Using Diffusion Into Or Out Of Solid From Or Into Liquid Phase, E.g., Alloy Diffusion Process (epo) Patents (Class 257/E21.469)
  • Patent number: 9397244
    Abstract: A photodiodes array includes a useful layer made of CdxHg1-xTe; first doped zones each forming a PN junction with a second doped zone surrounding the first doped zones. The array includes regions located between two PN junctions, with a cadmium concentration gradient decreasing from the upper face to the lower face of the useful layer. A method of making such a photodiodes array includes producing, on the upper face of the useful layer, of a structured layer with at least one through opening, and with a cadmium concentration higher than the cadmium concentration in the useful layer; annealing the useful layer covered by the structured layer, with diffusion of cadmium atoms of the structured layer, from the structured layer to the useful layer; producing at least two PN junctions in the useful layer.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: July 19, 2016
    Assignee: Commissariat a' l'energie atomique et aux energies alternatives
    Inventors: Laurent Mollard, Guillaume Bourgeois, Gerard Destefanis
  • Patent number: 8691685
    Abstract: In using Ni(P) and Sn-rich solders in Pb free interconnections, the prevention and control of the formation of intermetallic compound inclusions can be achieved through a reaction-preventative or control layer that is positioned on top of an electroless Ni(P) metallization, such as by application of a thin layer of Sn on the Ni(P) or through the application of a thin layer of Cu on the Ni(P).
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sung Kwon Kang, Da-Yuan Shih, Yoon-Chul Son
  • Patent number: 8679964
    Abstract: In using Ni(P) and Sn-rich solders in Pb free interconnections, the prevention and control of the formation of intermetallic compound inclusions, can be achieved through a reaction preventive or control layer that is positioned on top of an electroless Ni(P) metallization, such as by application of a thin layer of Sn on the Ni(P) or through the application of a thin layer of Cu on the Ni(P).
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sung Kwon Kang, Da-Yuan Shih, Yoon-Chul Son
  • Patent number: 8440017
    Abstract: To grow a gallium nitride crystal, a seed-crystal substrate is first immersed in a melt mixture containing gallium and sodium. Then, a gallium nitride crystal is grown on the seed-crystal substrate under heating the melt mixture in a pressurized atmosphere containing nitrogen gas and not containing oxygen. At this time, the gallium nitride crystal is grown on the seed-crystal substrate under a first stirring condition of stirring the melt mixture, the first stirring condition being set for providing a rough growth surface, and the gallium nitride crystal is subsequently grown on the seed-crystal substrate under a second stirring condition of stirring the melt mixture, the second stirring condition being set for providing a smooth growth surface.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 14, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takanao Shimodaira, Takayuki Hirao, Katsuhiro Imai
  • Patent number: 8163638
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 24, 2012
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20080237868
    Abstract: An integrated circuit design and a method of fabrication and, more particularly, a semiconductor structure having an ultra narrow crack stop for use in multilevel level devices and a method of making the same. The structure includes a first dielectric layer having a first connection connecting to an underlying interconnect and a second dielectric layer having a second connection connecting to the first connection. A stop gap structure extends through the first dielectric layer and the second dielectric layer, and has a width of about less than 1 um.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Matthew E. Colburn, William F. Landers, Wai-Kin LI
  • Patent number: RE41538
    Abstract: A method for making an integrated circuit device includes forming at least one interconnect structure adjacent a substrate by forming at least one barrier layer, forming a doped copper seed layer on the at least one barrier layer, and forming a copper layer on the doped copper seed layer. The method may further include annealing the integrated circuit device after forming the copper layer to diffuse the dopant from the doped copper seed layer into grain boundaries of the copper layer. The doped copper seed layer may include at least one of calcium, cadmium, zinc, neodymium, tellurium, and ytterbium as a dopant to provide the enhanced electromigration resistance. Forming the copper layer may comprise plating the copper layer. In addition, forming the copper layer may comprise forming the copper layer to include at least one of calcium, cadmium, zinc, neodymium, tellurium, and ytterbium as a dopant.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: August 17, 2010
    Inventor: James A. Cunningham