, and the second dielectric layer; and applying energy to the ERFs to partially remove the ERFs on the sidewalls of the portions thereby forming air gaps.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsiung Tsai, Chung-Ju Lee
  • Patent number: 8901723
    Abstract: A packaged power semiconductor device is provided with voltage isolation between a metal backside and terminals of the device. The packaged power semiconductor device is arranged in an encapsulant defining a hole for receiving a structure for physically coupling the device to an object. A direct-bonded copper (“DBC”) substrate is used to provide electrical isolation and improved thermal transfer from the device to a heatsink. At least one power semiconductor die is mounted to a first metal layer of the DBC substrate. The first metal layer spreads heat generated by the semiconductor die. In one embodiment, the packaged power semiconductor device conforms to a TO-247 outline and is capable of receiving a screw for physically coupling the device to a heatsink.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 2, 2014
    Assignee: IXYS Corporation
    Inventors: Thomas Spann, Holger Ostmann, Kang Rim Choi
  • Patent number: 8901724
    Abstract: Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 2, 2014
    Assignee: Intel Corporation
    Inventors: John Stephen Guzek, Javier Soto Gonzalez, Nicholas R. Watts, Ravi K. Nalla
  • Patent number: 8884424
    Abstract: A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: November 11, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Yuan-Chang Su, Shih-Fu Huang, Chia-Cheng Chen, Tzu-Hui Chen, Kuang-Hsiung Chen, Pao-Ming Hsieh, Ming Chiang Lee, Bernd Karl Appelt
  • Patent number: 8872353
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8872349
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for a bridge interconnect assembly that can be embedded in a package assembly. In one embodiment, a package assembly includes a package substrate configured to route electrical signals between a first die and a second die and a bridge embedded in the package substrate and configured to route the electrical signals between the first die and the second die, the bridge including a bridge substrate, one or more through-hole vias (THVs) formed through the bridge substrate, and one or more traces disposed on a surface of the bridge substrate to route the electrical signals between the first die and the second die. Routing features including traces and a ground plane of the bridge interconnect assembly may be separated by an air gap. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 28, 2014
    Assignee: Intel Corporation
    Inventors: Chia-Pin Chiu, Zhiguo Qian, Mathew J. Manusharow
  • Patent number: 8872347
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8872340
    Abstract: A substrate for a semiconductor package includes: a first dielectric having a first surface and a second surface which faces away from the first surface and possesses waveform shaped portions, and formed with first holes penetrating the first and second surfaces; and circuit traces formed over the second surface of the first dielectric and having waveform shaped portions disposed over the waveform shaped portions of the second surface of the first dielectric. The waveform shaped portions of the second surface of the first dielectric and the waveform shaped portions of the circuit traces form a stress-resistant structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 28, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jong Hoon Kim
  • Patent number: 8873282
    Abstract: A memory device includes a die package including a plurality of memory dies, an interface including an interface circuit, and a memory controller to control the interface with control data received from at least one die. The interface is to divide and multiplex an IO channel between the package and the controller into more than one channel using the data received from the at least one die. The interface includes a control input buffer to receive an enable signal through a control pad, a first input buffer to receive first data through a first IO pad in response to a first state of the enable signal, and a second input buffer to receive second data through a second IO pad in response to a second state of the enable signal. The interface further includes an input multiplexer to multiplex the first data and the second data to provide input data.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Oh Seung Min
  • Patent number: 8872352
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8866274
    Abstract: In one embodiment, a method of forming a semiconductor package comprises providing a first die having contact regions on a top surface but not on an opposite bottom surface. A dielectric liner layer is deposited under the bottom surface of the first die. The first die is attached with the deposited dielectric liner layer to a die paddle of a substrate. A bond layer is disposed between the substrate and the dielectric liner layer.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hermann Gruber, Joachim Mahler, Uwe Hoeckele, Anton Prueckl, Thomas Fischer, Matthias Schmidt
  • Patent number: 8865522
    Abstract: A method for connecting a semiconductor chip to a metal layer of a carrier substrate is disclosed. A semiconductor chip is provided which has a first side, a second side opposite the first side, a glass substrate bonded to the second side of the semiconductor chip and including at least one opening leaving an area of the second side of the semiconductor chip uncovered by the glass substrate, and a metallization region arranged in the opening of the glass substrate and electrically contacting the second side of the semiconductor chip. The semiconductor chip with the bonded glass substrate is brought onto a metal layer of a carrier substrate. A firm mechanical and electrical connection is formed between the metal layer of the carrier substrate and the metallization region.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Carsten von Koblinski, Gerald Lackner, Karin Schrettlinger, Markus Ottowitz
  • Patent number: 8860205
    Abstract: Embodiments of the present invention relate to a method of stiffening a semiconductor coreless package substrate to improve rigidity and resistance against warpage. An embodiment of the method comprises disposing a sacrificial mask on a plurality of contact pads on a second level interconnect (package-to-board interconnect) side of a coreless package substrate, forming a molded stiffener around the sacrificial mask without increasing the effective thickness of the substrate, and removing the sacrificial mask to form a plurality of cavities in the molded stiffener corresponding to the contact pads. Embodiments also include plating the surface of the contact pads and the sidewalls of the cavities in the molded cavities with an electrically conductive material.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Intel Corporation
    Inventors: Sriram Muthukumar, Nicholas R. Watts, John S. Guzek
  • Patent number: 8853861
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 7, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8847368
    Abstract: In some embodiments, selective electroless plating for electronic substrates is presented. In this regard, a method is introduced including receiving a coreless substrate strip, attaching solder balls to a backside of the coreless substrate strip, and forming a backside stiffening mold amongst the solder balls. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 30, 2014
    Assignee: Intel Corporation
    Inventors: Weng Khoon Mong, A. Vethanayagam Rudge, Bok Sim Lim, Mun Leong Loke, Kang Eu Ong, Sih Fei Lim, Tean Wee One
  • Patent number: 8847403
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8841168
    Abstract: A semiconductor device includes a substrate having a first side and a second side, the second side having a mounting location for at least one semiconductor element, and the first side having a plurality of locations electrically connected to locations on the second side. A plurality of electrically conductive interconnects are provided at the locations, each having a first end attached at the location and a second end spaced from the substrate, and an encapsulant partially encapsulates the plurality of interconnects and has a surface lying in a first plane. The second ends are located on the side of the first plane opposite from the substrate first side, an annular space in the encapsulant surrounds each of the plurality of electrically conductive interconnects, and the annular space has a bottom located between the first plane and the substrate first side. Also a method for making such a semiconductor device.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 23, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Mark Wendell Schwarz, Jianwen Xu
  • Patent number: 8841559
    Abstract: To prevent the breakage of the joint between a ceramic substrate and a glass epoxy substrate. The copper column is formed by a wiredrawing step for drawing a copper wire formed linearly to a predetermined diameter; a cutting step for cutting the copper wire, which has been drawn in the wire drawing step, in a predetermined length; a pressing step for pressing one end of the copper wire, which has been cut in the cutting step, in a longitudinal direction to form a copper column member; and an annealing step for annealing the copper column member, which has been formed in the pressing step, by maintaining a heating period of 60 minutes or longer at 600° C. or higher. Thereby, the Vickers hardness of the copper column becomes is 55 HV or less and the copper column is softened.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 23, 2014
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Yutaka Chiba, Shinichi Nomoto, Koji Watanabe
  • Patent number: 8841775
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 23, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Publication number: 20140264799
    Abstract: A power overlay (POL) structure includes a POL sub-module. The POL sub-module includes a dielectric layer and a semiconductor device having a top surface attached to the dielectric layer. The top surface of the semiconductor device has at least one contact pad formed thereon. The POL sub-module also includes a metal interconnect structure that extends through the dielectric layer and is electrically coupled to the at least one contact pad of the semiconductor device. A conducting shim is coupled to a bottom surface of the semiconductor device and a first side of a thermal interface is coupled to the conducting shim. A heat sink is coupled to a second side of the electrically insulating thermal interface.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 18, 2014
    Applicant: General Electric Company
    Inventors: Arun Virupaksha Gowda, Paul Alan McConnelee, Shakti Singh Chauhan
  • Patent number: 8836135
    Abstract: A semiconductor device including: a semiconductor substrate; a plurality of interconnect layers disposed at different heights from the semiconductor substrate, each interconnect layer including an interconnection formed therein; and a via formed in a columnar shape extending in the stack direction of the interconnect layers, the via electrically connecting the interconnections of the different interconnect layers, the interconnections including an intermediate interconnection in contact with the via in the intermediate portion thereof, and the intermediate interconnection including a first type intermediate interconnection passing through the via in a direction perpendicular to the stack direction and in contact with the via on the top surface, bottom surface, and both side surfaces thereof.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirokazu Kikuchi
  • Patent number: 8835305
    Abstract: The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Shyng-Tsong Chen, Samuel S. Choi, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Wai-Kin Li, Christopher J. Penny, Shom Ponoth, Yunpeng Yin
  • Patent number: 8829663
    Abstract: A description is given of a device comprising a first semiconductor chip, a molding compound layer embedding the first semiconductor chip, a first electrically conductive layer applied to the molding compound layer, a through hole arranged in the molding compound layer, and a solder material filling the through hole.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies AG
    Inventors: Jens Pohl, Markus Brunnbauer, Irmgard Escher-Poeppel, Thorsten Meyer
  • Patent number: 8829689
    Abstract: A module substrate may include a substrate body on which a plurality of chip mounting regions having connection pads are defined. Repair structures may be respectively formed, or placed, in the chip mounting regions. Each repair structure includes conductive layer patterns formed over the connection pads in each chip mounting region, an insulation layer pattern formed over the substrate body in each chip mounting region in such a way as to expose the conductive layer patterns, plastic conductive members formed between the connection pads and the conductive layer patterns, and a plastic insulation member formed between the substrate body and the insulation layer pattern in each chip mounting region.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Young Kim, Sung Ho Hyun, Myung Gun Park, Jin Ho Bae
  • Patent number: 8829671
    Abstract: An electrical interconnect between terminals on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a substrate with a first surface having a plurality of openings arranged to correspond to the terminals on the IC device. A compliant material is located in the openings. A plurality of first conductive traces extend along the first surface of the substrate and onto the compliant material. The compliant material provides a biasing force that resists flexure of the first conductive traces into the openings. Vias extending through the substrate are electrically coupled the first conductive traces. A plurality of second conductive traces extend along the second surface of the substrate and are electrically coupled to a vias. The second conductive traces are configured to electrical couple with the contact pads on the PCB.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: September 9, 2014
    Assignee: Hsio Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8829681
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: RE45165
    Abstract: A method for forming a semiconductor device and a device made using the method are provided. In one example, the method includes forming a hard mask layer on a semiconductor substrate and patterning the hard mask layer to form multiple openings. The substrate is etched through the openings to form forming a plurality of trenches separating multiple semiconductor mesas. The trenches are partially filled with a dielectric material. The hard mask layer is removed and multiple-gate features are formed, with each multiple-gate feature being in contact with a top surface and sidewalls of at least one of the semiconductor mesas.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Wei Chen, Tang-Xuan Zhong, Sheng-Da Liu, Chang-Yu Chang, Ping-Kun Wu, Chao-Hsiung Wang, Fu-Liang Yang