Active Layer Of Indirect Band Gap Semiconductor Patents (Class 257/86)
  • Patent number: 7709848
    Abstract: A group III nitride semiconductor light emitting device according to the present invention includes an intermediate layer formed of AlxGa1-x-yInyN(0<X<1, 0<y<1, x+y<1) between an active layer and a cladding layer and an electron blocking layer formed of p-type group III nitride semiconductor having a smaller electron affinity than that of the intermediate layer so as to be in contact with the intermediate layer. The semiconductor light emitting layer may be a laser diode or a LED.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 4, 2010
    Assignee: Panasonic Corporation
    Inventor: Katsumi Sugiura
  • Publication number: 20100096641
    Abstract: A light emitting device according to an embodiment is provided. The light emitting device comprises a second electrode layer, a third conductive semiconductor layer comprising a schottky contact region and an ohmic contact region on the second electrode layer, a second conductive semiconductor layer on the third conductive semiconductor layer, an active layer on the second conductive semiconductor layer, a first conductive semiconductor layer on the active layer, and a first electrode layer on the first conductive semiconductor layer.
    Type: Application
    Filed: July 10, 2009
    Publication date: April 22, 2010
    Inventors: Sung Min Hwang, Hyun Kyong Cho, Gyeong Geun Park
  • Patent number: 7691658
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1?xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1?xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 6, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7687817
    Abstract: To provide a light emitting element that can extract substantially all the light emitted from a luminous layer structure to the outside, a GaN substrate and a luminous layer structure are formed by growing III nitride compound semiconductor on a sapphire substrate that is a growth substrate. Thereafter, the sapphire substrate is lifted off and minute irregularities are formed on the exposed GaN substrate. The pitch of irregularities is shorter than the wavelength of light emitted from the luminous layer structure.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: March 30, 2010
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Toshiya Uemura
  • Patent number: 7687293
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al,In,Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 30, 2010
    Assignee: The Regents of the University of California
    Inventors: Hiroshi Sato, John F. Kaeding, Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100072487
    Abstract: A light emitting diode (LED), a fabricating method thereof, and a package structure thereof are provided. The LED includes a substrate, a first semiconductor layer disposed on the substrate, an active layer disposed on the first semiconductor layer, a second semiconductor layer disposed on the active layer, a current distribution modifying pattern, a first electrode and a second electrode. The active layer and the second semiconductor layer form a mesa structure and expose a part of the first semiconductor layer. The current distribution modifying pattern is disposed on the second semiconductor layer. The first electrode is disposed on and electrically connected to the first semiconductor layer exposed by the mesa structure. The second electrode is disposed on the current distribution modifying pattern and is electrically connected to the second semiconductor layer. The LED has superior light emitting efficiency.
    Type: Application
    Filed: April 7, 2009
    Publication date: March 25, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yao-Jun Tsai, Jinn-Kong Sheu, Hsi-Hsuan Yen, Hung-Lieh Hu
  • Patent number: 7683385
    Abstract: A facet extraction LED improved in light extraction efficiency and a manufacturing method thereof. A substrate is provided. A light emitting part includes an n-type semiconductor layer, an active layer and a p-type semiconductor layer sequentially stacked on the substrate. A p-electrode and an n-electrode are connected to the p-type semiconductor layer and the n-type semiconductor layer, respectively. The p- and n-electrodes are formed on the same side of the LED. The light emitting part is structured as a ring.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tae Won Lee, Hee Seok Park, Masayoshi Koike
  • Patent number: 7683379
    Abstract: A light emitting device having little variation in the intensity of light emitted from the light emitting surface is provided. The light emitting device of exemplary embodiments of the present invention includes a laminated body with a first conductivity type layer and a second conductivity type layer, with a light emitting portion therebetween. The light emitting device also includes a metal thin film layer on the second conductivity type layer of the laminated body, and a transparent conductor on the metal thin film layer. The transparent conductor includes a single layer of transparent conductive film. The grain size in the light emitting surface of the transparent conductive film is not less than 30 nm and not greater than 300 nm.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: March 23, 2010
    Assignee: Fujikura Ltd.
    Inventors: Kenji Goto, Takuya Kawashima, Nobuo Tanabe, Tatsuya Ito
  • Publication number: 20100033075
    Abstract: The present invention discloses a fluorine-oxide phosphor powder, based on the cubic garnet fluorine oxide and yttrium aluminum oxide and using cerium as activator, is characterized in that the luminescent material is added with fluorine with a chemical equivalence formula as Y3-xCexAl2(AlO4-?FO)?Fi)?)3, wherein FO is fluorine ion in the lattice point of oxygen crystal and Fi is fluorine ion between the lattice points. The phosphor powder has cerium ions Ce+3 as activator and can be excited by quantum radiation or high-energy particles with energy between E?2.8 eV and E?1 MeV to have a peak wavelength between ?=538˜548 nm and half bandwidth of ??0.5=109-114 nm. Moreover, the present invention also discloses an In—Ga—N heterojunction used in spectrum converter, semiconductor light source, scintillating phosphor powder, scintillation sensor, and FED (Field Emission Display) monitor.
    Type: Application
    Filed: June 10, 2009
    Publication date: February 11, 2010
    Inventors: Soshchin NAUM, Wei-Hung Lo, Chi-Ruei Tsai
  • Patent number: 7656922
    Abstract: A laser and electroabsorption modulator (EAM) are monolithically integrated through an etched facet process. Epitaxial layers on a wafer include a first layer for a laser structure and a second layer for an EAM structure. Strong optical coupling between the laser and the EAM is realized by using two 45-degree turning mirrors to route light vertically from the laser waveguide to the EAM waveguide. A directional angled etch process is used to form the two angled facets.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: February 2, 2010
    Assignee: Binoptics Corporation
    Inventors: Alex A. Behfar, Malcolm R. Green, Alfred T. Schremer
  • Patent number: 7633081
    Abstract: A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light radiation. The structure is operable to emit light radiation in response to a current flow therethrough. Moreover, the elongated structure is fabricated to be sufficiently narrow for quantum confinement of charge carriers associated with the current flow to occur therein. Furthermore, the structure further includes an electrode arrangement for applying an electric field to the elongated structure for causing bending of its bandgap characteristic for modulating a wavelength of the light radiation emitted in operation from the structure in response to the current flow therethrough.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: December 15, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Erik Petrus Antonius Maria Bakkers, Stefan Peter Grabowski
  • Patent number: 7622744
    Abstract: The present invention provides a light emitting material having high electric conductivity, and further a light emitting element which can be driven at low voltage. Light emitting devices and electronic devices with reduced power consumption can also be provided. A light emitting element including a light emitting material is provided in which a first electrode 101, a first insulating layer 102, a light emitting layer 103, a second insulating layer 104 and a second electrode 105 are provided over a first electrode 101, the light emitting layer 103 includes an inorganic compound that is any of a sulfide, a nitride and an oxide as a base material; at least one element selected from the group consisting of copper, silver, aluminum, fluorine and chlorine, as a luminescent center material; manganese; and either gallium phosphide or gallium antimonide.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichiro Sakata, Yoshiaki Yamamoto, Takahiro Kawakami, Tomoya Aoyama
  • Patent number: 7582910
    Abstract: A high efficiency, and possibly highly directional, light emitting diode (LED) with an optimized photonic crystal extractor. The LED is comprised of a substrate, a buffer layer grown on the substrate (if needed), an active layer including emitting species, one or more optical confinement layers that tailor the structure of the guided modes in the LED, and one or more diffraction gratings, wherein the diffraction gratings are two-dimensional photonic crystal extractors. The substrate may be removed and metal layers may be deposited on the buffer layer, photonic crystal and active layer, wherein the metal layers may function as a mirror, an electrical contact, and/or an efficient diffraction grating.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: September 1, 2009
    Assignee: The Regents of the University of California
    Inventors: Aurelien J. F. David, Claude C. A. Weisbuch, Steven P. DenBaars
  • Publication number: 20090166615
    Abstract: An organic light-emitting element has an anode, a cathode, and a layer including an organic compound between the anode and the cathode. The layer including the organic compound has at least one tetracyano compound represented by at least one of Formula (1) or (2) below. In Formula (1), R1 to R4 are each a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aromatic group, a nitro group, or a cyano group. In Formula (2), n represents an integer of 1 to 2, Mn+ is a metal ion or an onium cation, and R1 to R4 are as defined in Formula (1).
    Type: Application
    Filed: December 15, 2008
    Publication date: July 2, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Koichi Nakata, Kazunori Ueno, Koichi Suzuki
  • Patent number: 7550782
    Abstract: In a semiconductor device in which a group III nitride compound semiconductor layer is formed without a low temperature grown buffer layer provided on an undercoat layer formed by a metal nitride layer, the metal nitride layer is formed of reddish brown titanium nitride. The reddish brown titanium nitride can be obtained by causing nitrogen to be rich in the titanium nitride.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: June 23, 2009
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masanori Murakami, Teppei Watanabe, Susumu Tsukimoto, Kazuhiro Ito, Jun Ito, Miki Moriyama, Naoki Shibata
  • Publication number: 20090140267
    Abstract: Disclosed are a semiconductor light emitting device comprising a single crystalline buffer layer and a manufacturing method thereof. The semiconductor light emitting device comprises a single crystalline buffer layer, and a compound semiconductor structure comprising III and V group elements on the single crystalline buffer layer.
    Type: Application
    Filed: November 24, 2008
    Publication date: June 4, 2009
    Inventor: Kyong Jun KIM
  • Patent number: 7541622
    Abstract: To provide a superluminescent diode capable of emitting high output super luminescent light having a central wavelength within a range of 0.95 ?m to 1.2 ?m and an undistorted beam cross section, having a long element life. The super luminescent diode is constituted by: an n-type GaAs substrate; an optical waveguide path constituted by an InGaAs active layer that emits light having a central wavelength within a range of 0.95 ?m to 1.2 ?m, formed on the GaAs substrate; and a window region layer having a greater energy gap and a smaller refractive index than the active layer, constituted by p-type GaAs that lattice matches with the GaAs substrate, provided at a rear emitting facet of the optical waveguide path. The p-type GaAs window region layer has a favorable crystal membrane with the InGaAs active layer that emits light having the central wavelength within the range of 0.95 ?m to 1.2 ?m, which does not deteriorate.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 2, 2009
    Assignee: FUJIFILM Corporation
    Inventor: Yoshikatsu Morishima
  • Patent number: 7541205
    Abstract: A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 2, 2009
    Assignee: Epistar Corporation
    Inventors: Tse-Liang Ying, Shi-Ming Chen
  • Publication number: 20090101920
    Abstract: A white light source has an excitation light source and a white light emitting element provided at a position which allows the transmission of light from the excitation light source to generate white light through irradiation with the light from the excitation light source. The white light emitting element has a sapphire substrate made of sapphire or the like which transmits visible light, an InGaAlN semiconductor layer formed on a surface of the sapphire substrate to emit red light through irradiation with visible light, and a fluorescent layer formed on the surface opposite to the surface provided with the semiconductor layer to emit yellow light or green light through irradiation with visible light.
    Type: Application
    Filed: December 22, 2008
    Publication date: April 23, 2009
    Inventor: Tetsuzo UEDA
  • Patent number: 7521330
    Abstract: A method for forming a capacitor includes forming a dielectric layer over a substrate. A conductive layer is formed over the dielectric layer. Dopants are implanted through at least one of the dielectric layer and the conductive layer after forming the dielectric layer so as to form a conductive region under the dielectric layer, wherein the conductive layer is a top electrode of the capacitor and the conductive region is a bottom electrode of the capacitor.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: April 21, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Chieh Wu, Chi-Feng Huang, Chun-Hung Chen, Chih-Ping Chao, John Chern
  • Patent number: 7511314
    Abstract: Disclosed is a light-emitting device (100) has a light-emitting layer portion (24) which is composed of a group III-V compound semiconductor and a transparent thick-film semiconductor layer (90) with a thickness of not less than 40 ?m which is formed on at least one major surface side of the light-emitting layer portion (24) and composed of a group III-V compound semiconductor having a band gap energy larger than the photon energy equivalent of the peak wavelength of emission flux from the light-emitting layer portion (24). The transparent thick-film semiconductor layer (90) has a lateral surface portion (90S) which is a chemically etched surface. The dopant concentration of the transparent thick-film semiconductor layer (90) is not less than 5×1016/cm3 and not more than 2×1018/cm3. The light-emitting device can have a transparent thick-film semiconductor layer while being significantly improved in light taking-out efficiency from the lateral surface portion.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 31, 2009
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Masato Yamada, Masayuki Shinohara, Masanobu Takahashi, Keizou Adomi, Jun Ikeda
  • Patent number: 7508003
    Abstract: A crystal has a diameter of 1 cm or more and shows a strongest peak in cathode luminescent spectrum at a wavelength of 360 nm in correspondence to a band edge.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: March 24, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Seiji Sarayama, Masahiko Shimada, Hisanori Yamane, Hirokazu Iwata
  • Publication number: 20090057689
    Abstract: A light-emitting device includes an active region, an n-type region, a p-type region, an n-electrode and a p-electrode. The active region is formed from a semiconductor material. The semiconductor material has a tetrahedral structure and includes an impurity. The impurity creates at least two energy levels connected with the allowed transition within a band gap of the semiconductor material. The n-type and p-type regions in contact with the active region are disposed between the n-type and p-type regions. An excitation element is configured to inject an electron from the n-type region and inject a hole from the p-type region so as to generate an electron-hole pair in the active region. The active region has a thickness no less than an atomic distance of the semiconductor and no more than 5 nm.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazushige YAMAMOTO, Tatsuo Shimizu
  • Publication number: 20090057688
    Abstract: To provide an elemental technique for improving the emission intensity of deep ultraviolet light from a light emitting layer made of an AlGaInN-based material, in particular, an AlGaN-based material. First, an AlN layer is grown on a sapphire surface. The AlN layer is grown under a NH3-rich condition. The TMAl pulsed supply sequence includes growing an AlGaN layer for 10 seconds, interrupting the growth for 5 seconds to remove NH3, and then introducing TMAl at a flow rate of 1 sccm for 5 seconds. After that, the growth is interrupted again for 5 seconds. Defining this sequence as one growth cycle, five growth cycles are carried out. By such growth, an AlGaN layer having a polarity of richness in Al can be obtained. The above sequence is described only for illustrative purposes, and various variations are possible. In general, the Al polarity can be achieved by a process of repeating both growth interruption and supply of an Al source.
    Type: Application
    Filed: March 26, 2008
    Publication date: March 5, 2009
    Applicant: RIKEN
    Inventors: Hideki Hirayama, Tomoaki Ohashi, Norihiko Kamata
  • Patent number: 7495260
    Abstract: Light-emitting devices, and related components, systems and methods are disclosed.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 24, 2009
    Assignee: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, Chiyan Luo
  • Patent number: 7473150
    Abstract: A method is provided for forming a ZnO Si N—I—N EL device. The method comprises: forming an n-doped Si layer; forming a Si oxide (SiO2) layer overlying the n-doped Si layer; forming an n-type ZnO layer overlying the SiO2 layer; and, forming an electrode overlying the ZnO layer. The electrode can be a transparent material such as indium tin oxide, zinc oxyfluoride, or a conductive plastic. The n-doped Si layer can be polycrystalline or single-crystal Si. In some aspects, the Si oxide layer has a thickness in the range of 1 to 20 nm. More preferably, the thickness is 2 to 5 nm. The ZnO layer thickness is in the range of 10 to 200 nm.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: January 6, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Yoshi Ono
  • Patent number: 7470938
    Abstract: In a nitride semiconductor light emitting device having patterns formed on the upper and lower surfaces of a substrate from which light is emitted in a flip chip bonding structure, the patterns are capable of changing light inclination at the upper and lower surfaces of the substrate to decrease total reflection at the interfaces, thereby improving light emitting efficiency.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: December 30, 2008
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae Hoon Lee, Jeong Wook Lee, Hyun Kyung Kim, Yong Chun Kim
  • Publication number: 20080224151
    Abstract: A nitride-based semiconductor element having superior mass productivity and excellent element characteristics is obtained. This nitride-based semiconductor element comprises a substrate comprising a surface having projection portions, a mask layer formed to be in contact with only the projection portions of the surface of the substrate, a first nitride-based semiconductor layer formed on recess portions of the substrate and the mask layer and a nitride-based semiconductor element layer, formed on the first nitride-based semiconductor layer, having an element region. Thus, the first nitride-based semiconductor layer having low dislocation density is readily formed on the projection portions of the substrate and the mask layer through the mask layer serving for selective growth.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 18, 2008
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Masayuki Hata, Tatsuya Kunisato, Nobuhiko Hayashi
  • Patent number: 7417258
    Abstract: A method of manufacturing a nitride semiconductor device comprises the steps of: growing an InxGa1-xN (0?x?1) layer, and growing an aluminium-containing nitride semiconductor layer over the InxGa1-xN layer at a growth temperature of at least 500° C. so as to form an electron gas region at an interface between the InxGa1-xN layer and the nitride semiconductor layer. The nitride semiconductor layer is then annealed at a temperature of at least 800° C. The method of the invention can provide an electron gas having a sheet carrier density of 6×1013cm?2 or greater. An electron gas with such a high sheet carrier concentration can be obtained with an aluminium-containing nitride semiconductor layer having a relatively low aluminium concentration, such as an aluminium mole fraction of 0.3 or below, and without the need to dope the aluminium-containing nitride semiconductor layer or the InxGa1-xN layer.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: August 26, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Stewart Edward Hooper, Valerie Bousquet, Jonathan Heffernan
  • Publication number: 20080197362
    Abstract: A light emitting diode demonstrating high luminescence efficiency and comprising a Group IV semiconductor such as silicon or germanium equivalent thereto as a basic component formed on a silicon substrate by a prior art silicon process, and a fabricating method of waveguide thereof are provided. The light emitting diode of the invention comprises a first electrode for implanting electrons, a second electrode for implanting holes, and a light emitting section electrically connected to the first and the second electrode, wherein the light emitting section is made out of single crystalline silicon and has a first surface and a second surface facing the first surface, wherein with respect to plane orientation (100) of the first and second surfaces, the light emitting section crossing at right angles to the first and second surfaces is made thinner, and wherein a material having a high refractive index is arranged around the thin film section.
    Type: Application
    Filed: November 6, 2007
    Publication date: August 21, 2008
    Inventors: Digh HISAMOTO, Shinichi Saito, Shinichiro Kimura
  • Patent number: 7411220
    Abstract: A semiconductor light emitting device can have stable electric characteristics and can emit light with high intensity from a substrate surface. The device can include a transparent substrate and a semiconductor layer on the substrate. The semiconductor layer can include a first conductive type semiconductor layer, a luminescent layer, a second conductive type semiconductor layer, and first and second electrodes disposed to make contact with the first and second conductive type semiconductor layers, respectively. The first conductive type semiconductor layer, the luminescent layer, and the second conductive type semiconductor layer can be laminated in order from the side adjacent the substrate. An end face of the semiconductor layer can include a first terrace provided in an end face of the first conductive type semiconductor layer in parallel with the substrate surface, and an inclined end face region provided nearer to the substrate than the first terrace.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: August 12, 2008
    Assignee: Stanley Electric Co. Ltd.
    Inventors: Naochika Horio, Munehiro Kato, Masahiko Tsuchiya, Satoshi Tanaka
  • Publication number: 20080173880
    Abstract: A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 ? thickness. The GaN n+-layer (3) has about a 2.0 ?m thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 ?m thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 ?m thickness. The p-layer 6 has about a 1.0 ?m thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8).
    Type: Application
    Filed: December 20, 2007
    Publication date: July 24, 2008
    Applicant: Toyoda Gosei
    Inventors: Katsuhide Manabe, Hisaki Kato, Michinari Sassa, Shiro Yamazaki, Makoto Asai, Naoki Shibata, Masayoshi Koike
  • Publication number: 20080128713
    Abstract: A light-emitting device according to the present invention includes a first electrode unit 9 for injecting an electron, a second electrode unit 10 for injecting a hole, and light-emitting units 11 and 12 electrically connected to the first electrode unit 9 and the second electrode unit 10 respectively, wherein the light-emitting units 11 and 12 are formed of single-crystal silicon, the light-emitting units 11 and 12 having a first surface (topside surface) and a second surface (underside surface) opposed to the first surface, plane orientation of the first and second surfaces being set to a (100) plane, thicknesses of the light-emitting units 11 and 12 in a direction orthogonal to the first and second surfaces being made extremely thin.
    Type: Application
    Filed: April 24, 2007
    Publication date: June 5, 2008
    Inventors: Shinichi Saito, Digh Hisamoto, Tadashi Arai, Takahiro Onai
  • Patent number: 7355213
    Abstract: As a p-type ohmic contact electrode formation technique in a Group II-VI compound semiconductor, there is provided a material for forming an electrode that is low in resistance, stable, and not toxic, and is excellent in productivity, thereby providing an excellent semiconductor element. A semiconductor electrode material in the form of a material represented by a composition formula AxByCz where A: at least one element selected from Group 1B metal elements, B: at least one element selected from Group 8 metal elements, C: at least one element selected from S and Se), where X, Y, and Z are such that X+Y+Z=1, 0.20˜X˜0.35, 0.17˜Y˜0.30, and 0.45˜Z˜0.55.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: April 8, 2008
    Assignee: Hoya Corporation
    Inventors: Hiroshi Kawazoe, Hiroaki Yanagita, Masahiro Orita
  • Patent number: 7345297
    Abstract: A semiconductor device includes an active layer, an n-side contact layer, and a p-side contact layer. The nitride semiconductor device includes at least a first n-side layer, a second n-side layer, a third n-side layer and a fourth n-side layer formed in this order from the n-side contact layer between the n-side contact layer and the active layer, while at least the second n-side layer and the fourth n-side layer each contain an n-type impurity, and the concentration of the n-type impurity in at least the second n-side layer and the fourth n-side layer is higher than the concentration of the n-type impurity in the first n-side layer and the third n-side layer.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: March 18, 2008
    Assignee: Nichia Corporation
    Inventors: Masahito Yamazoe, Masayuki Eguchi, Hiroki Narimatsu, Kazunori Sasakura, Yukio Narukawa
  • Patent number: 7329942
    Abstract: An array-type modularized light-emitting diode structure and a method for packaging the structure. The array-type modularized light-emitting diode structure includes a lower substrate and an upper substrate fixed on the lower substrate. A material with high heat conductivity is selected as the material of the upper substrate. The upper substrate is formed with multiple arrayed dents and through holes on the bottom of each dent. A material with high heat conductivity is selected as the material of the lower substrate. The surface of the lower substrate is formed with a predetermined circuit layout card. The bottom face of the upper substrate is placed on the upper face of the lower substrate with the through holes of the dents respectively corresponding to the contact electrodes of the circuit layout card of the lower substrate. Multiple light-emitting diode crystallites are respectively fixed on the bottoms of the dents.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 12, 2008
    Inventors: Ching-Fu Tsou, I-Ju Chen, Yeh-Chin Chao
  • Publication number: 20070290216
    Abstract: A semiconductor light emitting element is provided with a transparent substrate for improving the optical extraction efficiency by using a transparent substrate. The semiconductor light emitting element includes a main body constructed of an n-Al0.6Ga0.4As current diffusion layer, an n-Al0.5In0.5P cladding layer, an AlGaInP active layer, a p-Al0.5In0.5P cladding layer, a p-GaInP interlayer and a p-GaP contact layer. An n-GaP transparent substrate is placed under the main body. A p-GaP transparent substrate is placed on top of the main body. The n-GaP transparent substrate and the p-GaP transparent substrate have transparency with respect to light emitted from the AlGaInP light emitting layer.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 20, 2007
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Nobuyuki Watanabe
  • Patent number: 7294848
    Abstract: In one aspect, a semiconductor device includes a p-region and an n-region. The p-region includes a first Group IV semiconductor that has a bandgap and is doped with a p-type dopant, and a first region of local crystal modifications inducing localized strain that increases the bandgap of the first Group IV semiconductor and creates a conduction band energy barrier against transport of electrons across the p-region. The n-region includes a second Group IV semiconductor that has a bandgap and is doped with an n-type dopant, and a second region of local crystal modifications inducing localized strain that increases the bandgap of the second Group IV semiconductor and creates a valence band energy barrier against transport of holes across the n-region.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 13, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Sandeep R. Bahl, Glenn H. Rankin
  • Patent number: 7274041
    Abstract: An electronic or optoelectronic device fabricated from a crystalline material in which a parameter of a bandgap characteristic of said crystalline material has been modified locally by introducing distortions on an atomic scale in the lattice structure of said crystalline material and the electronic and/or optoelectronic parameters of said device are dependent on the modification of said bandgap is exemplified by a radiation emissive optoelectronic semiconductor device which comprises a junction (10) formed from a p-type layer (11) and an n-type layer (12), both formed from indirect bandgap semiconductor material. The p-type layer (11) contains an array of dislocation loops which create a strain field to confine spatially and promote radiative recombination of the charge carriers.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: September 25, 2007
    Assignee: University of Surrey
    Inventors: Kevin Peter Homewood, Russell Mark Gwilliam, Guosheng Shao
  • Patent number: 7271418
    Abstract: The present invention is a semiconductor apparatus for white light generation and amplification, where, under different current bias, white light can be generated steadily and evenly by folding up multi-wavelength quantum wells and by side-injecting a current. And, the white light can be excited out electronically without mingling with a fluorescent powder so that the cost for sealing is reduced. Because the light is directly excited out by electricity to prevent from energy loss during fluorescence transformation, the light generation efficiency of the present invention is far greater than that of the traditional phosphorus mingled with light-emitting diode of white light. Besides, concerning the characteristics of the white light, the spectrum of the white light can be achieved by adjusting the structure and/or the number of the quantum wells while preventing from being limited by the atomic emission lines of the fluorescent powder.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: September 18, 2007
    Assignee: National Central University
    Inventors: Jin-Wei Shi, Jinn-Kong Sheu
  • Patent number: 7271417
    Abstract: The invention relates to a light-emitting element with porous light-emitting layers. The light-emitting element comprises: a substrate, a first conductive cladding layer, a second conductive cladding layer and at least one porous light-emitting layer. The porous light-emitting layer is formed between the first conductive cladding layer and the second conductive cladding layer, and has an upper barrier layer, a lower barrier layer and a carrier trap layer. The carrier trap layer positioned between the upper barrier layer and the lower barrier layer has a plurality of chevron structures for defining a plurality of valley shaped structures, and is an indium-containing nitride structure, the energy band gap of which is less than those of the upper barrier layer and the lower barrier layer.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: September 18, 2007
    Assignee: Genesis Photonics
    Inventor: Cheng Chuan Chen
  • Patent number: 7259406
    Abstract: A semiconductor optical element having a includes an n-type GaAs buffer layer, an n-type AlGaInP cladding layer, a first InGaAsP (including zero As content)guide layer without added dopant impurities, an InGaAsP (including zero In content) active layer, a second InGaAsP (including zero As content)guide layer without added dopant impurities, a p-type AlGaInP cladding layer, a p-type band discontinuity reduction layer, and a p-type GaAs contact layer sequentially laminated on an n-type GaAs substrate C or Mg is the dopant impurity in the p-type GaAs contact layer, the p-type band discontinuity reduction layer, and the p-type AlGaInP cladding layer.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 21, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshihiko Hanamaki, Kenichi Ono, Kimio Shigihara, Kazushige Kawasaki, Kimitaka Shibata, Naoyuki Shimada
  • Patent number: 7251265
    Abstract: An optically pumped micro-cavity laser has an optical gain cavity and an optical resonant cavity. The optical gain cavity has a gain medium disposed that generates an optical output in response to an optical pump signal. The optical resonant cavity has an electro-optic material in which is disposed an electrode structure with first and second apertures disposed generally parallel to an optical signal propagating within the electro-optic material. Electrically conductive material is disposed within the apertures coupling an electrical signal to the optical cavity. Optically reflective material is disposed on the opposing surfaces of the micro-cavity laser and between the optical gain cavity and the optical resonant cavity.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: July 31, 2007
    Assignee: Tektronix, Inc.
    Inventors: Christopher P. Yakymyshyn, William Q. Law, William A. Hagerup
  • Patent number: 7247885
    Abstract: In one aspect, a first region that includes a first Group IV semiconductor that has a bandgap and is doped with a first dopant of a first electrical conductivity type is formed. A pattern is created. The pattern controls formation of local crystal modifications in the first Group IV semiconductor in an array. An array of local crystal modifications is formed in the first Group IV semiconductor in accordance with the pattern. The local crystal modifications induce overlapping strain fields that increase the bandgap of the first Group IV semiconductor, create an energy band barrier against transport of minority carriers across the first region. A second region that includes a second Group IV semiconductor that has a bandgap and is doped with a second dopant of a second electrical conductivity type opposite the first conductivity type is formed. Semiconductor devices formed in accordance with this method also are described.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 24, 2007
    Assignee: Avago Technologies General IP (Singapore) Ltd. Pte.
    Inventors: Glenn H. Rankin, Sandeep R. Bahl
  • Patent number: 7244964
    Abstract: An n-type layer of the opposite conduction type composed of n-GaN is formed between a light emitting layer and a p-type cladding layer composed of p-AlGaN. The bandgap of the n-type layer of the opposite conduction type is larger than the bandgap of the light emitting layer and is smaller than the bandgap of the p-type cladding layer.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: July 17, 2007
    Assignee: Sanyo Electric Company, Ltd
    Inventor: Masayuki Hata
  • Patent number: 7223998
    Abstract: A white, single or multi-color light emitting diode (LED) includes a mirror for reflecting photons within the LED; a first active region, adjacent the mirror, including one or more current-injected layers for emitting photons when electrically biased in a forward direction; a second active region, adjacent the first active region, including one or more optically-pumped layers for emitting photons, wherein the optically-pumped layers are optically excited by the photons emitted by the current-injected layers, thereby recycling guided modes; and an output interface, adjacent the second active region, for allowing the photons emitted by the optically-pumped layers to escape the LED as emitted light.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 29, 2007
    Assignee: The Regents of the University of California
    Inventors: Carole Schwach, Claude Charles Aime Weisbuch, Steven P. DenBaars, Henri Benisty, Shuji Nakamura
  • Patent number: 7192794
    Abstract: A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: March 20, 2007
    Assignee: Epitech Technology Corporation
    Inventors: Tse-Liang Ying, Shi-Ming Chen
  • Patent number: 7180101
    Abstract: The present invention provides a semiconductor device including an element that is considered to have less environmental problem (for example iron), and a method for manufacturing the same. More specifically, in a semiconductor device having multiple layers, at least one of the layers includes iron silicide. At least part of the layer including iron silicide is subjected to oxidation processing.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: February 20, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi
  • Patent number: 7176503
    Abstract: An LED package comprises a substrate, one or three terminals formed on a first side of the substrate, three terminals formed on a second side opposite to the first side, and two or three LEDs disposed on the substrate, one of the LEDS being electrically connected to one of the terminals formed on the first side while being electrically connected to one of the terminals formed on the second side, and other LEDS being electrically connected to two terminals formed on the first side or to two terminals formed on the second side. A light source comprises the LED packages having the structure as described above. Without being arranged in a line, the LEDs emitting the same color are differently arranged in every LED package, thereby solving the problem of non-uniform combination of the colors according to the positions of the LEDs on an LED package-mounting substrate.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: February 13, 2007
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hyung Suk Kim, Young Sam Park, Hun Joo Hahm, Jung Kyu Park, Young June Jeong
  • Patent number: 7176498
    Abstract: A semiconductor device and method of its fabrication are provided to enable the device operation in a THz spectral range. The device comprises a heterostructure including at least first and second semiconductor layers. The first and second layers are made of materials providing a quantum mechanical coupling between an electron quantum well (EQW) in the first layer and a hole quantum well (HQW) in the second layer, and providing an overlap between the valence band of the material of the second layer and the conduction band of the material of the first layer. A layout of the layers is selected so as to provide a predetermined dispersion of energy subbands in the conduction band of the first layer and the valence band of the second layer.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: February 13, 2007
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Boris Laikhtman, Leonid Shvartsman