Comprising Antifuses, I.e., Connections Having Their State Changed From Nonconductive To Conductive (epo) Patents (Class 257/E23.147)
  • Publication number: 20120018841
    Abstract: A semiconductor device comprises an active region formed in a semiconductor substrate and a gate electrode formed on the active region via a gate insulating film formed on a surface of the active region. A peripheral portion of the gate electrode and a peripheral portion of the active region overlap each other at a position where the active region is not divided by the gate electrode when viewed in plan view, thus forming an overlap region.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Eiji KITAMURA, Shinichi HORIBA, Nobuyuki NAKAMURA
  • Patent number: 8102018
    Abstract: A non-volatile resistive memory is provided. The memory includes at least one non-volatile memory cell and selection circuitry. Each memory cell has a two-terminal nanotube switching device having and a nanotube fabric article disposed between and in electrical communication with two conductive terminals. Selection circuitry is operable to select the two-terminal nanotube switching device for read and write operations. Write control circuitry, responsive to a control signal, supplies write signals to a selected memory cell to induce a change in the resistance of the nanotube fabric article, the resistance corresponding to an informational state of the memory cell. Resistance sensing circuitry in communication with a selected nonvolatile memory cell, senses the resistance of the nanotube fabric article and provides the control signal to the write control circuitry. Read circuitry reads the corresponding informational state of the memory cell.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 24, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Jonathan W. Ward, Frank Guo, Steven L. Konsek, Mitchell Meinhold
  • Patent number: 8102019
    Abstract: A fuse structure for a semiconductor integrated circuit (IC) includes an anode comprising conductive material overlaying a diffusion material disposed within a substrate layer of the IC, wherein the diffusion material is electrically isolated from the substrate layer by at least one p-n junction. The fuse structure can include a cathode comprising conductive material overlaying the diffusion material. The fuse structure further can include a fuse link comprising conductive material overlaying the diffusion material, wherein a first end of the fuse link couples to the anode and a second end of the fuse link, that is distal to the first end, couples to the cathode.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 24, 2012
    Assignee: Xilinx, Inc.
    Inventors: Serhii Tumakha, Boon Y. Ang, Amit Ghia, Jan L. de Jong
  • Publication number: 20120012977
    Abstract: An antifuse is provided having a unitary monocrystalline semiconductor body including first and second semiconductor regions each having the same first conductivity type, and a third semiconductor region between the first and second semiconductor regions which has a second conductivity type opposite from the first conductivity type. An anode and a cathode can be electrically connected with the first semiconductor region. A conductive region including a metal, a conductive compound of a metal or an alloy of a metal can contact the first semiconductor region and extend between the cathode and the anode. The antifuse can further include a contact electrically connected with the second semiconductor region.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yan Zun Li, Chandrasekharan Kothandaraman, Dan Moy, Norman W. Robson, John M. Safran
  • Publication number: 20110309421
    Abstract: A one time programmable nonvolatile memory formed from metal-insulator-semiconductor cells. The cells are at the crosspoints of conductive gate lines and intersecting doped semiconductor lines formed in a semiconductor substrate.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Inventors: Harry S. Luan, Yue-Song He, Ting-Wah Wong
  • Publication number: 20110309472
    Abstract: An anti-fuse element that includes first and second electrode films on both of upper and lower surfaces of a dielectric film to form an element body. When an operation voltage is applied to the element body, the first and second electrode films are fused by heat generation by electrification, whereby balled portions are formed, and a crack also occurs in the dielectric film. Then, the balled portions are enlarged, the dielectric film is completely divided, and the first and second electrode films are welded and integrated with each other in a mode of tangling end portions of the dielectric film, and form bonded portions that turn the anti-fuse element into a conducting state.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Inventors: Toshiyuki Nakaiso, Yutaka Takeshima
  • Patent number: 8076673
    Abstract: A recessed dielectric antifuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A recess is formed between the source and drain regions. A gate and gate oxide are formed in the recess and lightly doped source and drain extension regions contiguous with the laterally spaced source and drain regions are optionally formed adjacent the recess. Programming of the recessed dielectric antifuse is performed by application of power to the gate and at least one of the source region and the drain region to breakdown the dielectric, which minimizes resistance between the gate and the channel.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Dwayne Kreipl
  • Patent number: 8058701
    Abstract: Antifuse structures, antifuse arrays, methods of manufacturing, and methods of operating the same are provided. An antifuse structure includes bitlines formed as first diffusing regions within a semiconductor substrate, an insulation layer formed on the bitlines, and wordlines formed on the insulation layer. An antifuse array includes a plurality of antifuse structures arranged in an array.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-kee Kim, Yoon-dong Park, Seung-hoon Lee, I-hun Song, Won-joo Kim, Young-gu Jin, Hyuk-soon Choi, Suk-pil Kim
  • Patent number: 8049299
    Abstract: An antifuse (40, 80, 90?) comprises, first (22?, 24?) and second (26?) conductive regions having spaced-apart curved portions (55, 56), with a first dielectric region (44) therebetween, forming in combination with the curved portions (55, 56) a curved breakdown region (47) adapted to switch from a substantially non-conductive initial state to a substantially conductive final state in response to a predetermined programming voltage. A sense voltage less than the programming voltage is used to determine the state of the antifuse as either OFF (high impedance) or ON (low impedance). A shallow trench isolation (STI) region (42) is desirably provided adjacent the breakdown region (47) to inhibit heat loss from the breakdown region (47) during programming. Lower programming voltages and currents are observed compared to antifuses (30) using substantially planar dielectric regions (32).
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 1, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, Geoffrey W. Perkins, Kyle D. Zukowski, Jiang-Kai Zuo
  • Publication number: 20110254121
    Abstract: Voltage programmable anti-fuse structures and methods are provided that include at least one conductive material island atop a dielectric surface that is located between two adjacent conductive features. In one embodiment, the anti-fuse structure includes a dielectric material having at least two adjacent conductive features embedded therein. At least one conductive material island is located on an upper surface of the dielectric material that is located between the at least two adjacent conductive features. A dielectric capping layer is located on exposed surfaces of the dielectric material, the at least one conductive material island and the at least two adjacent conductive features. When the anti-fuse structure is in a programmed state, a dielectric breakdown path is present in the dielectric material that is located beneath the at least one conductive material island which conducts electrical current to electrically couple the two adjacent conductive features.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Louis L. Hsu, William R. Tonti, Chih-Chao Yang
  • Publication number: 20110254122
    Abstract: An object of one embodiment of the present invention is to provide an antifuse which has low writing voltage. The antifuse is used for a memory element for a read only memory device. The antifuse includes a first conductive layer, an insulating layer, a semiconductor layer, and a second conductive layer. The insulating layer included in the antifuse is a silicon oxynitride layer formed by adding ammonia to a source gas. When hydrogen is contained in the layer at greater than or equal to 1.2×1021 atoms/cm3 and less than or equal to 3.4×1021 atoms/cm3 or nitrogen is contained in the layer at greater than or equal to 3.2×1020 atoms/cm3 and less than or equal to 2.2×1021 atoms/cm3, writing can be performed at low voltage.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kosei NODA, Seiji YASUMOTO, Kensuke YOSHIZUMI, Toshiyuki MIYAMOTO
  • Publication number: 20110241078
    Abstract: An arrangement of nonvolatile memory devices, having at least one memory device level stacked level by level above a semiconductor substrate, each memory level comprising an oxide layer substantially disposed above a semiconductor substrate, a plurality of word lines substantially disposed above the oxide layer; a plurality of bit lines substantially disposed above the oxide layer; a plurality of via plugs substantially in electrical contact with the word lines and, an anti-fuse dielectric material substantially disposed on side walls beside the bit lines and substantially in contact with the plurality of bit lines side wall anti-fuse dielectrics.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Applicant: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 8030736
    Abstract: A method forms an anti-fuse structure comprises a plurality of parallel conductive fins positioned on a substrate, each of the fins has a first end and a second end. A second electrical conductor is electrically connected to the second end of the fins. An insulator covers the first end of the fins and a first electrical conductor is positioned on the insulator. The first electrical conductor is electrically insulated from the first end of the fins by the insulator. The insulator is formed to a thickness sufficient to break down on the application of a predetermined voltage between the second electrical conductor and the first electrical conductor and thereby form an uninterrupted electrical connection between the second electrical conductor and the first electrical conductor through the fins.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Chandrasekharan Kothandaraman
  • Patent number: 8026574
    Abstract: An anti-fuse memory cell having a variable thickness gate oxide. The variable thickness gate oxide has a thick gate oxide portion and a thin gate oxide portion, where the thing gate oxide portion has at least one dimension less than a minimum feature size of a process technology. The thin gate oxide can be rectangular in shape or triangular in shape. The anti-fuse transistor can be used in a two-transistor memory cell having an access transistor with a gate oxide substantially identical in thickness to the thick gate oxide of the variable thickness gate oxide of the anti-fuse transistor.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 27, 2011
    Assignee: Sidense Corporation
    Inventors: Wlodek Kurjanowicz, Steven Smith
  • Patent number: 8018024
    Abstract: A method is described for forming a nonvolatile one-time-programmable memory cell having reduced programming voltage. A contiguous p-i-n diode is paired with a dielectric rupture antifuse formed of a high-dielectric-constant material, having a dielectric constant greater than about 8. In preferred embodiments, the high-dielectric-constant material is formed by atomic layer deposition. The diode is preferably formed of deposited low-defect semiconductor material, crystallized in contact with a silicide. A monolithic three dimensional memory array of such cells can be formed in stacked memory levels above the wafer substrate.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: September 13, 2011
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 8018025
    Abstract: A nonvolatile memory cell includes: a rail-shaped first conductor formed at a first height above a substrate; a rail-shaped second conductor formed above the first conductor; and a vertically oriented first pillar comprising a p-i-n first diode; wherein the first pillar is disposed between the second conductor and the first conductor; wherein the first diode comprises an intrinsic or lightly doped region; and wherein the intrinsic or lightly doped region has a first thickness of about 300 angstroms or greater. Numerous additional aspects are provided.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: September 13, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Steven J. Radigan
  • Patent number: 8013433
    Abstract: A virtual wire assembly that includes a substantially electrically-nonconductive substrate and a plurality of hermetic feedthroughs including a conductive region extending transversely through the substrate to form a conductive pathway with accessible surfaces at opposing ends thereof, wherein each conductive pathway is electrically isolated from other conductive pathways. In certain embodiments of this aspect of the invention, the substantially electrically-nonconductive substrate is a semiconductor device, and the conductive regions each include an n-type or a p-type doped semiconductor material.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 6, 2011
    Assignee: Cochlear Limited
    Inventors: James Dalton, Peter Single, David Money
  • Patent number: 8008745
    Abstract: A non-volatile latch circuit is provided. The non-volatile latch circuit includes a nanotube switching element capable of switching between resistance states and non-volatilely retaining the resistance state. The non-volatile latch circuit includes a volatile latch circuit is capable of receiving and volatilely storing a logic state. When the nanotube switching element is a resistance state, the volatile latch circuit retains a corresponding logic state and outputs that corresponding logic state at an output terminal. A non-volatile register file configuration circuit for use with a plurality of non-volatile register files is also provided. The non-volatile register file configuration circuit includes a selection circuitry and a plurality of nanotube fuse elements, each in electrical communication with one of a plurality of non-volatile register files.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 30, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Jonathan W. Ward, Frank Guo, Steven L. Konsek, Mitchell Meinhold
  • Patent number: 7994607
    Abstract: It is an object of the present invention to provide a semiconductor device mounted with a memory which can be driven in the ranges of a current value and a voltage value which can be generated from a wireless signal. It is another object to provide a write-once read-many memory into which data can be written anytime after manufacture of a semiconductor device. An antenna, an antifuse-type ROM, and a driver circuit are formed over a substrate having an insulating surface. A stacked layer of a silicon film and a germanium film is interposed between a pair of electrodes included in the antifuse-type ROM. The antifuse-type ROM having this stacked layer can reduce fluctuation in writing voltage.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 9, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Tokunaga, Ryota Tajima
  • Publication number: 20110186797
    Abstract: In a first embodiment, a method of forming a memory cell is provided that includes (a) forming one or more layers of steering element material above a substrate; (b) etching a portion of the steering element material to form a pillar of steering element material having an exposed sidewall; (c) forming a sidewall collar along the exposed sidewall of the pillar; and (d) forming a memory cell using the pillar. Numerous other aspects are provided.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Inventor: S. Brad Herner
  • Patent number: 7989914
    Abstract: An anti-fuse cell includes a standard MOS transistor of an integrated circuit, with source and drain regions covered with a metal silicide layer and at least one track of a resistive layer at least partially surrounding the MOS transistor, and adapted to pass a heating current such that the metal of said metal silicide diffuses across drain and/or source junctions.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: August 2, 2011
    Assignees: STMicroelectronics Crolles 2 SAS, Koninklijke Philips Electronics N.V.
    Inventors: Bertrand Borot, Roberto Maurizio Gonella, Sébastien Fabre
  • Patent number: 7981731
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Patent number: 7982285
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekharan Kothandaraman
  • Publication number: 20110169129
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Patent number: 7977766
    Abstract: Trench anti-fuse structures, design structures embodied in a machine readable medium for designing, manufacturing, or testing a programmable integrated circuit. The anti-fuse structure includes a trench having a plurality of sidewalls that extend into a substrate, a doped region in the semiconductor material of the substrate proximate to the sidewalls of the trench, a conductive plug in the trench, and a dielectric layer on the sidewalls of the trench. The dielectric layer is disposed between the conductive plug and the doped region. The dielectric layer is configured so that a programming voltage applied between the doped region and the conductive plug causes a breakdown of the dielectric layer within a region of the trench. The trench sidewalls are arranged with a cross-sectional geometrical shape that is independent of position between a bottom wall of the deep trench and a top surface of the substrate.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Patent number: 7968967
    Abstract: A semiconductor structure includes a semiconductor substrate, a power source, and a stacked structure over the semiconductor substrate and coupled to the power source. The stacked structure includes a bottom electrode, a top electrode, and an insulation layer between the top electrode and the bottom electrode, wherein the insulation layer has a breakdown voltage lower than a pre-determined write voltage provided by the power source and higher than a pre-determined read voltage provided by the power source.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: June 28, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Tsong Wang, Tong-Chern Ong
  • Publication number: 20110140236
    Abstract: A semiconductor device includes a semiconductor chip. External connection pads and further pads are disposed over a surface of the semiconductor chip. Selected ones of the further pads are electrically connected to one another so as to activate selected functions within the semiconductor chip.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Inventors: Armin Fischer, Alexander Von Glasow
  • Patent number: 7960808
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 7948054
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 24, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Rueckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Patent number: 7947980
    Abstract: An MOS transistor is programmed in a non-volatile memory cell. A storage capacitor in the non-volatile memory cell is used to enhance programming efficiency by providing additional charge to the programming terminal of the MOS transistor during breakdown of the gate dielectric, thus avoiding soft programming faults. In a particular embodiment the storage capacitor is a second MOS transistor having a thicker gate dielectric layer than the dielectric layer of the programmable MOS transistor.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 24, 2011
    Assignee: Xilinx, Inc.
    Inventors: Shahin Toutounchi, James Karp, Jeongheon Jeong, Michael G. Ahrens, Michael J. Hart
  • Patent number: 7940593
    Abstract: The present invention relates to a method and circuit for verifying the state of a gated fuse element used with a one-time programmable CMOS memory device. A first expected state is set and a state of a first gate-ox fuse is sensed. The state of the first gate-ox fuse is compared to the first expected state to determine if they are equal, and a first signal is generated. A second expected state is set and a state of a second gate-ox fuse is sensed. The state of the second gate-ox fuse is compared to the second expected state to determine if they are equal, and a second signal is generated. A valid output is generated if both the first and second signals are in a correct state, both signals are high for example.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: May 10, 2011
    Assignee: Broadcom Corporation
    Inventors: Myron J. Buer, Douglas D. Smith
  • Publication number: 20110101496
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekharan Kothandaraman
  • Publication number: 20110103127
    Abstract: An AND-type anti-fuse memory cell, and a memory array consisting of AND-type anti-fuse memory cells. Chains of AND type anti-fuse cells are connected in series with each other, and with a bitline contact, in order to minimize the area occupied by the memory array. Each AND type anti-fuse cell includes an access transistor serially connectable to the bitline or the access transistors of other AND type anti-fuse cells, and an anti-fuse device. The channel region of the access transistor is connected to the channel region of the anti-fuse device, and both channel regions are covered by the same wordline. The wordline is driven to a programming voltage level for programming the anti-fuse device, or to a read voltage level for reading the anti-fuse device.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: SIDENCE CORP.
    Inventor: Wlodek KURJANOWICZ
  • Patent number: 7935621
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Patent number: 7927995
    Abstract: An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Timothy J. Dalton, Nicholas C. Fuller, Louis C. Hsu
  • Patent number: 7923812
    Abstract: A non-volatile memory device includes a first electrode, a diode steering element, at least three resistivity switching storage elements, and a second electrode. The diode steering element electrically contacts the first electrode and the at least three resistivity switching storage elements. The second electrode electrically contacts only one of the at least three resistivity switching storage elements.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 12, 2011
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Publication number: 20110080765
    Abstract: Programmable antifuse transistor, in particular n-channel MOS transistor, and a method for programming at least one such antifuse transistor, includes at least one gate with a gate terminal, source with a source terminal, drain with a drain terminal, and substrate with a substrate terminal, configured so that active circuits/circuit elements do not have to be located at a distance from the antifuse, minimizing area requirements, without additional process steps the level of the potential difference between source terminal and substrate terminal is less than about 0.5 volts, drain terminal and source terminal lie at different potentials. By adjusting drain-source voltage and/or the gate-source voltage a flow of charge carriers occurs between source and drain, causing semiconductor material between source and drain to be thermally heated and to locally melt, forming at least one permanently conducting channel between source and drain.
    Type: Application
    Filed: October 9, 2010
    Publication date: April 7, 2011
    Applicant: SILICON LINE GMBH
    Inventors: MARTIN GROEPL, Holger Hoeltke
  • Publication number: 20110079874
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Application
    Filed: October 7, 2009
    Publication date: April 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Publication number: 20110079875
    Abstract: There is provided an anti-fuse, including a gate dielectric layer formed over a substrate, a gate electrode, including a body portion and one or more protruding portions extending from the body portion, the body portion and the one or more protruding portions being formed to contact on the gate dielectric layer, and a junction region formed in a portion of the substrate exposed by sidewalls of the one or more protruding portions.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 7, 2011
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Chang-Hee Shin, Ki-Seok Cho, Seong-Do Jeon
  • Patent number: 7915095
    Abstract: An antifuse contains a first silicide layer, a grown silicon oxide antifuse layer on a first surface of the first silicide layer, and a first semiconductor layer having a first surface in contact with the antifuse layer.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7897967
    Abstract: An anti-fuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A channel is formed between the source and drain regions. A gate and gate oxide are formed on the channel and lightly doped source and drain extension regions are formed in the channel. The lightly doped source and drain regions extend across the channel from the source and the drain regions, respectively, occupying a substantial portion of the channel. Programming of the anti-fuse is performed by application of power to the gate and at least one of the source region and the drain region to break-down the gate oxide, which minimizes resistance between the gate and the channel.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: March 1, 2011
    Assignee: Broadcom Corporation
    Inventors: Akira Ito, Douglas D. Smith, Myron J. Buer
  • Publication number: 20110031582
    Abstract: A method forms an anti-fuse structure comprises a plurality of parallel conductive fins positioned on a substrate, each of the fins has a first end and a second end. A second electrical conductor is electrically connected to the second end of the fins. An insulator covers the first end of the fins and a first electrical conductor is positioned on the insulator. The first electrical conductor is electrically insulated from the first end of the fins by the insulator. The insulator is formed to a thickness sufficient to break down on the application of a predetermined voltage between the second electrical conductor and the first electrical conductor and thereby form an uninterrupted electrical connection between the second electrical conductor and the first electrical conductor through the fins.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Chandrasekharan Kothandaraman
  • Patent number: 7880211
    Abstract: An anti-fuse includes a gate dielectric layer formed over a substrate, a gate electrode including a body portion and a plurality of protruding portions extending from the body portion, wherein the body portion and the protruding portions are formed to contact on the gate dielectric layer, and a junction region formed in a portion of the substrate exposed by sidewalls of the protruding portions.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: February 1, 2011
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Chang-Hee Shin, Ki-Seok Cho, Seong-Do Jeon
  • Patent number: 7880266
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekharan Kothandaraman
  • Publication number: 20110018093
    Abstract: In one embodiment an anti-fuse structure is provided that includes a first dielectric material having at least a first anti-fuse region and a second anti-fuse region, wherein at least one of the anti-fuse regions includes a conductive region embedded within the first dielectric material. The anti-fuse structure further includes a first diamond like carbon layer having a first conductivity located on at least the first dielectric material in the first anti-fuse region and a second diamond like carbon layer having a second conductivity located on at least the first dielectric material in the second anti-fuse region. In this embodiment, the second conductivity is different from the first conductivity and the first diamond like carbon layer and the second diamond like carbon layer have the same thickness. The anti-fuse structure also includes a second dielectric material located atop the first and second diamond like carbon layers.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, David V. Horak, Takeshi Nogami, Shom Ponoth
  • Publication number: 20110018066
    Abstract: A semiconductor device includes an antifuse element. The semiconductor device includes a first well of a first conductivity type disposed in a semiconductor substrate; a first insulating film on the first well; a first conductive film of the first conductivity type on the first insulating film; and an impurity-introduced region of the first conductivity type. The impurity-introduced region of the first conductivity type in the first well is higher in impurity concentration than the first well. The impurity-introduced region includes a first portion that faces toward the first conductive film through the first insulating film.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 27, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Shinichi Horiba, Nobuyuki Nakamura, Eiji Kitamura
  • Patent number: 7863717
    Abstract: A package structure of an integrated circuit device comprises a copper foil substrate, an integrated circuit device, a plurality of metal wires and an encapsulation material. The copper foil substrate comprises an IC bonding area, a plurality of conductive areas and an insulating dielectric material. The integrated circuit device is mounted on the surface of the IC bonding area, and is electrically connected to the plurality of conductive areas through the metal wires. The insulating dielectric material is between the IC bonding area and the conductive areas, and is also between two adjacent conductive areas. In addition, the encapsulation material covers the IC bonding area, the conductive areas and the integrated circuit device.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: January 4, 2011
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih Hsiung Chan, Shen Bo Lin, Pin Chuan Chen
  • Publication number: 20100327403
    Abstract: One exemplary embodiment includes a semiconductor chip that has a rectangle principal surface including a first and a second side that oppose each other. A first and a second semiconductor element, and a first and a second wire are formed on the principal surface. The first wire is formed from the first side to reach the second side, and coupled to the first semiconductor element. The second wire is formed to contact at least the first wire, and coupled to the second semiconductor element. Further, an edge part of the first wire on the second side and an edge part of the second wire on the first side are placed to substantially position on a common straight line which is vertical to the first and the second sides.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 30, 2010
    Applicant: NEC Electronics Corporation
    Inventor: Masafumi Yamaji
  • Publication number: 20100320565
    Abstract: A wafer and a method for improving the yield rate of the wafer are provided. The wafer includes a first and a second circuit units, a first and a second through silicon vias (TSVs), and a first spare TSV. The first and the second circuit units are disposed inside the wafer. The first TSV vertically runs through the wafer and is coupled to the first circuit unit through the front metal of the wafer. The second TSV vertically passes through the wafer and is coupled to the second circuit unit through the front metal of the wafer. When the first or the second TSV has failed, the first spare TSV vertically passes through the wafer to replace the failed first or second TSV.
    Type: Application
    Filed: September 24, 2009
    Publication date: December 23, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ting-Sheng Chen, Yung-Fa Chou, Ding-Ming Kwai
  • Publication number: 20100289524
    Abstract: Re-programmable antifuses and structures utilizing re-programmable antifuses are presented herein. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Additionally, the re-programmable antifuses may be configured to a permanently conductive state by applying an even higher voltage across it.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 18, 2010
    Applicant: William Marsh Rice University
    Inventors: Zvi Or-Bach, James M. Tour, Jun Yao, Brian Cronquist