At Least One Layer Of An Alloy Containing Aluminum Patents (Class 257/765)
  • Publication number: 20080303162
    Abstract: A semiconductor device includes a layered structure including a first nitride semiconductor layer and a second nitride semiconductor layer that are sequentially formed over a substrate in this order. The second nitride semiconductor layer has a wider bandgap than the first nitride semiconductor layer. A first electrode and a second electrode are formed spaced apart from each other on the layered structure. A first insulating layer with a high breakdown field is formed in a region with electric field concentration between the first electrode and the second electrode over the layered structure. The first insulating layer has a higher breakdown field than air.
    Type: Application
    Filed: April 9, 2008
    Publication date: December 11, 2008
    Inventors: Hidetoshi Ishida, Manabu Yanagihara, Yasuhiro Uemoto, Daisuke Ueda
  • Patent number: 7456468
    Abstract: A semiconductor memory device a first dopant area and a second dopant area, the first dopant area and the second dopant area disposed in a semiconductor substrate, an insulating layer disposed in contact with the first dopant area and the second dopant area, the insulating layer including a material selected from the group consisting of Hf, Zr, Y, and Ln, and a gate electrode layer disposed on the insulating layer.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 25, 2008
    Assignee: Samsung Electronics, Co, Ltd.
    Inventors: Sang-Hun Jeon, Sung-Kyu Choi, Chung-Woo Kim, Hyun-Sang Hwang, Sung-Ho Park, Jeong-Hee Han, Sang-Moo Choi
  • Patent number: 7446392
    Abstract: An electronic device is provided using wiring comprising aluminum to prevent hillock or whisker from generating, wherein the wiring contains oxygen atoms at a concentration of 8×1018 atoms·cm?3 or less, carbon atoms at a concentration of 5×1018 atoms·cm?3 or less, and nitrogen atoms at a concentration of 7×1017 atoms·cm?3 or less; furthermore, a silicon nitride film is formed on the aluminum gate, and an anodic oxide film is formed on the side planes thereof.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 4, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto
  • Patent number: 7436065
    Abstract: An electrode contact structure having a high reliability is provided. The structure comprises an Au electrode formed on a GaAs substrate, a contact hole open in an insulating film on the Au electrode, and an Al wiring being in contact with the Au electrode through the contact hole. The difference between the height of the portion having the maximum thickness of the Al wiring and the height of the portion having the minimum thickness of the Al wiring is substantially equal to or smaller than the thickness of the insulating film. It is preferable that the thickness of the Au electrode is in the range of 0.1-0.2 ?m, the overlapped width between the peripheral portion of the Au electrode and the insulating film is 1 ?m or less, or the area of the contact hole is at least 16 ?m2 or more.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: October 14, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Seiji Ohno, Taku Kinoshita
  • Patent number: 7425765
    Abstract: A high melting point solder alloy superior in oxidation resistance, in particular a solder alloy provided with both a high oxidation resistance and high melting point suitable for filling fine through holes of tens of microns in diameter and high aspect ratios and forming through hole filling materials, comprising a zinc-aluminum solder alloy containing 0.001 wt % to 1 wt % of aluminum and the balance of zinc and unavoidable impurities.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: September 16, 2008
    Assignee: Fujitsu Limited
    Inventors: Masayuki Kitajima, Tadaaki Shono, Ryoji Matsuyama
  • Publication number: 20080217784
    Abstract: A substrate has at least one feedthrough with at least one channel from a first main surface of the substrate to a second main surface of the substrate. The at least one channel is closed off with a first material. The at least one closed-off channel is filled with an electrically conductive second material.
    Type: Application
    Filed: October 19, 2007
    Publication date: September 11, 2008
    Inventors: Florian Binder, Stephen Dertinger, Barbara Hasler, Alfred Martin, Grit Sommer, Holger Torwesten
  • Patent number: 7420277
    Abstract: The present disclosure provides a method and system for heat dissipation in semiconductor devices. In one example, an integrated circuit semiconductor device includes a semiconductor substrate; one or more metallurgy layers connected to the semiconductor substrate, and each of the one or more metallurgy layers includes: one or more conductive lines; and one or more dummy structures between the one or more conductive lines and at least two of the one or more dummy structures are connected; and one or more dielectric layers between the one or more metallurgy layers.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: September 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Hsien-Wei Chen, Jiun-Lin Yeh, Shin-Puu Jeng, Yi-Lung Cheng
  • Publication number: 20080145974
    Abstract: Magnetic recording heads and associated fabrication methods are disclosed. A heat spreader structure in a magnetic recording head includes a seed layer with a heat spreader layer formed on the seed layer. When the heat spreader layer (e.g., Aluminum Nitride) is grown on the seed layer (e.g., NiTa or Alumina), the heat spreader layer forms a well-oriented crystalline structure that allows for a desired thermal conductivity, such as a thermal conductivity greater than about 55 W/m-K. As a result of using the seed layer, a material such as Aluminum Nitride can be used for a heat spreader layer to effectively dissipate heat in a magnetic recording head.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: James M. Freitag, Howard G. Zolla
  • Publication number: 20080142983
    Abstract: A method and apparatus is disclosed for sequential processing of integrated circuits, particularly for conductively passivating a contact pad with a material which resists formation of resistive oxides. In particular, a tank is divided into three compartments, each holding a different solution: a lower compartment and two upper compartments divided by a barrier, which extends across and partway down the tank. The solutions have different densities and therefore separate into different layers. In the illustrated embodiment, integrated circuits with patterned contact pads are passed through one of the upper compartments, in which oxide is removed from the contact pads. Continuing downward into the lower compartment and laterally beneath the barrier, a protective layer is selectively formed on the insulating layer surrounding the contact pads. As the integrated circuits are moved upwardly into the second upper compartment, a conducting monomer selectively forms on the contact pads prior to any exposure to air.
    Type: Application
    Filed: February 25, 2008
    Publication date: June 19, 2008
    Inventors: Tongbi Jiang, Li Li
  • Publication number: 20080111244
    Abstract: A semiconductor device having copper interconnecting metallization (111) protected by a first (102) and a second (120) overcoat layer (homogeneous silicon dioxide), portions of the metallization exposed in a window (103) opened through the thicknesses of the first and second overcoat layers. A patterned conductive barrier layer (130) is positioned on the exposed portion of the copper metallization and on portions of the second overcoat layer surrounding the window. A bondable metal layer (150) is positioned on the barrier layer; the thickness of this bondable layer is suitable for wire bonding. A third overcoat layer (160) consist of a homogeneous silicon nitride compound is positioned on the second overcoat layer so that the ledge (162, more than 500 nm high) of the third overcoat layer overlays the edge (150b) of the bondable metal layer. The resulting contoured chip surface improves the adhesion to plastic device encapsulation.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Glenn J. Tessmer, Edgardo R. Hortaleza, Thad E. Briggs
  • Patent number: 7358611
    Abstract: A system and method is disclosed for adjusting the ratio of deposition times to optimize via density and via fill in an aluminum multilayer metallization process during a manufacturing process of a semiconductor wafer. In a two-step cold/hot aluminum sputtering process via fill becomes more challenging as via density increases. The invention increases the percentage of successful via fills by changing the ratio of the cold/hot deposition times. Denser via structures require extended cold deposition times to compensate for higher via density. The percentage of successful via fills was increased from forty percent (40%) to seventy percent (70%) by changing the ratio of the cold/hot deposition times from 60:40 to 79:21.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: April 15, 2008
    Assignee: National Semiconductor Corporation
    Inventor: Abhay Ramrao Deshmukh
  • Patent number: 7335990
    Abstract: A semiconductor device, having a composite barrier layer, comprising the following. A substrate has a dielectric layer formed thereover and having an opening within the dielectric layer. The opening exposes a first portion of the substrate. A composite barrier layer lines the opening. The composite barrier layer comprises: a dielectric flash layer within the opening and lining the opening wherein the dielectric flash layer does not cover the first exposed portion of the substrate; an aluminum layer over the dielectric flash layer and over the first exposed portion of the substrate; and a barrier metal layer over the aluminum layer. Wherein the dielectric flash layer, the aluminum layer and the barrier metal layer comprise the composite barrier layer. A planarized metal plug is within the barrier metal layer lined opening.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: February 26, 2008
    Assignee: Agency for Science, Technology and Research
    Inventors: Chaoyong Li, Siaw Suian Sabrina Su, Moitreyee Mukherjee-Roy, Ramana Murthy Badam
  • Patent number: 7323783
    Abstract: There is provided a technology for obtaining an electrode having a low contact resistance and less surface roughness. There is provided an electrode comprising a semiconductor film 101, and a first metal layer 102 and a second metal layer 103 sequentially stacked in this order on the semiconductor film 101, characterized in that the first metal film 102 is formed of Al, and the second metal film 103 is formed of at least one metal selected from the group consisting of Nb, W, Fe, Hf, Re, Ta and Zr.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 29, 2008
    Assignee: NEC Corporation
    Inventors: Tatsuo Nakayama, Hironobu Miyamoto, Yuji Ando, Takashi Inoue, Yasuhiro Okamoto, Masaaki Kuzuhara
  • Patent number: 7307344
    Abstract: Disclosed is a semiconductor device comprising a semiconductor substrate, a first insulating film formed above the semiconductor substrate, Cu wiring buried in the first insulating film, a second insulating film formed above the Cu wiring, and a discontinuous film made of at least one metal selected from the group consisting of Ti, Al, W, Pd, Sn, Ni, Mg and Zn, or a metal oxide thereof and interposed at an interface between the Cu wiring and the second insulating film.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 11, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Gaku Minamihaba, Hiroyuki Yano, Nobuyuki Kurashima, Susumu Yamamoto
  • Patent number: 7303988
    Abstract: Methods of forming a multi-level metal line of a semiconductor device are disclosed. One example method includes subsequently stacking first and second metal layers, wherein a conductive etching stopper layer is interposed at an interface between the first and second metal layers; forming first and second metal layer pattern by patterning the first metal layer, the etching stopper layer, and the second metal layer, wherein the first metal layer pattern is formed as a lower metal line; forming a connection contact in form of a plug by selectively etching the second metal layer pattern until the etching stopper layer is exposed; forming an interlayer insulating layer to cover the connection contact and the first metal layer pattern; and exposing an upper surface of the connection contact by planarizing the interlayer insulating layer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 4, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Chul Shim
  • Patent number: 7301241
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a . A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: November 27, 2007
    Assignee: Fujitsu Limited
    Inventor: Kenichi Watanabe
  • Patent number: 7298021
    Abstract: An electronic device is provided using wiring comprising aluminum to prevent hillock or whisker from generating, wherein the wiring contains oxygen atoms at a concentration of 8×1018 atoms·cm?3 or less, carbon atoms at a concentration of 5×1018 atoms·cm?3 or less, and nitrogen atoms at a concentration of 7×1017 atoms·cm?3 or less; furthermore, a silicon nitride film is formed on the aluminum gate, and an anodic oxide film is formed on the side planes thereof.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 20, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto
  • Patent number: 7294565
    Abstract: A method for sealing an exposed surface of a wire bond pad with a material that is capable of preventing a possible chemical attack during electroless deposition of Ni/Au pad metallurgy is provided. Specifically, the present invention provides a method whereby a TiN/Ti or TiN/Al cap is used as a protective coating covering exposed surfaces of a wire bond pad. The TiN/Ti or TiN/Al cap is not affected by alkaline chemistries used in forming the Ni/Au metallization, yet it provides a sufficient electrical pathway connecting the bond pads to the Ni/Au pad metallization.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: November 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Lloyd G. Burrell, Charles R. Davis, Ronald D. Goldblatt, William F. Landers, Sanjay C. Mehta
  • Patent number: 7294851
    Abstract: Methods of forming dense seed layers and structures thereof. Seed layers comprising a monolayer of molecules having a density of about 0.5 or greater may be manufactured over a metal layer, resulting in a well defined interface region between the metal layer and a subsequently formed material layer. A seed layer comprising a monolayer of atoms is formed over the metal layer, the temperature of the workpiece is lowered, and a physisorbed layer is formed over the seed layer, the physisorbed layer comprising a weakly bound layer of first molecules. A portion of the first molecules in the physisorbed layer are dissociated by irradiating the physisorbed layer with energy, the dissociated atoms of the first molecules being proximate the seed layer. The workpiece is then heated, causing integration of the dissociated atoms of the first molecules of the physisorbed layer into the seed layer and removing the physisorbed layer.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: November 13, 2007
    Assignee: Infineon Technologies AG
    Inventor: Stefan Wurm
  • Patent number: 7294570
    Abstract: A method of making a contact plug and a metallization line structure is disclosed in which a substrate is provided with at least one contact hole within an insulation layer situated on a semiconductor substrate of a semiconductor wafer. A first metal layer is deposited upon the semiconductor wafer within the contact hole. A planarizing step isolates the first metal layer within the insulation layer in the form of a contact plug within the contact hole. A second metal layer is then deposited upon the semiconductor wafer over and upon the contact plug. Metallization lines are patterned and etched from the second metal layer. The contact hole may also be lined with a refractory metal nitride layer, with a refractory metal silicide interface being formed at the bottom of the contact hole as an interface between the contact plug and a silicon layer on the semiconductor substrate.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: November 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Richard L. Elliott, Guy F. Hudson
  • Patent number: 7294858
    Abstract: A semiconductor device provided with a silicon carbide semiconductor substrate, and an ohmic metal layer joined to one surface of the silicon carbide semiconductor substrate in an ohmic contact and composed of a metal material whose silicide formation free energy and carbide formation free energy respectively take negative values. The ohmic metal layer is composed of, for example, a metal material such as molybdenum, titanium, chromium, manganese, zirconium, tantalum, or tungsten.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: November 13, 2007
    Assignee: Rohm Co., Ltd.
    Inventors: Yuji Okamura, Masashi Matsushita
  • Patent number: 7276795
    Abstract: A first layer of titanium nitride (TiN) is formed on a semiconductor structure, such as an interconnect via. Then, a second layer of TiN is formed on the first layer of TiN. The first layer of TiN is amorphous. The second layer of TiN is polycrystalline, having a mixed grain orientation. Finally, an aluminum film is formed on the second layer of titanium nitride. Optionally, a titanium silicide layer is formed on the semiconductor structure prior to the step of forming the first layer of titanium nitride. Interconnects formed according to the invention have polycrystalline aluminum films with grain sizes of approximately less than 0.25 microns.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Wing-Cheong Gilbert Lai, Gurtej Singh Sandhu
  • Publication number: 20070187834
    Abstract: There is provided a connection structure between a Si electrode (Si member) and an Al wire (Al member). Between the Si electrode and the Al wire, a first part and second parts are present in interposed relation. Each of the first and second parts is in contact with the Si electrode and with the Al wire. In the first part, a Si oxide layer and an Al oxide layer are present. The Si oxide layer is in contact with the Si electrode. The Al oxide layer is interposed between the Si oxide layer and the Al wire. In some of the second parts, Al is present. In the others of the second parts, a Si portion and an Al portion are present.
    Type: Application
    Filed: October 10, 2006
    Publication date: August 16, 2007
    Inventors: Masanori Minamio, Hiroaki Fujimoto, Atsuhito Mizutani, Hisaki Fujitani, Toshiyuki Fukuda
  • Patent number: 7253501
    Abstract: A semiconductor device having a nonconductive cap layer comprising a first metal element. The nonconductive cap layer comprises a first metal nitride, a first metal oxide, or a first metal oxynitride over conductive lines and an insulating material between the conductive lines. An interface region may be formed over the top surface of the conductive lines, the interface region including the metal element of the cap layer. The cap layer prevents the conductive material in the conductive lines from migrating or diffusing into adjacent subsequently formed insulating material layers. The cap layer may also function as an etch stop layer.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: August 7, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Ming Lee, Jing-Cheng Lin, Shing-Chyang Pan, Ching-Hua Hsieh, Chao-Hsien Peng, Cheng-Lin Huang, Li-Lin Su, Shau-Lin Shue
  • Patent number: 7253519
    Abstract: A chip structure comprising a chip, a redistribution layer, a second passivation layer and at least a bump is provided. The chip has a first passivation layer and at least a bonding pad. The first passivation layer exposes the bonding pad and has at least a recess. The redistribution layer is formed over the first passivation layer and electrically connected to the bonding pad. Furthermore, the redistribution layer also extends from the bonding pad to the recess. The second passivation layer is formed over the first passivation layer and the redistribution layer. The second passivation layer also has an opening that exposes the redistribution layer above the recess. The bump passes through the opening and connects electrically with the redistribution layer above the recess.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: August 7, 2007
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Min-Lung Huang, Chi-Long Tsai, Chao-Fu Weng, Ching-Huei Su
  • Patent number: 7235844
    Abstract: A high-reliability power composite integrated semiconductor device uses thick copper electrodes as current collecting electrodes of a power device portion to resist wire resistance needed for reducing ON-resistance. Furthermore, wire bonding connection of the copper electrodes is secured, and also the time-lapse degradation under high temperature which causes diffusion of copper and corrosion of copper is suppressed. Still furthermore, direct bonding connection can be established to current collecting electrodes in the power device portion, and also established to a bonding pad formed on the control circuit portion in the control circuit portion. A pad area at the device peripheral portion which has been hitherto needed is reduced, so that the area of the device is saved, and the manufacturing cost is reduced.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: June 26, 2007
    Assignee: Denso Corporation
    Inventor: Hiroyasu Itou
  • Patent number: 7226858
    Abstract: A submicron contact opening fill using a chemical vapor deposition (CVD) TiN liner/barrier and a high temperature, e.g., greater than about 385° C., physical vapor deposition (PVD) aluminum alloy layer that substantially fills the submicron contact.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: June 5, 2007
    Assignee: Microchip Technology Incorporated
    Inventors: Jacob Lee Williams, Harold E. Kline
  • Patent number: 7224065
    Abstract: An improved method of forming a semiconductor device structure is disclosed, comprising insertion of a semiconductor wafer into a high-pressure heated chamber and the deposition of a low melting-point aluminum material into a contact hole or via and over an insulating layer overlying a substrate of the wafer. The wafer is heated up to the melting point of the aluminum material and the chamber is pressurized to force the aluminum material into the contact holes or vias and eliminate voids present therein. A second layer of material, comprising a different metal or alloy, which is used as a dopant source, is deposited over an outer surface of the deposited aluminum material layer and allowed to diffuse into the aluminum material layer in order to form a homogenous aluminum alloy within the contact hole or via. A semiconductor device structure made according to the method is also disclosed.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 29, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Patent number: 7224066
    Abstract: A circuit device is provided in which the bonding reliability of a brazing material such as soft solder is improved. A circuit device of the present invention includes conductive patterns, a bonding material which fixes circuit elements to the conductive patterns, and sealing resin which covers the circuit elements. The circuit device has a structure in which Pb-free solder containing Bi is used as the bonding material. Since the melting temperature of Bi is high in comparison with that of a general solder, the melting of the bonding material is suppressed when the circuit device is mounted. Further, Ag or the like may be mixed into the bonding material in order to enhance the wettability of the bonding material.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: May 29, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Toshimichi Naruse, Yoshihiro Kogure, Takayuki Hasegawa, Hajime Kobayashi
  • Patent number: 7215029
    Abstract: In order to solve the aforementioned problems, the present-invention provides a semiconductor device having a multilayer interconnection structure, wherein an upper interconnection comprises a first metal layer composed of an aluminum alloy, which is formed over a lower interconnection, and a second metal layer formed over the first metal layer and composed of an aluminum alloy formed as a film at a temperature higher than that for the first metal layer. Another invention provides a semiconductor device having a multilayer interconnection structure, wherein a metal region composed of a metal different from an aluminum alloy is formed in a portion spaced by a predetermined distance in an extending direction of an upper interconnection from an end of a via hole defined in the upper interconnection composed of the aluminum alloy, which is electrically connected to a lower interconnection through the via hole.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: May 8, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Eiichi Umemura
  • Patent number: 7193326
    Abstract: A mold type semiconductor device includes a semiconductor chip including a semiconductor part; a metallic layer; a solder layer; and a metallic member connecting to the semiconductor chip through the metallic layer and the solder layer. The solder layer is made of solder having yield stress smaller than that of the metallic layer. Even when the semiconductor chip is sealed with a resin mold, the metallic layer is prevented from cracking.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 20, 2007
    Assignee: DENSO Corporation
    Inventors: Naohiko Hirano, Nobuyuki Kato, Takanori Teshima, Yoshitsugu Sakamoto, Shoji Miura, Akihiro Niimi
  • Patent number: 7189645
    Abstract: A system and method is disclosed for adjusting the ratio of deposition times to optimize via density and via fill in an aluminum multilayer metallization process during a manufacturing process of a semiconductor wafer. In a two-step cold/hot aluminum sputtering process via fill becomes more challenging as via density increases. The invention increases the percentage of successful via fills by changing the ratio of the cold/hot deposition times. Denser via structures require extended cold deposition times to compensate for higher via density. The percentage of successful via fills was increased from forty percent (40%) to seventy percent (70%) by changing the ratio of the cold/hot deposition times from 60:40 to 79:21.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: March 13, 2007
    Assignee: National Semiconductor Corporation
    Inventor: Abhay Ramrao Deshmukh
  • Patent number: 7166921
    Abstract: Disclosed is an Al alloy film for wiring, which consists of, by atom, 0.2 to 1.5% Ge and 0.2 to 2.5% Ni and the balance being essentially Al, wherein a total amount of Ge and Ni is not more than 3.0%. The invention is also directed to a sputter target material having the same chemical composition as that of the Al alloy film.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: January 23, 2007
    Assignee: Hitachi Metals, Ltd.
    Inventor: Hideo Murata
  • Patent number: 7161211
    Abstract: Aluminum-containing films having an oxygen content within the films. The aluminum-containing film is formed by introducing hydrogen gas along with argon gas into a sputter deposition vacuum chamber during the sputter deposition of aluminum or aluminum alloys onto a semiconductor substrate. The aluminum-containing film so formed is hillock-free and has low resistivity, relatively low roughness compared to pure aluminum, good mechanical strength, and low residual stress.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: January 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kanwal K. Raina, David H. Wells
  • Patent number: 7154180
    Abstract: In an electronic device comprising a first electrodes consisting of a metal oxide and a second electrode consisting of an aluminum alloy film directly contacted and electrically connected to the first electrode, the contact interface between the aluminum alloy film and the first electrode is constructed so that at least a part of alloy components constituting the aluminum alloy film exist as a precipitate or concentrated layer. This construction enables direct contact between the aluminum alloy film and the electrode consisting of a metallic oxide and allows elimination of a barrier metal in such an electronic device, and manufacturing technology therefor.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: December 26, 2006
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Gotoh, Toshihiro Kugimiya, Junichi Nakai, Katsufumi Tomihisa
  • Patent number: 7135770
    Abstract: A columnar bump formed of copper etc. is formed on a wiring film of a semiconductor chip through an interconnected film and an adhesive film in a wafer unit by electrolytic plating in which package formation is possible. An oxidation prevention film is formed of such as gold on an upper surface or a part of the upper surface and side surface. A wet prevention film of such as an oxide film is formed on the columnar bump side as needed. If this bump is soldered to the pad on a packaging substrate, solder gets wet in the whole region of the columnar bump upper surface and only a part of the side surface. Stabilized and reliable junction form can be thus formed. Moreover, since the columnar bump does not fuse, the distance between a semiconductor board and a packaging board is not be narrowed by solder.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: November 14, 2006
    Assignee: NEC Corporation
    Inventors: Tomohiro Nishiyama, Masamoto Tago
  • Patent number: 7129582
    Abstract: A method of forming a semiconductor device includes implanting a precipitate into a gate conductor of an at least partially formed semiconductor device. The gate conductor including a plurality of semiconductor grains. The boundaries of adjacent grains forming a dopant migration path. A plurality of precipitate regions are formed within the gate conductor. At least some of the precipitate regions located at a junction of at least two grains. The gate conductor of the at least partially formed semiconductor device is doped with a dopant. The dopant diffuses inwardly along the dopant migration path.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: October 31, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Kaiping Liu, Zhiqiang Wu, Jihong Chen
  • Patent number: 7119440
    Abstract: A multi-level semiconductor device wiring interconnect structure and method of forming the same to improve electrical properties and reliability of wiring interconnects including an electromigration resistance and electrical resistance, the method including forming a dielectric insulating layer over a conductive portion; forming a via opening in closed communication with the conductive portion; forming a first barrier layer to line the via opening; forming a layer of AlCu according to a sputtering process to fill the via opening to form an AlCu via including a portion overlying the first dielectric insulating layer; and, photolithographically patterning and dry etching the portion to form an AlCu interconnect line over the AlCu via.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 10, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chien-Chao Huang
  • Patent number: 7098539
    Abstract: In an electronic device comprising a first electrodes consisting of a metal oxide and a second electrode consisting of an aluminum alloy film directly contacted and electrically connected to the first electrode, the contact interface between the aluminum alloy film and the first electrode is constructed so that at least a part of alloy components constituting the aluminum alloy film exist as a precipitate or concentrated layer. This construction enables direct contact between the aluminum alloy film and the electrode consisting of a metallic oxide and allows elimination of a barrier metal in such an electronic device, and manufacturing technology therefor.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 29, 2006
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Gotoh, Toshihiro Kugimiya, Junichi Nakai, Katsufumi Tomihisa
  • Patent number: 7091609
    Abstract: Certain embodiments of the present invention relate to a semiconductor device that has a pad section having an excellent coherency with an interlayer dielectric layer, and a method for manufacturing the same. A semiconductor device 1000 has a pad layer 30A formed over an interlayer dielectric layer 20. The pad section 30A includes a wetting layer 32 and a metal wiring layer 37. The metal wiring layer 37 includes an alloy layer 34 that contacts the wetting layer 32. The alloy layer 34 is formed from a material composing the wetting layer 32 and a material composing the metal wiring layer 37.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: August 15, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Kazuki Matsumoto, Yukio Morozumi, Michio Asahina
  • Patent number: 7087998
    Abstract: A method for controlling the position of air gaps in intermetal dielectric layers between conductive lines and a structure formed using such a method. A first dielectric layer is deposited over at least two features and a substrate and an air gap is formed between the at least two features and above the feature height. The first dielectric layer is etched between the at least two features to open the air gap. Then a second dielectric layer is deposited over the etched first dielectric layer to form an air gap between the at least two features and completely below the feature height.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 8, 2006
    Assignee: ProMOS Technology, Inc.
    Inventors: Tai-Peng Lee, Ching-Yueh Hu, Chuck Jang
  • Patent number: 7078733
    Abstract: A layered structure of wire(s) comprising a wiring layer made of a low resistance metal containing aluminum, copper or silver; and an alloy layer made of an intermediate phase containing the low resistance metal and a refractory metal. The refractory metal is molybdenum. There is also formed a layered structure of wire(s) made of an aluminum alloy containing a lanthanoid, wherein a number average crystal grain size is 16.9 nm or more. Crystal grain size may be larger than a mean free path of electrons to provide a layered structure of wire(s) with a reduced resistance.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: July 18, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Naoya Sotani, Koji Suzuki, Yoshio Miyai
  • Patent number: 7064441
    Abstract: The present invention is to improve yield and reliability in a wiring step of a semiconductor device. When an Al wiring on an upper layer is connected through an connection pillar onto an Al wiring on a lower layer embedded in a groove formed on an interlayer insulation film, a growth suppression film having an opening whose width is wider than that of the Al wiring is formed on the interlayer insulation film and the Al wiring. In this condition, Al and the like are grown by a selective CVD method and the like. Accordingly, the connection pillar is formed on the Al wiring within the opening, in a self-matching manner with respect to the Al wiring.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: June 20, 2006
    Assignee: Sony Corporation
    Inventor: Junichi Aoyama
  • Patent number: 7061016
    Abstract: An electronic circuit formed on an insulating substrate and having thin-film transistors (TFTs) comprising semiconductor layers. The thickness of the semiconductor layer is less than 1500 ?, e.g., between 100 and 750 ?. A first layer consisting mainly of titanium and nitrogen is formed on the semiconductor layer. A second layer consisting of aluminum is formed on top of the first layer. The first and second layers are patterned into conductive interconnects. The bottom surface of the second layer is substantially totally in intimate contact with the first layer. The interconnects have good contacts with the semiconductor layer.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: June 13, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Minoru Miyazaki, Akane Murakami, Baochun Cui, Mutsuo Yamamoto
  • Patent number: 7045831
    Abstract: A semiconductor device of the present invention comprises a semiconductor chip, metal layers formed on a first main surface of the semiconductor chip, a first conductive layer layered on a second main surface of the semiconductor chip, consisting of a plurality of conductive films, a second conductive layer layered on the metal layer, having a layered structure consisting of a plurality of conductive films formed in the same order as in the first conductive layer as viewed from the semiconductor chip and a third conductive layer layered on the metal layer, having a layered structure consisting of a plurality of conductive films formed in the same order as in the first conductive layer as viewed from the semiconductor chip. The plurality of conductive films comprise a nickel film and a low contact resistance conductive film having contact resistance with the semiconductor chip which is lower than that of the nickel film.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: May 16, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Atsushi Narazaki
  • Patent number: 7012338
    Abstract: A terminal interconnection 45a including an aluminum alloy film 4a and a nitrogen-containing aluminum film 5a layered together is formed on a glass substrate 2. Nitrogen-containing aluminum film 5a in a contact portion 12a within a contact hole 11a exposing the surface of terminal interconnection 45a has a predetermined thickness d1 determined based on a specific resistance of the nitrogen-containing aluminum film. The thickness of the nitrogen-containing aluminum film outside the contact portion is larger than that of the nitrogen-containing aluminum film within the contact portion. Thereby, a semiconductor device or a liquid crystal display device having a reduced contact resistance and an appropriate resistance against chemical liquid is achieved.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: March 14, 2006
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Advanced Display Inc.
    Inventors: Takeshi Kubota, Toru Takeguchi, Nobuhiro Nakamura
  • Patent number: 6992397
    Abstract: A flip chip package, apparatus and technique in which a ball grid array composed of a doped eutectic Pb/Sn solder composition is used. The dopant in the Pb/Sn solder forms a compound or complex with the phosphorous residue from the electroless nickel plating process that is mixable with the Pb/Sn solder. The phosphorous containing compound or complex prevents degradation of the solder/under bump metallization bond associated with phosphorus residue. The interfacial solder/under bump metallization bond is thereby strengthened. This results in fewer fractured solder bonds and greater package reliability.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: January 31, 2006
    Assignee: Altera Corporation
    Inventor: My Nguyen
  • Patent number: 6979643
    Abstract: In a method for forming interlayer connections, metal conducting paths in an overlaying layer and vias forming the deposit in one and the same operation. In an interlayer connection formed in this manner the vias are provided integral with connecting conducting paths in the overlaying layer.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: December 27, 2005
    Assignee: Thin Film Electronics ASA
    Inventors: Goran Gustafsson, Peter Dyreklev, Johan Carlsson
  • Patent number: 6979882
    Abstract: An electronic device is provided using wiring comprising aluminum to prevent hillock or whisker from generating, wherein the wiring contains oxygen atoms at a concentration of 8×1018 atoms·cm?3 or less, carbon atoms at a concentration of 5×1018 atoms·cm?3 or less, and nitrogen atoms at a concentration of 7×1017 atoms·cm?3 or less; furthermore, a silicon nitride film is formed on the aluminum gate, and an anodic oxide film is formed on the side planes thereof.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: December 27, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto
  • Patent number: RE39932
    Abstract: A plurality of metal wires are formed on an underlying interlayer insulating film. Areas among the metal wires are filled with a buried insulating film of a silicon oxide film with a small dielectric constant (i.e., a first dielectric film), and thus, a parasitic capacitance of the metal wires can be decreased. On the buried insulating film, a passivation film of a silicon nitride film with high moisture absorption resistance (i.e., a second dielectric film) is formed, and thus, a coverage defect can be avoided. A bonding pad is buried in an opening formed in a part of a surface protecting film including the buried insulating film and the passivation film, so as not to expose the buried insulating film within the opening. Thus, moisture absorption through the opening can be prevented.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: December 4, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshiki Yabu, Mizuki Segawa