Moulds (epo) Patents (Class 257/E21.504)
  • Patent number: 9755121
    Abstract: A method of detaching a sealing member of a light emitting device which has a substrate, alight emitting element mounted on the substrate and a sealing member that seals the light emitting element, wherein a release layer and/or an air layer is/are provided between the substrate and the sealing member; and the sealing member is detached from the substrate at the release layer and/or the air layer.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 5, 2017
    Assignee: NICHIA CORPORATION
    Inventor: Shingo Omura
  • Patent number: 9728688
    Abstract: A method of manufacturing a light emitting device includes providing a light emitting element, a light extracting surface, and a light emitting element lateral surface. A lower mold has an upper surface and a projected portion. The projected portion has a bottom portion. The projected portion has a projected portion upper surface. The projected portion has a projected portion lateral surface provided between the bottom portion and the projected portion upper surface. The light emitting element is arranged on the projected portion such that the light extracting surface contacts the projected portion upper surface. The projected portion lateral surface and the light emitting element lateral surface are covered with a cover member. The lower mold is removed to provide a recessed portion on the light extracting surface surrounded by a sidewall made of the cover member. A first light-transmissive member is provided in the recessed portion.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 8, 2017
    Assignee: NICHIA CORPORATION
    Inventor: Shigeki Sajiki
  • Patent number: 9679853
    Abstract: A package-on-package (PoP)-type package includes a first semiconductor package having a first passive element and a first semiconductor device mounted on a first substrate, and a second semiconductor package having a second semiconductor device mounted on a second substrate. The first passive element is electrically connected to the second semiconductor device. Related devices are also discussed.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: June 13, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-joo Lee
  • Patent number: 9659842
    Abstract: A method for fabricating a quad flat non-leaded (QFN) package includes: forming die pads and bump solder pads by pressing a metal plate, wherein each of the die pads and the bump solder pads has at least a cross-sectional area greater than another cross-sectional area located underneath along its vertical thickness dimension, thereby enabling the die pads and the solder pads to be securely embedded in an encapsulant.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 23, 2017
    Assignee: APTOS TECHNOLOGY INC.
    Inventor: En-min Jow
  • Patent number: 9653660
    Abstract: A chip scale LED packaging method includes the following steps: clamping an upper mold with a plurality of through holes and a plate-shaped lower mold together; allowing bottoms of the plurality of through holes of the upper mold to be sealed by the plate-shaped lower mold to form a pattern of a plurality of grooves; placing chips one by one in corresponding through holes of the plurality of through holes; pouring encapsulation gel into each of the corresponding through holes; separating the upper mold from the plate-shaped lower mold after the encapsulation gel is cured and molded; and separating each cured and molded encapsulation gel from each of the corresponding through holes of the upper mold and taking each cured and molded encapsulation gel out of the upper mold to obtain an individual chip scale LED package.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 16, 2017
    Inventor: Shu-Hung Lin
  • Patent number: 9632148
    Abstract: A sensor device having a first housing with a first semiconductor body and a plurality of metallic terminal contacts for electrical contacting of a first sensor, and a second housing with a second semiconductor body with a plurality of metallic terminal contacts for electrical contacting of a second sensor. A section of the plurality of terminal contacts penetrates the second housing on the face side and the second semiconductor body is arranged with a back surface on a front side of the second metal substrate. The two housings form a module, whereby the two housings are connected form-fittingly to one another in the shape of a stack by a fixing device in a way in which the bottom side of the first housing is joined to the bottom side of the second housing and the plurality of terminal contacts of the two housings point in the same direction.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: April 25, 2017
    Assignee: Micronas GmbH
    Inventor: Camillo Pilla
  • Patent number: 9635789
    Abstract: According to various aspects, exemplary embodiments are disclosed of EMI shields with increased under-shield space and/or greater component clearance for one or more components under the shield. In an exemplary embodiment, a shield generally includes one or more recessed portions along an inner surface of the cover. Dielectric material is along the inner surface of the cover within at least the one or more recessed portions. The one or more recessed portions may provide increased under-shield space and/or greater clearance for one or more components under the shield. The dielectric material may inhibit the one or more recessed portions of the shield from directly contacting and electrically shorting one or more components when the one or more components are under the shield. Also disclosed are exemplary embodiments of methods relating to making EMI shields and methods relating to providing shielding for one or more components on a substrate.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: April 25, 2017
    Assignee: Laird Technologies, Inc.
    Inventors: Gerald R. English, Joseph C. Boetto, Philip van Haaster
  • Patent number: 9627352
    Abstract: Devices and methods for processing singulated radio-frequency (RF) units. In some embodiments, a device for processing singulated RF packages can include a plate having a plurality of apertures. Each aperture can be dimensioned to receive and position a singulated RF package to thereby facilitate processing of the singulated RF packages positioned in their respective apertures. In some embodiments, such a device can be utilized to batch process high volume of RF packages as if the RF packages are still in a panel format.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: April 18, 2017
    Assignee: Skyworks Solutions, Inc.
    Inventor: Matthew Sean Read
  • Patent number: 9565773
    Abstract: An electronic device may have housing structures, electrical components, and other electronic device structures. Adhesive may be used to join electronic device structures. Adhesive may be dispensed as liquid adhesive and cured to form adhesive joints. Adhesive joints may be debonded. Chain reactions may be initiated by applying a localized initiator such as a chemical or localized energy to the adhesive. Once initiated, the chain reaction may spread throughout the adhesive to cure the adhesive, to globally change adhesive viscosity, or to weaken the adhesive to facilitate debonding. Local changes to adhesive may also be made such as local increases and decreases to adhesive viscosity. Chain reaction curing may be used to cure adhesive or debond adhesive that is hidden from view within gaps in the electronic device structures. Viscosity changes may be used to control where adhesive flows.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 7, 2017
    Assignee: Apple Inc.
    Inventor: John J. Baker
  • Patent number: 9543277
    Abstract: A fan-out microelectronic package is provided in which bond wires electrically couple bond pads on a microelectronic element, e.g., a semiconductor chip which may have additional traces thereon, with contacts at a fan-out area of a dielectric element adjacent an edge surface of the chip. The bond wires mechanically decouple the microelectronic element from the fan-out area, which can make the electrical interconnections less prone to reliability issues due to effects of differential thermal expansion, such as caused by temperature excursions during initial package fabrication, bonding operations or thermal cycling. In addition, mechanical decoupling provided by the bond wires may also remedy other mechanical issues such as shock and possible delamination of package elements.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: January 10, 2017
    Assignee: Invensas Corporation
    Inventors: Bongsub Lee, Tu Tam Vu, Rajesh Katkar, Laura Wills Mirkarimi, Akash Agrawal, Kyong-Mo Bang, Gabriel Z. Guevara, Xuan Li, Long Huynh
  • Patent number: 9484228
    Abstract: Molding assemblies and methods for dual side package molding are described. In an embodiment, a molding compound is injected into a front cavity with a first actuator, and a molding compound is injected into a back cavity with a second actuator, with the first and second actuator assemblies being independently controlled. In an embodiment, the molding compound flows through a through-hole in a molding substrate from a front side of the molding substrate to a back side of the molding substrate, and into the back cavity.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 1, 2016
    Assignee: Apple Inc.
    Inventors: Scott L. Gooch, Shankar S. Pennathur
  • Patent number: 9449876
    Abstract: A method of separating individual dies of a semiconductor wafer includes forming a metal layer on a first surface of a semiconductor wafer, the semiconductor wafer including a plurality of dies, separating the plurality of dies from one another, and electrical discharge machining the metal layer into individual segments each of which remains attached to one of the dies. A corresponding semiconductor die produced by such a method is also provided.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 20, 2016
    Assignee: Infineon Technologies AG
    Inventors: Michael Roesner, Gudrun Stranzl, Manfred Schneegans
  • Patent number: 9443780
    Abstract: A device and method of manufacture is provided that utilize recessed regions along a package edge. For example, in an integrated fan-out package, the dielectric layers, e.g., the polymer layers, of the redistribution layers are removed along the scribe line such that after singulation the dielectric layers are recessed back from the edges of the die. The corner regions may be recessed further. The recessed regions may be triangular, rounded, or other shape. In some embodiments one or more of the corner regions may be recessed further relative to the remaining corner regions. The redistribution layers may be recessed along one or both of the front side redistribution layers and the backside redistribution layers.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: September 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 9425165
    Abstract: A non-leaded semiconductor device comprises a sealing body for sealing a semiconductor chip, a tab in the interior of the sealing body, suspension leads for supporting the tab, leads having respective surfaces exposed to outer edge portions of a back surface of the sealing body, and wires connecting pads formed on the semiconductor chip and the leads. End portions of the suspension leads positioned in an outer periphery portion of the sealing body are unexposed to the back surface of the sealing body, but are covered with the sealing body. Stand-off portions of the suspending leads are not formed in resin molding. When cutting the suspending leads, corner portions of the back surface of the sealing body are supported by a flat portion of a holder portion in a cutting die having an area wider than a cutting allowance of the suspending leads, whereby chipping of the resin is prevented.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: August 23, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Tadatoshi Danno, Hiroyoshi Taya, Yoshiharu Shimizu
  • Patent number: 9368361
    Abstract: In one embodiment, a method for forming an electronic device includes providing a substrate having a plurality of electronic devices formed therein, forming a protective layer over a major surface of the substrate containing the plurality of electronic devices, forming a mold layer over the protective layer, thinning a major surface of the substrate opposite to the major surface containing the plurality of electronic devices, and removing the adhesive layer and the mold layer. In another embodiment, a zone coating layer can be included between the protective layer and the mold layer.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: June 14, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Seung Chul Han, Jae Kyu Song, Do Hyung Kim
  • Patent number: 9330946
    Abstract: Structures and processes for die stacking using an opaque or translucent pre-applied underfill material generally include selectively applying a low surface tension material to at least a portion of an alignment mark surface on a die; and applying the opaque or translucent underfill material to the die surface, wherein the underfill material does not wet or adhere to the low surface tension material such that the alignment mark surface is free of underfill material.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 3, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Michael A. Gaynes, Katsuyuki Sakuma
  • Patent number: 9312233
    Abstract: Methods of forming molded panel coreless package structures are described. Those methods and structures may include fabrication of embedded die packages using large panel format and use of molding to improve rigidity of the panel, as well as to embed the die in a non-sacrificial mold material. The methods and structures described include methods for manufacturing thin, coreless substrate architectures which possess low warpage.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: April 12, 2016
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Hamid R. Azimi, John S. Guzek
  • Patent number: 8993376
    Abstract: A semiconductor device has a base substrate with first and second opposing surfaces. A plurality of cavities and base leads between the cavities is formed in the first surface of the base substrate. The first set of base leads can have a different height or similar height as the second set of base leads. A concave capture pad can be formed over the second set of base leads. Alternatively, a plurality of openings can be formed in the base substrate and the semiconductor die mounted to the openings. A semiconductor die is mounted between a first set of the base leads and over a second set of the base leads. An encapsulant is deposited over the die and base substrate. A portion of the second surface of the base substrate is removed to separate the base leads. An interconnect structure is formed over the encapsulant and base leads.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Emmanuel A. Espiritu, Henry D. Bathan, Dioscoro A. Merilo
  • Patent number: 8994162
    Abstract: A single metal layer tape substrate includes a patterned metal layer affixed to a patterned dielectric layer. The dielectric layer is patterned to provide openings exposing lands and bond sites on bond fingers on the land side of the metal layer. The metal layer is patterned to provide circuit traces as appropriate for interconnection with the die (on the die attach side) and with other elements (such as other packages in a multi-package module). Interconnection with a die is made by wire bonding to exposed traces on a die attach side of the metal layer, and bond fingers and lands for access to testing the package are provided on the opposite (land) side of the metal layer.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Marcos Karnezos
  • Patent number: 8981568
    Abstract: A semiconductor package with simulated wirebonds. A substrate is provided with a plurality of first pads on a first surface and a plurality of second pads on a second surface. Each of the first pads are electrically coupled to one or more of the second pads. At least one semiconductor device is located proximate the first surface of a substrate. The simulated wirebonds include at least a first dielectric layer selectively printed to create a plurality of recesses, and a conductive material located in the recesses to form first and second contact pads, and electrical traces electrically coupling the first and second contact pads. The first contact pads are electrically coupled to terminals on the semiconductor device and the second contact pads are electrically coupled to the first pads on the first surface of the substrate. An overmolding material seals the semiconductor device and the simulated wirebonds.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: March 17, 2015
    Assignee: HSIO Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8975734
    Abstract: A semiconductor package without a chip carrier formed thereon and a fabrication method thereof. A metallic carrier is half-etched to form a plurality of grooves and metal studs corresponding to the grooves. The grooves are filled with a first encapsulant and a plurality of bonding pads are formed on the metal studs. The first encapsulant is bonded with the metal studs directly. Each of the bonding pads and one of the metal studs corresponding to the bonding pad form a T-shaped structure. Therefore, bonding force between the metal studs and the first encapsulant is enhanced such that delamination is avoided. Die mounting, wire-bonding and molding processes are performed subsequently. Since the half-etched grooves are filled with the first encapsulant, the drawback of having pliable metallic carrier that makes transportation difficult to carry out as encountered in prior techniques is overcome, and the manufacturing cost is educed by not requiring the use of costly metals as an etching resist layer.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 10, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8969977
    Abstract: The invention provides a flow sensor structure for sealing the surface of an electric control circuit and a part of a semiconductor device via a manufacturing method capable of preventing occurrence of flash or chip crack when clamping the semiconductor device via a mold. The invention provides a flow sensor structure comprising a semiconductor device having an air flow sensing unit and a diaphragm formed thereto, and a board or a lead frame having an electric control circuit for controlling the semiconductor device disposed thereto, wherein a surface of the electric control circuit and a part of a surface of the semiconductor device is covered with resin while having the air flow sensing unit portion exposed.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 3, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Tsutomu Kono, Yuuki Okamoto, Takeshi Morino, Keiji Hanzawa
  • Patent number: 8946743
    Abstract: Disclosed is a light emitting apparatus. The light emitting apparatus includes a package body; first and second electrodes; a light emitting device electrically connected to the first and second electrodes and including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers; and a lens supported on the package body and at least a part of the lens including a reflective structure. The package body includes a first cavity, one ends of the first and second electrodes are exposed in the first cavity and other ends of the first and second electrodes are exposed at lateral sides of the package body, and a second cavity is formed at a predetermined portion of the first electrode exposed in the first cavity.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 3, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bong Kul Min
  • Patent number: 8937372
    Abstract: An integrated circuit package system includes an in-line strip, attaching an integrated circuit die over the in-line strip, and applying a molding material with a molded segment having a molded strip protrusion formed therefrom over the in-line strip.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 20, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jae Hak Yee, Junwoo Myung
  • Patent number: 8859333
    Abstract: An IC package that is suitable for surface mounting arrangements includes a heat spreader device that is coupled to a bottom portion of the package below the IC die. Coupling the heat spreader device to the bottom portion of the package reduces or eliminates the possibility that placement of the heat spreader device will result in the molding compound bleeding on top of the heat spreader device, and delamination at the footings of the heat spreader device that can cause the package to delaminate, or “popcorn”.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: October 14, 2014
    Assignee: LSI Corporation
    Inventors: Kok Hua Simon Chua, Budi Njoman
  • Patent number: 8828805
    Abstract: The formation of a void is suppressed in the assembly of a semiconductor device. An MCU chip and an AFE chip are mounted over a die pad formed of a quadrangle having a pair of first sides and a pair of second sides. After wire bonding is carried out on the MCU chip and the AFE chip, resin is supplied from the side of one second side of the two second sides to the side of the other second side. The resin is thereby passed through the opening between a first pad group and a second pad group over the MCU chip to fill the area between the chips and thus the formation of a void is suppressed in the area between the chips.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Masato Numazaki
  • Patent number: 8796052
    Abstract: A method for manufacturing a plurality of optoelectronic apparatuses include attaching bottom surfaces of a plurality of packaged optoelectronic semiconductor devices (POSDs) to a carrier substrate (e.g., a tape) so that there is a space between each POSD and its one or more neighboring POSD(s). A light reflective molding compound is molded around a portion each of the POSDs attached to the carrier substrate so that a reflector cup is formed from the light reflective molding compound for each of the POSDs. The light reflective molding compound can also attach the POSDs to one another. Alternatively, an opaque molding compound can be molded around each POSD/reflector cup to attach the POSDs/reflector cups to one another and form a light barrier between each POSD and its neighboring POSD(s). The carrier substrate is thereafter removed so that electrical contacts on the bottom surfaces of the POSDs are exposed.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: August 5, 2014
    Assignee: Intersil Americas LLC
    Inventors: Seshasayee S. Ankireddi, Lynn K. Wiese
  • Patent number: 8779599
    Abstract: A device includes a bottom chip and an active top die bonded to the bottom chip. A dummy die is attached to the bottom chip. The dummy die is electrically insulated from the bottom chip.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: July 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Cheng-Lin Huang, Szu Wei Lu, Jui-Pin Hung, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8749049
    Abstract: An electronic device is disclosed. The electronic device comprises at least one electronic chip and a package for the electronic chip. The package comprises a laminate substrate, wherein the electronic chip is attached on the laminate substrate. The laminate substrate comprises one or more conduction layers, one or more insulation layers and a plurality of pads formed in a conduction layer on the side of the laminate substrate opposite to the side connected to the electronic chip. Furthermore, the package comprises an insulation body formed around the electronic chip. Moreover, the package comprises a plurality of electrodes that extend through the insulation body. For each pad of the laminate substrate, wiring is formed in the one or more of conduction layers and in one or more vias passing through the one or more insulation layers for electrically connecting the pad with at least one of the electrodes.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: June 10, 2014
    Assignee: ST-Ericsson SA
    Inventor: Zhimin Mo
  • Patent number: 8749055
    Abstract: An electronic device includes: a substrate having first and second surfaces, wherein the first surface is opposite to the second surface; a first electronic element mounted on the first surface of the substrate; a second electronic element mounted on the second surface of the substrate; and a resin mold sealing the first electronic element and the first surface of the substrate. The resin mold further seals the second electronic element on the second surface of the substrate. The second surface of the substrate has a portion, which is exposed from the resin mold. The second electronic element is not disposed on the portion of the second surface.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: June 10, 2014
    Assignee: DENSO CORPORATION
    Inventors: Tetsuto Yamagishi, Tohru Nomura, Norihisa Imaizumi, Yasutomi Asai
  • Patent number: 8722465
    Abstract: Semiconductor dies are mounted on a heat sink array frame structure. The heat sink array frame structure and the semiconductor dies are assembled together with an insulating substrate that has a corresponding array of apertures on an adhesive tape. The semiconductor dies are connected electrically with electrical contacts on the insulating substrate. The semiconductor dies, heat sinks and electrical connections to the contacts are encapsulated with a mold compound and then the encapsulated array is de-taped and singulated.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 13, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Junhua Luo, Jinzhong Yao, Baoguan Yin
  • Patent number: 8716847
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 8710652
    Abstract: An embedded package includes a semiconductor chip divided into a cell region and a peripheral region, having a first surface and a second surface which faces away from the first surface, and including an integrated circuit which is formed in the cell region on the first surface, a bonding pad which is formed in the peripheral region on the first surface and a bump which is formed over the bonding pad; a core layer attached to the second surface of the semiconductor chip; an insulation component formed over the core layer including the semiconductor chip and having an opening which exposes the bump; and a circuit wiring line formed over the insulation component and the bump and electrically connected to is the bump, wherein the insulation component formed in the cell region has a thickness larger than a height of the bump.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 29, 2014
    Assignee: SK Hynix Inc.
    Inventor: Qwan Ho Chung
  • Patent number: 8704384
    Abstract: A stacked die assembly for an IC includes a first interposer; a second interposer; a first integrated circuit die, a second integrated circuit die, and a plurality of components. The first integrated circuit die is interconnected to the first interposer and the second interposer, and the second integrated circuit die is interconnected to the second interposer. The plurality of components interconnect the first integrated circuit die to the first interposer and the second interposer. The plurality of components that interconnect the first integrated circuit die to the first interposer and the second interposer are located outside an interconnect restricted area of the first interposer and the second interposer, and signals are routed between the first integrated circuit die and the second integrated circuit die via the first integrated circuit die avoiding the interconnect restricted area of the first interposer and the second interposer.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 22, 2014
    Assignee: Xilinx, Inc.
    Inventors: Ephrem C. Wu, Raghunandan Chaware
  • Publication number: 20140103488
    Abstract: A device includes a top package bonded to a bottom package. The bottom package includes a molding material, a device die molded in the molding material, a Through Assembly Via (TAV) penetrating through the molding material, and a redistribution line over the device die. The top package includes a discrete passive device packaged therein. The discrete passive device is electrically coupled to the redistribution line.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsu-Hsien Chen, Chih-Hua Chen, En-Hsiang Yeh, Monsen Liu, Chen-Shien Chen
  • Patent number: 8698291
    Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
  • Publication number: 20140097527
    Abstract: An integrated circuit package may be formed using a leadframe having an open space extending therethrough. A shunt is located within the open space such that it is not in contact with any portion of the leadframe. Tape may be applied to the lower surface of the leadframe to support the shunt and hold it in place relative to the leadframe until wirebonding and encapsulation have been completed. Thereafter, the tape may be removed.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Donald Charles Abbott, Ubol Annie Udompanyavit, Brian Eugene Parks
  • Publication number: 20140091473
    Abstract: A semiconductor package and a method of forming a semiconductor package with one or more dies over an interposer die are provided. By forming a first redistribution structure over the interposer die with TSVs, the die(s) bonded to the interposer die can have edge(s) beyond the boundary of the interposer die. In addition, a second redistribution structure may be formed on the opposite surface of the interposer die from the redistribution structure. The second redistribution structure enables reconfiguration and fan-out of bonding structures for external connectors of the interposer die.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Cheng LEN, Shang-Yun HOU
  • Patent number: 8685766
    Abstract: A method of making a solid element device that includes a solid element, an element mount part on which the solid element is mounted and which has a thermal conductivity of not less than 100 W/mK, an external terminal provided separately from the element mount part and electrically connected to the solid element, and a glass sealing part directly contacting and covering the solid element for sealing the solid element, includes pressing a glass material at a temperature higher than a yield point of the glass material for forming the glass sealing part.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 1, 2014
    Assignees: Toyoda Gosei Co., Ltd., Sumita Optical Glass Inc.
    Inventors: Yoshinobu Suehiro, Mitsuhiro Inoue, Hideaki Kato, Kunihiro Hadame, Ryoichi Tohmon, Satoshi Wada, Koichi Ota, Kazuya Aida, Hiroki Watanabe, Yoshinori Yamamoto, Masaaki Ohtsuka, Naruhito Sawanobori
  • Patent number: 8669138
    Abstract: A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 11, 2014
    Assignee: NEC Corporation
    Inventors: Akinobu Shibuya, Koichi Takemura, Akira Ouchi, Tomoo Murakami
  • Publication number: 20140048946
    Abstract: A method (112) of forming a sensor panel (146) that includes an array (144) of sensor structures (22, 24) encapsulated in a mold material (148) and forming a controller panel (158) that includes an array (156) of controller dies (26) encapsulated in a mold material (160). The arrays (144, 156) are arranged so that locations of the sensor structures (22, 24) correspond with locations of the controller dies (26). The controller panel (158) is bonded (162) to the sensor panel (146) to form a stacked panel structure (164). After bonding, methodology (112) entails forming (178) conductive elements (84) on the controller dies (26), removing (174) material sections (126, 142, 168) from the controller panel 158 and the sensor panel (146) to expose bond pads (42, 58), forming (178) electrical interconnects (80), applying (182) packaging material (90), and singulating (196) the stacked panel structure (164) to produce sensor packages (20, 104).
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Philip H. Bowles, Scott M. Hayes
  • Patent number: 8652866
    Abstract: A sensor device and method. One embodiment provides a first semiconductor chip having a sensing region. A porous structure element is attached to the first semiconductor chip. A first region of the porous structure element faces the sensing region of the first semiconductor chip. An encapsulation material partially encapsulates the first semiconductor chip and the porous structure element.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: February 18, 2014
    Assignee: Infineon Technologies AG
    Inventors: Klaus Elian, Georg Meyer-Berg, Horst Theuss
  • Patent number: 8648470
    Abstract: A semiconductor device has a first semiconductor die including TSVs mounted to a carrier with a thermally releasable layer. A first encapsulant having a first coefficient of thermal expansion CTE is deposited over the first semiconductor die. The first encapsulant includes an elevated portion in a periphery of the first encapsulant that reduces warpage. A surface of the TSVs is exposed. A second semiconductor die is mounted to the surface of the TSVs and forms a gap between the first and second semiconductor die. A second encapsulant having a second CTE is deposited over the first and second semiconductor die and within the gap. The first CTE is greater than the second CTE. In one embodiment, the first and second encapsulants are formed in a chase mold. An interconnect structure is formed over the first and second semiconductor die.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jose Alvin Caparas, Kang Chen, Hin Hwa Goh
  • Publication number: 20140035935
    Abstract: This disclosure provides systems, methods and apparatus for glass via bars that can be used in compact three-dimensional packages, including embedded wafer level packages. The glass via bars can provide high density electrical interconnections in a package. In some implementations, the glass via bars can include integrated passive components. Methods of fabricating glass via bars are provided. In some implementations, the methods can include patterning and etching photo-patternable glass substrates. Packaging methods employing glass via bars are also provided.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ravindra V. Shenoy, Kwan-Yu Lai, Jon Bradley Lasiter, Jonghae Kim, Mario Francisco Velez, Chi Shun Lo, Donald William Kidwell, Philip Jason Stephanou, Justin Phelps Black, Evgeni Petrovich Gousev
  • Patent number: 8609470
    Abstract: A substrate-free semiconducting sheet has an array of semiconducting elements dispersed in a matrix material. The matrix material is bonded to the edge surfaces of the semiconducting elements and the substrate-free semiconducting sheet is substantially the same thickness as the semiconducting elements.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 17, 2013
    Assignee: Goldeneye, Inc.
    Inventors: Karl W. Beeson, Scott M. Zimmerman, William R. Livesay, Richard L. Ross
  • Patent number: 8609525
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a package carrier having a carrier top side; mounting an integrated circuit over the carrier top side; attaching a bottom attachment directly on the integrated circuit; dragging a sandwich connector from the bottom attachment, the sandwich connector having a connector diameter; and attaching a top attachment directly on the sandwich connector, the top attachment wider than the bottom attachment.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: December 17, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: BongHwan Han, Tae Kyu Choi, SeungJoo Kwak, DongWon Son, Gyung Sik Yun
  • Patent number: 8609472
    Abstract: A process for fabricating an electronic component includes a liquid injection molding method for overmolding a semiconductor device. The liquid injection molding method includes: i) placing the semiconductor device in an open mold, ii) closing the mold to form a mold cavity, iii) heating the mold cavity, iv) injection molding a curable liquid into the mold cavity to overmold the semiconductor device, v) opening the mold and removing the product of step iv), and optionally vi) post-curing the product of step v). The semiconductor device may have an integrated circuit attached to a substrate through a die attach adhesive.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 17, 2013
    Assignee: Dow Corning Corporation
    Inventors: Tammy Cheng, Mark Dobrzelewski, Daniel Solomon, Christopher Windiate
  • Publication number: 20130320514
    Abstract: A semiconductor system (100) comprises a first component including a first semiconductor chip (110) attached to the pad (120) of a leadframe made of a first metal sheet of high thermal conductivity, and a second component including a second semiconductor chip (140) attached to the pad (150) of a leadframe made of a second metal sheet wire-bondable on both surfaces. Wires (160) connect chip (140) to leads (151) at the surface (151a) facing the chip. A polymeric housing (170) encapsulates chip (140) and wires (160), leaving un-encapsulated the lead surface (151b) facing away from chip (140). Housing (170) is attached to the first chip (110) using a layer (180) of low thermal conductivity, and lead surfaces (151 b), facing away from the first chip (110), are connected by wires (131) to leads (121) of the first metal leadframe.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Matthew D. Romig, Marie-Solange Milleron
  • Publication number: 20130319744
    Abstract: Embodiments of a method for preparing a leadframe for integrated circuit (IC) die packaging in a molded package with an exposed die pad are disclosed. In one embodiment, a method involves producing a leadframe with a die pad, wherein the die pad has a top surface, a bottom surface, and a perimeter edge. The die pad is then planarized to flatten burrs that may exist at the perimeter edge of the die pad, wherein planarizing the die pad comprises embedding tool markings in the die pad at the perimeter edge of the die pad, the tool markings including a series of peaks and valleys that run parallel to the perimeter edge at all locations around the perimeter edge. Embodiments of a leadframe for IC die packaging in a molded package are also disclosed.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: NXP B.V.
    Inventors: Tsung Yi Wu, Chyi Keh Chern, Tsung Wen Chang
  • Publication number: 20130307140
    Abstract: The mechanisms of using an interposer frame to package a semiconductor die enables fan-out structures and reduces form factor for the packaged semiconductor die. The mechanisms involve using a molding compound to attach the semiconductor die to the interposer frame and forming a redistribution layer on one or both sides of the semiconductor die. The redistribution layer(s) in the package enables fan-out connections and formation of external connection structures. Conductive columns in the interposer frame assist in thermal management.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Min HUANG, Yen-Chang HU, Chih-Wei LIN, Ming-Da CHENG, Chung-Shi LIU, Chen-Shien CHEN