Doping Layer (epo) Patents (Class 257/E21.491)
  • Patent number: 10727060
    Abstract: A doping system includes a light source to emit an optical pulse; a light source controller connected to the light source, to control an energy density of the optical pulse; and a beam adjusting unit to irradiate the optical pulse to a surface of a doping-object made of silicon carbide on which an impurity-containing source-film containing impurity atoms is deposited. The light source controller irradiates a first optical pulse to the impurity-containing source-film so as to form a reaction-product layer in the doping-object, and irradiates a second optical pulse having an energy density higher than an energy density of the first optical pulse, so as to introduce the impurity atoms into the target through the reaction-product layer.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: July 28, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Kenichi Iguchi, Haruo Nakazawa
  • Patent number: 9659775
    Abstract: Impurity elements are doped at a high concentration exceeding a thermodynamic equilibrium concentration into a solid material having an extremely small diffusion coefficient of the impurity element. A method for doping impurities includes steps for depositing source film made of material containing impurity elements with a film thickness on a surface of a solid target object (semiconductor substrate) made from the solid material. The film thickness is determined in consideration of irradiation time per light pulse and the energy density of the light pulse. The method also includes a step for irradiating the source film by the light pulse with the irradiation time and the energy density so as to dope the impurity elements into the target object at a concentration exceeding a thermodynamic equilibrium concentration.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: May 23, 2017
    Assignees: FUJI ELECTRIC CO., LTD., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Akihiro Ikeda, Hiroshi Ikenoue, Tanemasa Asano, Kenichi Iguchi, Haruo Nakazawa, Koh Yoshikawa, Yasukazu Seki
  • Patent number: 8962459
    Abstract: A method selectively diffuses dopants into a substrate wafer. The method comprises blanket depositing a doped liquid precursor including dopants on a surface of the substrate wafer to create a doped film on the surface of the substrate wafer, selectively forming a diffusion source in the doped film to selectively diffuse the dopants into the substrate wafer, and heating the doped film on the substrate wafer, wherein said heating the doped film diffuses the dopants from the doped film into the substrate wafer.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: February 24, 2015
    Assignee: Piquant Research LLC
    Inventor: Daniel Inns
  • Patent number: 8836088
    Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a conductive plug structure contacting a portion of an upper surface of the conductive feature, a first etch stop layer over another portion of the upper surface of the conductive feature, and a second etch stop layer over the first etch stop layer. The first etch stop layer is a doped etch stop layer. The first etch stop layer is to function as an etch stop layer during a predetermined etching process for etching the second etch stop layer.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang
  • Patent number: 8669169
    Abstract: Methods for selectively diffusing dopants into a substrate wafer are provided. A liquid precursor is doped with dopants. The liquid precursor is selected from a group comprising monomers, polymers, and oligomers of silicon and hydrogen. The doped liquid precursor is deposited on a surface of the substrate wafer to create a doped film. The doped film is heated on the substrate wafer for diffusing the dopants from the doped film into the substrate wafer at different diffusion rates to create a heavily diffused region and a lightly diffused region in the substrate wafer. The method disclosed herein further comprises selective curing of the doped film on the surface of the substrate wafer. The selectively cured doped film acts as a diffusion source for selectively diffusing the dopants into the substrate wafer.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 11, 2014
    Assignee: Piquant Research LLC
    Inventor: Daniel Inns