Using Bonding Technique (epo) Patents (Class 257/E21.567)
  • Patent number: 8039401
    Abstract: A first and a second substrate are bonded together to thereby form a unitary hybrid substrate. Predefined portions of the first substrate are removed to form openings in the first substrate through which surface regions of the second substrate are exposed. A selective epitaxial growth process that is selective with respect to the crystalline orientations of the first and second substrates is carried out to thereby form epitaxial silicon from the exposed surfaces of the second substrate but not from exposed surfaces of the first substrate. The epitaxial silicon formed from the exposed surfaces of the second substrate has the same crystalline orientation as the second substrate.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 18, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Qi Wang, Joelle Sharp, Minhua Li, Hui Chen
  • Publication number: 20110250416
    Abstract: This invention provides composite semiconductor substrates and methods for fabricating such substrates. The composite structures include a semiconductor substrate, a semiconductor superstrate and an intermediate layer interposed between the substrate and the superstrate that comprises a material that undergoes a structural transformation When subject to a suitable heat treatment. The methods provide such a heat treatment so that the intermediate layer becomes spongy or porous, being filled with numerous micro-bubbles or micro-cavities containing a gaseous phase. The composite semiconductor substrates with structurally-transformed intermediate layers have numerous applications.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 13, 2011
    Inventors: Michel Bruel, Bernard Aspar, Chrystelle Lagahe-Blanchard
  • Publication number: 20110248396
    Abstract: A first set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a primary pattern. A second set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a mirror-image pattern. A first semiconductor substrate from the first set is bonded to a second semiconductor substrate from the second set such that each bonding pads is bonded to a mirror-image bonding pad. Additional substrates are bonded sequentially such that the bonded structure includes an even number of semiconductor substrates of which one half have bonding pads of the primary pattern and are bonded to the side of the first semiconductor substrate, while the other half have bonding pads of the mirror-image pattern and are bonded to the side of the second semiconductor substrate. The mirror-image patterns of the bonding pads enable maximal cancellation of wafer bow.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: International Business Machines Corporation
    Inventors: Fei Liu, Albert M. Young, Roy R. Yu
  • Publication number: 20110241157
    Abstract: The invention relates to a method for manufacturing a semiconductor substrate, in particular a semiconductor-on-insulator substrate by providing a donor substrate and a handle substrate, forming a pattern of one or more doped regions typically inside the handle substrate, and then attaching such as by molecular bonding the donor and the handle substrate to obtain a donor-handle compound.
    Type: Application
    Filed: June 3, 2010
    Publication date: October 6, 2011
    Inventors: Carlos Mazure, Richard Ferrant, Konstantin Bourdelle, Bich-Yen Nguyen
  • Publication number: 20110233719
    Abstract: The invention relates to a test method comprising an electrical connection contact on the support of a substrate of the semiconductor-on-insulator type. This method is remarkable in that it comprises the steps of: a) taking a substrate of the semiconductor-on-insulator type comprising a support substrate entirely covered with an insulator layer and an active layer, a portion of the insulator layer being buried between the active layer and the front face of the support substrate, b) removing a portion of the insulator layer that extends at the periphery of the front face of the support substrate and/or that extends on its rear face, so as to delimit at least one insulator-free accessible area of the support substrate, while retaining at least one portion of the insulator layer on the rear face, c) applying an electrical voltage to the accessible area in order to make the electrical connection contact.
    Type: Application
    Filed: January 14, 2010
    Publication date: September 29, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventor: Chrystelle Lagahe Blanchard
  • Publication number: 20110230035
    Abstract: A transfer process for silicon nanomembranes (SiNM) may involve treating a recipient substrate with a polymer structural support. After treating the recipient substrate, a substrate containing the intended transferable devices may be brought in direct contact with the aforementioned polymer layer. The two substrates may then go through a Deep Reactive Ion Etch (DRIE) to remove at least a portion of the substrate containing the devices. Oxide may be selectively removed with a buffered oxide wet etch, leaving the transferred SiNM on the recipient substrate with the Underlying polymer layer.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Applicant: LUMILANT, INC.
    Inventors: Mathew J. Zablocki, Ahmed Sharkawy, Dennis W. Prather
  • Publication number: 20110230003
    Abstract: The invention relates to a process for fabricating a multilayer structure (130) comprising: bonding a first wafer onto a second wafer, at least the first wafer having a chamfered edge; and thinning the first wafer so as to form in a transferred layer, the thinning comprising a grinding step and a chemical etching step. After the grinding step and before the chemical etching step, a trimming step of the edge of the first wafer is carried out using a grinding wheel, the working surface of which comprises grit particles having an average size of less than or equal to 800 mesh or greater than or equal to 18 microns, the trimming step being carried out to a defined depth in the first wafer so as to leave a thickness of the first wafer of less than or equal to 35 ?m in the trimmed region.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 22, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Alexandre Vaufredaz, Sebastien Molinari
  • Publication number: 20110223741
    Abstract: A method and a system are described herein for applying etchant to edges of a plurality of wafers. The system includes a sump configured for holding etchant, a roller having an outer surface in fluid communication with the sump and configured to have etchant thereon, a wafer cassette configured to retain wafers positioned therein so that edges of the wafers are in contact with the roller. The cassette permits axial rotation of the wafers about an axis. A method of applying etchant to the edge of the wafer includes placing the wafer edge in contact with the roller and rotating the roller about a longitudinal axis of the roller. At least a portion of the roller contact an etchant contained in a sump during rotation so that etchant is applied to the wafer edge.
    Type: Application
    Filed: November 16, 2009
    Publication date: September 15, 2011
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventor: Robert W. Standley
  • Publication number: 20110207291
    Abstract: A wafer bonding method includes: holding a first substrate with an upper holding mechanism 7 by applying a voltage to the upper holding mechanism 7; generating a bonded substrate by bonding the first substrate and a second substrate held with a lower holding mechanism 8; and dechucking the bonded substrate from the upper holding mechanism 7 after a voltage which attenuates while alternating is applied to the upper holding mechanism 7. By applying the voltage which attenuates while alternating to the upper holding mechanism 7, residual attracting force between the bonded substrate and the upper holding mechanism 7 is reduced, thereby enabling the bonded substrate to be dechucked from the holding mechanism more surely in a shorter time period. As a result, the first substrate and the second substrate can be bonded in a shorter time period.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 25, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.,
    Inventors: Takeshi Tsuno, Takayuki Goto, Masato Kinouchi, Kensuke Ide, Takenori Suzuki
  • Publication number: 20110207295
    Abstract: A method for producing a structure having an ultra thin buried oxide (UTBOX) layer by assembling a donor substrate with a receiver substrate wherein at least one of the substrates includes an insulating layer having a thickness of less than 50 nm that faces the other substrate, conducting a first heat treatment for reinforcing the assembly between the two substrates at temperature below 400° C., and conducting a second heat treatment at temperature above 900° C., wherein the exposure time between 400° C. and 900° C. between the heat treatments is less than 1 minute and advantageously less than 30 seconds.
    Type: Application
    Filed: October 29, 2009
    Publication date: August 25, 2011
    Inventors: Didier Landru, Ionut Radu, Sébastien Vincent
  • Publication number: 20110207294
    Abstract: A method for manufacturing a semiconductor device makes it possible to efficiently polish with a polishing tape a peripheral portion of a silicon substrate under polishing conditions particularly suited for a deposited film and for silicon underlying the deposited film. The method includes: pressing a first polishing tape against a peripheral portion of a device substrate having a deposited film on a silicon surface while rotating the device substrate at a first rotational speed, thereby removing the deposited film lying in the peripheral portion of the device substrate and exposing the underlying silicon; and pressing a second polishing tape against the exposed silicon lying in the peripheral portion of the device substrate while rotating the device substrate at a second rotational speed, thereby polishing the silicon to a predetermined depth.
    Type: Application
    Filed: February 15, 2011
    Publication date: August 25, 2011
    Inventors: Masayuki NAKANISHI, Tetsuji Togawa, Kenya Ito, Masaya Seki, Kenji Iwade, Takeo Kubota
  • Patent number: 8003207
    Abstract: An adhesive bonding sheet having an optically transmitting supporting substrate and an adhesive bonding layer, and being used in both a dicing step and a semiconductor element adhesion step, wherein the adhesive bonding layer comprises: a polymer component (A) having a weight average molecular weight of 100,000 or more including functional groups; an epoxy resin (B); a phenolic epoxy resin curing agent (C); a photoreactive monomer (D), wherein the Tg of the cured material obtained by ultraviolet light irradiation is 250° C. or more; and a photoinitiator (E) which generates a base and a radical by irradiation with ultraviolet light of wavelength 200-450 nm.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 23, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Keisuke Ookubo, Teiichi Inada
  • Publication number: 20110195560
    Abstract: The invention provides a method of producing a heterostructure of the silicon-on-sapphire type, comprising bonding an SOI substrate onto a sapphire substrate and thinning the SOI substrate, thinning being carried out by grinding followed by etching of the SOI substrate. In accordance with the method, grinding is carried out using a wheel with a grinding surface that comprises abrasive particles having a mean dimension of more than 6.7 ?m; further, after grinding and before etching, the method comprises a step of post-grinding annealing of the heterostructure carried out at a temperature in the range of 150° C. to 170° C.
    Type: Application
    Filed: November 19, 2009
    Publication date: August 11, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Gweltaz Gaudin, Alexandre Vaufredaz, Fleur Guittard
  • Publication number: 20110193195
    Abstract: A virtual substrate includes a handle support and a strain-relieved single crystalline layer on the handle support. A method of making the virtual substrate includes growing a coherently-strained single crystalline layer on an initial growth substrate, removing the initial growth substrate to relieve the strain on the single crystalline layer, and applying the strain-relieved single crystalline layer on a handle support.
    Type: Application
    Filed: December 17, 2010
    Publication date: August 11, 2011
    Inventors: Harry A. Atwater, Marina S. Leite, Emily C. Warmann, Dennis M. Callahan
  • Patent number: 7994506
    Abstract: A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 9, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yuugo Goto
  • Patent number: 7989314
    Abstract: Provided are a method of separating a metal layer and an organic light emitting diode. A method of manufacturing a flexible device and a method of manufacturing a flexible display include forming a releasing layer on a substrate, forming a metal layer on the releasing layer, forming an insulating layer on the metal layer, forming a releasable layer on the insulating layer, bonding a plastic to the releasable layer, and separating the substrate and the releasing layer at an interface therebetween to manufacture a flexible device. Since the conventional process equipment using the glass substrate can be compatibly used, the manufacturing cost can be reduced. In addition, since the glass substrate has less limitation in the process temperature compared with the plastic substrate, an electric device having a superior performance can be manufactured.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 2, 2011
    Assignee: Postech Academy-Industry Foundation Pohang Univ. of Science & Technology
    Inventors: Jong Lam Lee, Soo Young Kim
  • Patent number: 7989305
    Abstract: A method is demonstrated to manufacture SOI substrates with high throughput while resources can be effectively used. The present invention is characterized by the feature in which the following process A and process B are repeated. The process A includes irradiation of a surface of a semiconductor wafer with cluster ions to form a separation layer in the semiconductor wafer. The semiconductor wafer and a substrate having an insulating surface are then overlapped with each other and bonded, which is followed by thermal treatment to separate the semiconductor wafer at or around the separation layer. A separation wafer and an SOI substrate which has a crystalline semiconductor layer over the substrate having the insulating surface are simultaneously obtained by the process A. The process B includes treatment of the separation wafer for reusing, which allows the separation wafer to be successively subjected to the process A.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Shunpei Yamazaki
  • Publication number: 20110180911
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Publication number: 20110183495
    Abstract: The invention relates to a process for annealing a structure that includes at least one wafer, with the annealing process including conducting a first annealing of the structure in an oxidizing atmosphere while holding the structure in contact with a holder in a first position in order to oxidize at least portion of the exposed surface of the structure, shifting the structure on the holder into a second position in which non-oxidized regions of the structure are exposed, and conducting a second annealing of the structure in an oxidizing atmosphere while holding the structure in the second position. The process provides an oxide layer on the structure.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Inventors: Nicolas Sousbie, Bernard Aspar, Thierry Barge, Chrystelle Lagahe Blanchard
  • Publication number: 20110180896
    Abstract: A method of forming a bonded wafer structure includes providing a first semiconductor wafer substrate having a first silicon oxide layer at the top surface of the first semiconductor wafer substrate; providing a second semiconductor wafer substrate; forming a second silicon oxide layer on the second semiconductor wafer substrate; forming a silicon nitride layer on the second silicon oxide layer; and bringing the first silicon oxide layer of the first semiconductor wafer substrate into physical contact with the silicon nitride layer of the second semiconductor wafer substrate to form a bonded interface between the first silicon oxide layer and the silicon nitride layer. Alternatively, a third silicon oxide layer may be formed on the silicon nitride layer before bonding. A bonded interface is then formed between the first and third silicon oxide layers. A bonded wafer structure formed by such a method is also provided.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gerd Pfeiffer, Haizhou Yin, Edmund J. Sprogis, Subramanian Iyer, Zhibin Ren, Dae-Gyu Park, Oleg Gluschenkov
  • Patent number: 7985657
    Abstract: Systems and methods are disclosed for bonding of semiconductor, metal, metal-ceramic or combinations of these substrates using microwave energy. In some embodiments, metal-ceramic substrates carrying semiconductor substrates can be bonded simultaneously through a thin interlayer metal to a metal substrate by using microwave energy. In some embodiments, other substrate combinations can be bonded by using microwave energy. High intensity microwave energy is applied to the substrate assembly positioned within a microwave cavity. A process of selective heating can occur in the thin interlayer metal enhanced by the presence of third microwave absorbing substrate, resulting in melting of the thin interlayer metal to facilitate bonding of the two substrates. Some of the advantages associated with such bonding process are disclosed.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: July 26, 2011
    Assignee: Microwave Bonding Instruments, Inc.
    Inventors: Nasser K. Budraa, Boon Ng
  • Patent number: 7985660
    Abstract: The present invention provides a method for manufacturing an SOI wafer, including: a step of preparing a base wafer consisting of a p+ silicon single crystal wafer and a bond wafer consisting of a silicon single crystal wafer containing a dopant at a lower concentration than that in the base wafer; a step of forming a silicon oxide film on an entire surface of the base wafer based on thermal oxidation; a step of bonding the bond wafer to the base wafer through the silicon oxide film; and a step of reducing a thickness of the bond wafer to form an SOI layer, wherein a step of forming a CVD insulator film on a surface on an opposite side of a bonding surface of the base wafer is provided before the thermal oxidation step for the base wafer.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 26, 2011
    Assignee: Shin Etsu Handotai Co., Ltd.
    Inventors: Isao Yokokawa, Hiroshi Takeno, Nobuhiko Noto
  • Publication number: 20110177673
    Abstract: A method for producing a stacked structure having an ultra thin buried oxide (UTBOX) layer therein by forming an electrical insulator layer on a donor substrate, introducing elements into the donor substrate through the insulator layer, forming an electrical insulator layer, on a second substrate, and bonding the two substrates together to form the stack, with the two insulator layers limiting the diffusion of water and forming the UTBOX layer between the two substrates at a thickness of less than 50 nm, wherein the donor oxide layer has, during bonding, a thickness at least equal to that of the bonding oxide layer.
    Type: Application
    Filed: October 29, 2009
    Publication date: July 21, 2011
    Applicant: S. O. I. Tec Silicon on Insulator Technologies
    Inventor: Didier Landru
  • Patent number: 7981754
    Abstract: To provide a manufacturing method of a semiconductor substrate and a manufacturing method of a semiconductor device, which prevent reduction in breakdown voltage of a gate oxide film of a device formed in a semiconductor substrate to improve a reliability of the gate oxide film. A manufacturing method of a semiconductor substrate according to the present invention includes: exposing a silicon surface of an active layer substrate 1 made of single-crystal silicon, to which a semiconductor device is formed; forming an oxide film on a support substrate 2 made of single-crystal silicon; and bonding the silicon surface of the active layer substrate 1 to the oxide film formed on the support substrate 2. The silicon surface of the active layer substrate 1 is exposed by removing a spontaneous oxidation film 7 formed on the surface.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Katou
  • Patent number: 7981768
    Abstract: A method for producing an epitaxial layer. First, a structure is fabricated by: formation of an intermediate layer on a donor substrate; and formation of the epitaxial layer on the intermediate layer by epitaxy; with the melting temperature of the intermediate layer being lower than the melting temperature of the epitaxial layer; and then a detachment step for transferring the epitaxial layer from the donor substrate. The detachment step includes applying at least one thermal treatment performed at a temperature of between the melting temperature of the intermediate layer and the melting temperature of the epitaxial layer.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: July 19, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Yves-Matthieu Le Vaillant
  • Publication number: 20110168317
    Abstract: A method of bonding two substrates includes placing a separating member between a first substrate and a second substrate, applying pressure to the first substrate to initiate a bond wave between the first substrate and the second substrates with the separating member between the first substrate and the second substrate, and controlling movement of the bond wave by translating the separating member away from a center of the first substrate or the second substrate.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 14, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Steve Deming, Zhenfang Chen, Micheal Rocchio, Hugo J. Miller
  • Publication number: 20110169133
    Abstract: A wiring substrate includes a ceramic substrate including plural ceramic layers, an inner wiring, and an electrode electrically connected to the inner wiring, the electrode exposed on a first surface of the ceramic substrate, and a silicon substrate body having a front surface and a back surface situated on an opposite side of the front surface and including a wiring pattern formed on the front surface and a via filling material having one end electrically connected to the wiring pattern and another end exposed at the back surface. The back surface is bonded to the first surface of the ceramic substrate via a polymer layer. The via filling material penetrates through the polymer layer and is directly bonded to the electrode.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 14, 2011
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Tadashi ARAI
  • Publication number: 20110163410
    Abstract: A method for producing a hybrid substrate, including a support substrate, a continuous buried insulator layer and, on this continuous layer, a hybrid layer including alternating zones of a first material and at least one second material, wherein these two materials are different by their nature and/or their crystallographic characteristics. The method forms a hybrid layer, including alternating zones of first and second materials, on a homogeneous substrate, assembles this hybrid layer, the continuous insulator layer and the support substrate, and eliminates a part at least of the homogeneous substrate, before or after the assembling.
    Type: Application
    Filed: June 6, 2008
    Publication date: July 7, 2011
    Applicants: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES, COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Thomas Signamarcheix, Franck Fournel, Hubert Moriceau
  • Patent number: 7972938
    Abstract: Methods of producing CdZnTe (CZT) layers for the epitaxial growth of HgCdTe thereon include implanting ions into a CZT substrate at a low temperature to form a damaged layer underneath a CZT surface layer, bonding a wafer to the CZT substrate about the CZT surface layer using a bonding material, and, annealing the CZT substrate for a time sufficient to facilitate the splitting of the CZT substrate at the damaged layer from the CZT surface layer.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: July 5, 2011
    Assignee: UES, Inc.
    Inventors: Rabi S. Bhattacharya, Yongli Xu
  • Patent number: 7972939
    Abstract: A method for minimizing or avoiding contamination of a receiving handle wafer during transfer of a thin layer from a donor wafer. This method includes providing a donor wafer and a receiving handle wafer, each having a first surface prepared for bonding and a second surface, with the donor wafer providing a layer of material to be transferred to the receiving handle wafer. Next, at least one of the first surfaces is treated to provide increased bonding energy when the first surfaces are bonded together; the surfaces are then bonded together to form an intermediate multilayer structure; and a portion of the donor wafer is removed to transfer the thin layer to the receiving handle wafer and form the semiconductor structure. This method avoids or minimizes contamination of the second surface of the receiving handle wafer by treating only the first surface of the donor wafer prior to bonding by exposure to a plasma, and by conducting any thermal treatments after plasma activation at a temperature of 300° C.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Sébastien Kerdiles, Christophe Maleville, Fabrice Letertre, Olivier Rayssac
  • Patent number: 7968426
    Abstract: Systems and methods are disclosed for bonding of substrates using microwave energy. In some embodiments, semiconductor substrates can be bonded through a thin interlayer metal to a metal substrate by using microwave energy. High intensity microwave energy is applied to the substrate assembly positioned within a microwave cavity. A process of selective heating can occur in the thin interlayer metal, resulting in melting of the thin interlayer metal to facilitate bonding of the two substrates. Some of the advantages associated with such bonding process are disclosed.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: June 28, 2011
    Assignee: Microwave Bonding Instruments, Inc.
    Inventors: Nasser K. Budraa, Boon Ng
  • Publication number: 20110147796
    Abstract: Semiconductor device including a metal carrier substrate. Above the carrier substrate a first semiconductor layer of Alx1Gay1Inz1N (x1+y1+z1=1, x1?0, y1?0, z1?0) is formed. A second semiconductor layer of Alx2Gay2Inz2N (x2+y2+z2=1, x2>x1, y2?0, z2?0) is arranged on the first semiconductor layer and a gate region is arranged on the second semiconductor layer. The semiconductor device furthermore includes a source region and a drain region, wherein one of these regions is electrically coupled to the metal carrier substrate and includes a conductive region extending through the first semiconductor layer.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Oliver Haeberlen, Walter Rieger, Christoph Kadow, Markus Zundel
  • Patent number: 7960246
    Abstract: Methods for manufacturing electronic devices and devices produced by those methods are disclosed. One such method includes releasably bonding a first surface of a device substrate to a face of a first carrier substrate using a first bonding agent to produce a first composite substrate, where the face of the first carrier substrate includes a pattern of trenches. The method also includes processing the device substrate to manufacture an electronic device on a second surface of the device substrate. The method further includes releasing the device substrate from the first carrier substrate by a releasing agent.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: June 14, 2011
    Assignees: IMEC, UMICORE
    Inventors: Giovanni Flamand, Wim Geens, Jef Poortmans
  • Patent number: 7960249
    Abstract: A wafer for backside illumination type solid imaging device having a plurality of pixels inclusive of a photoelectric conversion device and a charge transfer transistor at its front surface side and a light receiving surface at its back surface side is produced by a method comprising a step of forming a BOX oxide layer on at least one of a wafer for support substrate and a wafer for active layer, a step of bonding the wafer for support substrate and the wafer for active layer and a step of thinning the wafer for active layer, which further comprises a step of forming a plurality of concave portions on a bonding face of the BOX oxide layer to the other wafer and filling a polysilicon plug into each of the concave portions to form a composite layer before the step of bonding the wafer for support substrate and the wafer for active layer.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: June 14, 2011
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 7951656
    Abstract: A stack including at least an insulating layer, a first electrode, and a first impurity semiconductor layer is provided over a supporting substrate; a first semiconductor layer to which an impurity element imparting one conductivity type is added is formed over the first impurity semiconductor layer; a second semiconductor layer to which an impurity element imparting the one conductivity type is added is formed over the first semiconductor layer under a condition different from that of the first semiconductor layer; crystallinity of the first semiconductor layer and crystallinity of the second semiconductor layer are improved by a solid-phase growth method to form a second impurity semiconductor layer; an impurity element imparting the one conductivity type and an impurity element imparting a conductivity type different from the one conductivity type are added to the second impurity semiconductor layer; and a gate electrode layer is formed via a gate insulating layer.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: May 31, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Satoshi Toriumi, Fumito Isaka, Hideto Ohnuma
  • Patent number: 7951692
    Abstract: There is provided a method for suppressing the occurrence of defects such as voids or blisters even in the laminated wafer having an oxide film of a thickness thinner than the conventional one, wherein hydrogen ions are implanted into a wafer for active layer having an oxide film of not more than 50 nm in thickness to form a hydrogen ion implanted layer, and ions other than hydrogen are implanted up to a position that a depth from the surface side the hydrogen ion implantation is shallower than the hydrogen ion implanted layer, and the wafer for active layer is laminated onto a wafer for support substrate through the oxide film, and then the wafer for active layer is exfoliated at the hydrogen ion implanted layer.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: May 31, 2011
    Assignee: Sumco Corporation
    Inventors: Satoshi Murakami, Nobuyuki Morimoto, Hideki Nishihata, Akihiko Endo
  • Patent number: 7943491
    Abstract: The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of ‘soft adhesion’ to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 17, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 7943428
    Abstract: A bonded substrate comprising two semiconductor substrates is provided. Each semiconductor substrate includes semiconductor devices. At least one through substrate via is provided between the two semiconductor substrates to provide a signal path therebetween. The bottom sides of the two semiconductor substrate are bonded by at least one bonding material layer that contains a cooling mechanism. In one embodiment, the cooling mechanism is a cooling channel through which a cooling fluid flows to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate. In another embodiment, the cooling mechanism is a conductive cooling fin with two end portions and a contiguous path therebetween. The cooling fin is connected to heat sinks to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Anthony K. Stamper
  • Patent number: 7943414
    Abstract: An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Junpei Momo, Shunpei Yamazaki
  • Publication number: 20110108943
    Abstract: A semiconductor wafer structure for integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate; an electrically conductive back gate layer formed on the lower insulating layer; an upper insulating layer formed on the back gate layer; and a hybrid semiconductor-on-insulator layer formed on the upper insulating layer, the hybrid semiconductor-on-insulator layer comprising a first portion having a first crystal orientation and a second portion having a second crystal orientation.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Qiqing C. Ouyang, Jeng-Bang Yau
  • Patent number: 7939425
    Abstract: A method for fabricating a device with a flexible substrate includes providing a rigid substrate at first. Next, an interfacing layer can be formed on the rigid substrate, and then a flexible substrate is directly formed on the interfacing layer. The flexible substrate fully contacts the interfacing layer. A device structure is then formed on the flexible substrate.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 10, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Tarng-Shiang Hu, Jing-Yi Yan, Jia-Chong Ho, Cheng-Chung Lee
  • Patent number: 7939428
    Abstract: A method for making substrates for use in optics, electronics, or opto-electronics. The method may include transferring a seed layer onto a receiving substrate and depositing a useful layer onto the seed layer. The thermal expansion coefficient of the receiving support may be identical to or slightly larger than the thermal expansion coefficient of the useful layer and the thermal expansion coefficient of the seed layer may be substantially equal to the thermal expansion coefficient of the receiving support. Preferably, the nucleation layer and the intermediate support have substantially the same chemical composition.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 10, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Alice Boussagol, Bruce Faure, Bruno Ghyselen, Fabrice Letertre, Olivier Rayssac, Pierre Rayssac, legal representative, Gisèle Rayssac, legal representative
  • Publication number: 20110089524
    Abstract: A semiconductor device and a method of manufacturing the same capable of reducing variations in the thickness of a semiconductor device are provided. The amount of oxygen implanted ions is less than the amount of implanted oxygen ions in the conventional epitaxial SIMOX wafers. Oxygen is ion-implanted into the surface layer of a silicon wafer from the surface of the wafer. Then, by heat treating the wafer, a thinning stop layer, which is an imperfect buried oxide film, is formed along the entire plane of the wafer. As a result, variation of the thickness of the semiconductor device formed in an active layer can be reduced, since the, the reliability of the accuracy of the end point of silicon wafer thinning is higher than that of a thinning using the conventional deep trench structure as an end point detector.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 21, 2011
    Applicant: SUMCO CORPORATION
    Inventor: Yoshihisa NONOGAKI
  • Publication number: 20110084386
    Abstract: A semiconductor device has a semiconductor die with a die bump pad. A substrate has a conductive trace with an interconnect site. A conductive bump material is deposited on the interconnect site or die bump pad. The semiconductor die is mounted over the substrate so that the bump material is disposed between the die bump pad and interconnect site. The bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the die and substrate. The bump material is self-confined within the die bump pad or interconnect site. The volume of bump material is selected so that a surface tension maintains self-confinement of the bump material substantially within a footprint of the die bump pad and interconnect site. The interconnect structure can have a fusible portion and non-fusible portion. An encapsulant is deposited between the die and substrate.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 14, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 7923386
    Abstract: A method of forming a layer on a substrate in a chamber, wherein the substrate has at least one formed feature across its surface, is provided. The method includes exposing the substrate to a silicon-containing precursor in the presence of a plasma to deposit a layer, treating the deposited layer with a plasma, and repeating the exposing and treating until a desired thickness of the layer is obtained. The plasma may be generated from an oxygen-containing gas.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Mei-yee Shek, Li-Qun Xia, Hichem M'Saad
  • Patent number: 7919391
    Abstract: The invention concerns a method of treating one or both bonding surfaces of first and second substrates and in particular, the surfaces of donor and receiver wafers that are intended to be bonded together. A simultaneous cleaning and activation step is carried out immediately prior to bonding the wafers together, by applying to one or both bonding surfaces an activation solution of ammonia (NH4OH) in water, preferably deionized, at a concentration by weight in the range from about 0.05% to 2%. The method is applicable to fabricating structures used in the optics, electronics, or optoelectronics fields.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: April 5, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Cécile Delattre, Frédéric Metral, Daniel Delprat, Christophe Maleville
  • Publication number: 20110073904
    Abstract: A semiconductor device includes: a SOI substrate; a semiconductor element having first and second impurity layers disposed in an active layer of the SOI substrate, the second impurity layer surrounding the first impurity layer; and multiple first and second conductive type regions disposed in a part of the active layer adjacent to an embedded insulation film of the SOI substrate. The first and second conductive type regions are alternately arranged. The first and second conductive type regions have a layout, which corresponds to the semiconductor element.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicant: DENSO CORPORATION
    Inventors: Youichi Ashida, Norihito Tokura, Shigeki Takahashi, Yoshiaki Nakayama, Satoshi Shiraki, Kouji Senda
  • Patent number: 7910455
    Abstract: The present invention relates to a method for producing an SOI wafer, having at least a step of a bonding heat treatment for increasing bonding strength by heat-treating a bonded wafer obtained by bonding a base wafer and a bond wafer, in which argon is ion-implanted from a surface of either the base wafer or the bond wafer at a dosage of 1×1015 atoms/cm2 or more at least before the bonding step, the surface ion-implanted with argon is used as a bonding surface in the bonding step, and an increase rate of temperature to a treatment temperature of the bonding heat treatment is 5° C./minute or higher. Thus the present invention provides a method for producing an SOI wafer facilitating the efficient production of an SOI wafer having in the neighborhood of a buried insulator layer thereof a polycrystalline silicon layer uniform in thickness introduced and having high gettering ability toward metal contaminations in the SOI layer by a simple and low-cost method.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: March 22, 2011
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kazuhiko Yoshida, Masao Matsumine, Hiroshi Takeno
  • Patent number: 7902045
    Abstract: A process for fabricating a composite structure for epitaxy, including at least one crystalline growth seed layer of semiconductor material on a support substrate, with the support substrate and the crystalline growth seed layer each having, on the periphery of their bonding face, a chamfer or an edge rounding zone. The process includes at least one step of wafer bonding the crystalline growth seed layer directly onto the support substrate and at least one step of thinning the crystalline growth seed layer. After thinning, the crystalline growth seed layer has a diameter identical to its initial diameter.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 8, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Chantal Arena, Fabrice Letertre
  • Patent number: 7902590
    Abstract: The present invention provides a system comprising a semiconductor device, a method of controlling the semiconductor device in the system, and a method of manufacturing the semiconductor device in the system. The semiconductor device includes: a semiconductor region located in a semiconductor layer formed on an isolating layer; an ONO film on the semiconductor region; bit lines on either side of the semiconductor region, which are located in the semiconductor layer, and are in contact with the isolating layer; a device isolating region on two different sides of the semiconductor region from the sides on which the bit lines are located, the device isolating region being in contact with the isolating layer; and a first voltage applying unit that is coupled to the semiconductor region. In this semiconductor device, the semiconductor region is surrounded by the bit lines and the device isolating region, and is electrically isolated from other semiconductor regions.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 8, 2011
    Assignee: Spansion LLC
    Inventor: Yukio Hayakawa