Chips Being Integrally Enclosed By Interconnect And Support Structures (epo) Patents (Class 257/E23.178)
  • Patent number: 11973071
    Abstract: In an embodiment, a semiconductor module includes a low side switch and a high side switch. The low side switch and the high side switch are arranged laterally adjacent one another and coupled in series between a ground package pad and a voltage input (VIN) package pad of the semiconductor module and form a half bridge configuration having an output node. The semiconductor module further includes a first capacitor pad coupled to ground potential and a second capacitor pad coupled to a VIN potential. The first capacitor pad is arranged vertically above the low side switch and the second capacitor pad is arranged vertically above the high side switch.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 30, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Noebauer, Sergey Yuferev
  • Patent number: 11843337
    Abstract: A combined motor controller, including: a first function module, including at least one power module powered by the mains supply to output a VDC power supply to power other modules; a second function module, including at least one motor control module including a microprocessor control unit (MCU) and an IGBT inverter; and a third function module, including at least one I/O module configured to transmit signals between a system main control board or a peripheral device and the motor control module. Each function module is provided with an independent metal or plastic shell and a first circuit board located in the shell, and the first function module, the second function module and the third function module are connected by mutually matched connectors for power supply or control signal transmission between the function modules.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: December 12, 2023
    Assignee: ZHONGSHAN BROAD-OCEAN MOTOR CO., LTD.
    Inventors: Ge Garrett James Hu, Wenqing Bian, Hairong Sun
  • Patent number: 11652088
    Abstract: A semiconductor device has a first substrate. A first semiconductor component is disposed on a first surface of the first substrate. A second substrate includes a vertical interconnect structure on a first surface of the second substrate. A second semiconductor component is disposed on the first surface of the second substrate. The first semiconductor component or second semiconductor component is a semiconductor package. The first substrate is disposed over the second substrate with the first semiconductor component and second semiconductor component between the first substrate and second substrate. A first encapsulant is deposited between the first substrate and second substrate. A SiP submodule is disposed over the first substrate or second substrate opposite the encapsulant. A shielding layer is formed over the SiP submodule.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: May 16, 2023
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: DeokKyung Yang, HunTeak Lee, SungSoo Kim, HeeSoo Lee
  • Patent number: 11562993
    Abstract: A system and method of providing high bandwidth and low latency memory architecture solutions for next generation processors is disclosed. The package contains a substrate, a memory device embedded in the substrate via EMIB processes and a processor disposed on the substrate partially over the embedded memory device. The I/O pads of the processor and memory device are vertically aligned to minimize the distance therebetween and electrically connected through EMIB uvias. An additional memory device is disposed on the substrate partially over the embedded memory device or on the processor. I/O signals are routed using a redistribution layer on the embedded memory device or an organic VHD redistribution layer formed over the embedded memory device when the additional memory device is laterally adjacent to the processor and the I/O pads of the processor and additional memory device are vertically aligned when the additional memory device is on the processor.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: January 24, 2023
    Assignee: Intel Corporation
    Inventor: Andrew Collins
  • Patent number: 11488881
    Abstract: An integrated fan out package is utilized in which the dielectric materials of different redistribution layers are utilized to integrate the integrated fan out package process flows with other package applications. In some embodiments an Ajinomoto or prepreg material is utilized as the dielectric in at least some of the overlying redistribution layers.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Chien-Hsun Lee, Jiun Yi Wu
  • Patent number: 11482516
    Abstract: A semiconductor package includes a package substrate, a logic chip stacked on the package substrate and including at least one logic element, and a stack structure. The stack structure includes an integrated voltage regulator (IVR) chip including a voltage regulating circuit that regulates a voltage of the at least one logic element, and a passive element chip stacked on the IVR chip and including an inductor.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: October 25, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eunseok Song, Kyungsuk Oh, Seho You
  • Patent number: 11328859
    Abstract: A device comprises: a first spiral coil laid out on a first metal layer of a multi-layer structure, the first spiral coil spiraling inward from a first end to a second end in a clockwise direction from a first perspective that is perpendicular to the first metal layer; a second spiral coil laid out on the first metal layer, the second spiral coil spiraling outward from a third end to a fourth end in a counterclockwise direction from the first perspective, wherein the first spiral coil and the second spiral coil are substantially symmetrical with respect to a central line perpendicular to the multi-layer structure; a twin-spiral coil laid out on a second metal layer of the multi-layer structure, the twin-spiral coil spiraling outward from a fifth end to the central line in a clockwise direction from the first perspective and then spiraling inward from the central line to a sixth end in a counterclockwise direction from the first perspective, wherein the twin-spiral coil is substantially symmetrical with respec
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: May 10, 2022
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Chia-Liang (Leon) Lin, Chi-Kung Kuan
  • Patent number: 11037899
    Abstract: A package structure includes a first die, at least one second die, a semiconductor substrate and a glue layer. The semiconductor substrate includes no active devices. The glue layer is disposed between the at least one second die and the semiconductor substrate. The glue layer has a top surface adhered to the least one second die and a bottom surface adhered to a topmost surface of the semiconductor substrate. A total area of the bottom surface of the glue layer is substantially equal to a total area of the topmost surface of the semiconductor substrate, and a total thickness of the first die is substantially equal to only a total thickness of the at least one second die, the semiconductor substrate and the glue layer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Hsien Huang, An-Jhih Su, Hsien-Wei Chen
  • Patent number: 10804245
    Abstract: A method of manufacturing a semiconductor structure includes providing a substrate including a redistribution layer (RDL) disposed over the substrate, disposing a first patterned mask over the RDL, disposing a first conductive material over the RDL exposed from the first patterned mask to form a first conductive pillar, removing the first patterned mask, disposing a second patterned mask over the RDL, disposing a second conductive material over the RDL exposed from the second patterned mask to form a second conductive pillar, removing the second patterned mask, disposing a first die over the first conductive pillar, and disposing a second die over the second conductive pillar. A height of the second conductive pillar is substantially greater than a height of the first conductive pillar.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 13, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chi-Yang Yu, Kuan-Lin Ho, Chin-Liang Chen, Yu-Min Liang
  • Patent number: 10672734
    Abstract: Package structures and methods of forming the same are disclosed. One of the package structures includes a first die, a second die, a dummy substrate and an encapsulant. A bottom surface of the second die is adhered to a top surface of the dummy substrate through a glue layer, and a total area of the bottom surface of the second die is different from a total area of the top surface of the dummy substrate. A total thickness of the first die is substantially equal to a total thickness of the second die, the dummy substrate and the glue layer. The encapsulant is disposed aside the first die, the second die and the dummy substrate.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: June 2, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Hsien Huang, An-Jhih Su, Hsien-Wei Chen
  • Patent number: 10043676
    Abstract: A local thinning process is employed on the backside of a semiconductor substrate such as a wafer in order to improve the thermal performance of the electronic device built on or in the front side of the wafer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 7, 2018
    Assignee: VISHAY GENERAL SEMICONDUCTOR LLC
    Inventors: Sanfilippo Carmelo, Luigi Merlin, Isabella Para, Giovanni Richieri
  • Patent number: 9893008
    Abstract: An electronic isolation device is formed on a monolithic substrate and includes a plurality of passive isolation components. The isolation components are formed in three metal levels. The first metal level is separated from the monolithic substrate by an inorganic PMD layer. The second metal level is separated from the first metal level by a layer of silicon dioxide. The third metal level is separated from the second metal level by at least 20 microns of polyimide or PBO. The isolation components include bondpads on the third metal level for connections to other devices. A dielectric layer is formed over the third metal level, exposing the bondpads. The isolation device contains no transistors.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 13, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas Dyer Bonifield, Byron Williams, Shrinivasan Jaganathan, David Larkin, Dhaval Atul Saraiya
  • Patent number: 9894779
    Abstract: An embedded component substrate and methods for fabricating the same are provided. The embedded component substrate includes a substrate having at least one cavity, a first surface, and a second surface. The embedded component substrate also includes at least one electronic component formed in the at least one cavity. The embedded component substrate also includes a first wiring layer formed in the space between a sidewall of the at least one electronic component and a sidewall of the at least one cavity. The first wiring layer extends from the first surface of the substrate to the sidewall of the at least one cavity, and directly contacts the at least one electronic component.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 13, 2018
    Assignee: Nan Ya PCB Corp.
    Inventors: Wei-Ta Fu, Kuo-Chang Wu, Yu-Chih Lin
  • Patent number: 9865566
    Abstract: A semiconductor structure includes a substrate, a redistribution layer (RDL) including a dielectric layer disposed over the substrate and a plurality of conductive members surrounded by the dielectric layer, a first conductive pillar disposed over and electrically connected with one of the plurality of conductive members, a second conductive pillar disposed over and electrically connected with one of the plurality of conductive member, a first die disposed over the RDL and electrically connected with the first conductive pillar, and a second die disposed over the RDL and electrically connected with the second conductive pillar, wherein a height of the second conductive pillar is substantially greater than a height of the first conductive pillar, and a thickness of the first die is substantially greater than a thickness of the second die.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: January 9, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chi-Yang Yu, Kuan-Lin Ho, Chin-Liang Chen, Yu-Min Liang
  • Patent number: 9453977
    Abstract: A device includes integrated circuit chips mounted on one another. At least one component for protecting elements of a first one of the chips is formed in a second one of the chips. Preferably, the chips are of SOI type, the second chip includes an SOI layer having a first thickness sufficient to support the component for protecting elements. The first chip also includes an SOI layer but having a second thickness smaller than the first thickness that is insufficient to support the component for protecting elements. The SOI layer of the second chip may be an optical waveguide layer.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: September 27, 2016
    Assignee: STMicroelectronics SA
    Inventor: Pascal Fonteneau
  • Patent number: 9041189
    Abstract: A method of fabricating a semiconductor package is provided, including: providing a carrier having a plurality of chip areas defined thereon, and forming a connection unit on each of the chip areas; disposing a semiconductor element on each of the connection units; forming an insulating layer on the carrier and the semiconductor elements; and forming on the insulating layer a circuit layer electrically connected to the semiconductor elements. Since being formed only on the chip areas instead of on the overall carrier as in the prior art, the connection units are prevented from expanding or contracting during temperature cycle, thereby avoiding positional deviations of the semiconductor elements.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 26, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Meng-Tsung Lee, Chiang-Cheng Chang, Shih-Kuang Chiu
  • Patent number: 9029928
    Abstract: A semiconductor device includes a wafer having a frontside and a backside. The wafer is formed from at least one integrated circuit chip having an electrical connection frontside co-planar with the wafer frontside and a backside co-planar with the wafer backside. A passive component including at least one conductive plate and a dielectric plate is positioned adjacent the integrated circuit chip. An encapsulation block embeds the integrated circuit chip and the passive component, the block having a frontside co-planar with the wafer frontside and a backside co-planar with the wafer backside. An electrical connection is made between the electrical connection frontside and the passive component. That electrical connection includes connection lines placed on the wafer frontside and wafer backside. The electrical connection further includes at least one via passing through the encapsulation block.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 12, 2015
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Laurent Marechal, Yvon Imbs, Romain Coffy
  • Patent number: 8999756
    Abstract: Method and apparatus for semiconductor device fabrication using a reconstituted wafer is described. In one embodiment, diced semiconductor chips are placed within openings on a frame. A reconstituted wafer is formed by filling a mold compound into the openings. The mold compound is formed around the chips. Finished dies are formed within the reconstituted wafer. The finished dies are separated from the frame.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 7, 2015
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Matthias Hierlemann
  • Patent number: 9000587
    Abstract: A wafer-level package device and techniques for fabricating the device are described that include embedding a silicon chip onto an active device wafer or a passive device wafer, where the embedded silicon chip is a thin chip (e.g., <50 ?m). In implementations, the wafer-level package device that employs the techniques of the present disclosure includes an active device wafer, a thin integrated circuit chip, an encapsulation structure covering at least a portion of the active device wafer and the thin integrated circuit chip, a redistribution layer structure, and at least one solder bump for providing electrical interconnectivity. Once the wafer is singulated into semiconductor devices, each semiconductor device including the embedded thin integrated circuit chip may be mounted to a printed circuit board.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 7, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Amit S. Kelkar, Vivek S. Sridharan
  • Patent number: 8994184
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias and conductive layer formed over the substrate. A semiconductor die is mounted over a carrier. The substrate is mounted to the semiconductor die opposite the carrier. An encapsulant is deposited between the substrate and carrier around the semiconductor die. A plurality of conductive TMVs is formed through the substrate and encapsulant. The conductive TMVs protrude from the encapsulant to aid with alignment of the interconnect structure. The conductive TMVs are electrically connected to the conductive layer and conductive vias. The carrier is removed and an interconnect structure is formed over a surface of the encapsulant and semiconductor die opposite the substrate. The interconnect structure is electrically connected to the conductive TMVs. A plurality of semiconductor devices can be stacked and electrically connected through the substrate, conductive TMVs, and interconnect structure.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8981542
    Abstract: A semiconductor power module according to the present invention includes a base member, a semiconductor power device having a surface and a rear surface with the rear surface bonded to the base member, a metal block, having a surface and a rear surface with the rear surface bonded to the surface of the semiconductor power device, uprighted from the surface of the semiconductor power device in a direction separating from the base member and employed as a wiring member for the semiconductor power device, and an external terminal bonded to the surface of the metal block for supplying power to the semiconductor power device through the metal block.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: March 17, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Toshio Hanada
  • Patent number: 8937381
    Abstract: A fan out buildup substrate stackable package includes an electronic component having an active surface having bond pads. A package body encloses the electronic component. A first die side buildup dielectric layer is applied to the active surface of the electronic component and to a first surface of the package body. A first die side circuit pattern is formed on the first die side buildup dielectric layer and electrically connected to the bond pads. Through vias extend through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern. The fan out buildup substrate stackable package is extremely thin and provides a high density interconnect on both sides of the package allowing additional devices to be stacked thereon.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 20, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: Brett Arnold Dunlap, Alexander William Copia
  • Patent number: 8884422
    Abstract: A flip-chip fan-out wafer level package for package-on-package applications includes a semiconductor die with solder bumps on an upper surface in a flip chip configuration. The die is inverted, with an upper surface facing an upper side of a redistribution layer, with the solder bumps in electrical contact with respective chip contact pads of the redistribution layer. The redistribution layer includes conductive traces that place each of the solder bumps in electrical contact with one or both of one of a plurality of upper redistribution contact pads and one of a plurality of lower redistribution contact pads. Each of the plurality of upper redistribution contact pads has an upper solder ball in electrical contact therewith. The die and the upper solder balls are at least partially encapsulated in a layer of mold compound positioned on the upper surface of the redistribution layer, and whose lateral dimensions are defined by the lateral dimensions of the redistribution layer.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: November 11, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Kim-Yong Goh, Jing-En Luan
  • Patent number: 8883562
    Abstract: A stacked microelectronic unit is provided which can include a plurality of vertically stacked microelectronic elements each having a front surface, contacts exposed at the front surface, a rear surface and edges extending between the front and rear surfaces. Traces connected with the contacts may extend along the front surfaces towards edges of the microelectronic elements with the rear surface of at least one of the stacked microelectronic elements being adjacent to a top face of the microelectronic unit. A plurality of conductors may extend along edges of the microelectronic elements from the traces to the top face. The conductors may be conductively connected with unit contacts such that the unit contacts overlie the rear surface of the at least one microelectronic element adjacent to the top face.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: November 11, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Giles Humpston, David Ovrutsky, Laura Wills Mirkarimi
  • Patent number: 8872314
    Abstract: A method for producing a component and device including a component is disclosed. A basic substrate having paper as substrate material is provided, at least one integrated circuit is applied to the basic substrate, the at least one integrated circuit applied on the basic substrate is enveloped with an encapsulant, and at least parts of the basic substrate are removed from the at least one enveloped integrated circuit.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: October 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Albert Auburger, Jochen Dangelmaier, Josef Hirtreiter
  • Patent number: 8829661
    Abstract: Methods and apparatus are provided for an electronic panel assembly (EPA) (82, 83), comprising: providing one or more electronic devices (30) with primary faces (31) having electrical contacts (36), opposed rear faces (33) and edges (32) therebetween. The devices (30) are mounted primary faces (31) down on a temporary support (60) in openings (44) in a warp control sheet (WCS) (40) attached to the support (60). Plastic encapsulation (50) is formed at least between lateral edges (32, 43) of the devices (30) and WCS openings (44). Undesirable panel warping (76) during encapsulation is mitigated by choosing the WCS coefficient of thermal expansion (CTE) to be less than the encapsulation CTE. After encapsulation cure, the EPA (82) containing the devices (30) and the WCS (40) is separated from the temporary support (60) and, optionally, mounted on another carrier (70) with electrical contacts (36) exposed.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 9, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William H. Lytle, Scott M. Hayes, George R. Leal
  • Patent number: 8786103
    Abstract: A first semiconductor component and a second semiconductor component are attached together via an adhesion layer so that the first semiconductor component and the second semiconductor component are electrically connected with each other via a through electrode. The through electrode is formed to fill a through hole formed in the second semiconductor component and a through hole formed in a portion the adhesion layer. The through hole formed in the portion the adhesion layer is positioned between the through hole formed in the second semiconductor component and a second connection surface of a first semiconductor component through electrode.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Kenta Uchiyama, Akihiko Tateiwa
  • Patent number: 8766421
    Abstract: A semiconductor power module according to the present invention includes a base member, a semiconductor power device having a surface and a rear surface with the rear surface bonded to the base member, a metal block, having a surface and a rear surface with the rear surface bonded to the surface of the semiconductor power device, uprighted from the surface of the semiconductor power device in a direction separating from the base member and employed as a wiring member for the semiconductor power device, and an external terminal bonded to the surface of the metal block for supplying power to the semiconductor power device through the metal block.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: July 1, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Toshio Hanada
  • Patent number: 8753975
    Abstract: A method includes forming a trench/via in a layer of insulating material, forming a first layer comprised of silicon or germanium on the insulating material in the trench/via, forming a copper-based seed layer on the first layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 17, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Larry Zhao, Ming He, Sean Lin, John Iacoponi, Errol Todd Ryan
  • Patent number: 8736033
    Abstract: An embedded-electronic-device package includes a core layer, an electronic device, a first dielectric layer, a second dielectric layer, a shielding-metal layer and conductive vias. The core layer includes a first surface, a second surface opposite to the second surface and a cavity penetrating the core layer. The electronic device is disposed in the cavity including an inner surface. The first dielectric layer disposed on the first surface is filled in part of the cavity and covers part of the electronic device. The second dielectric layer disposed on the second surface is filled in rest of the cavity, covers rest of the electronic device. The first and second dielectric layers cover the electronic device. The shielding-metal layer covers the inner surface. The conductive vias are respectively disposed in the first and second dielectric layers and extended respectively from outer surfaces of the first and second dielectric layers to the shielding-metal layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 27, 2014
    Assignee: Unimicron Technology Corp.
    Inventors: Yu-Chen Chuo, Wei-Ming Cheng
  • Patent number: 8697491
    Abstract: A semiconductor package is provided. The semiconductor package includes a package body, a plurality of semiconductor chips, and an external connection terminal. The package body is stacked with a plurality of sheets where conductive patterns and vias are disposed. The plurality of semiconductor chips are inserted into insert slots extending from one surface of the package body. The external connection terminal is provided on other surface opposite to the one surface of the package body. Here, the plurality of semiconductor chips are electrically connected to the external connection terminal.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: April 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woojin Chang, Soon Il Yeo, Hae Cheon Kim, Eun Soo Nam
  • Patent number: 8558368
    Abstract: Embodiments of the present invention relate to an improved package for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 15, 2013
    Assignee: GEM Services, Inc.
    Inventors: Anthony Chia, Liming Wong, Hongbo Yang, Anthony C. Tsui, Hui Teng, Ming Zhou
  • Patent number: 8546194
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base carrier; forming a conductive post on the base carrier, the conductive post having a top protrusion with a protrusion top side; mounting a base integrated circuit over the base carrier; and forming a base encapsulation over the base integrated circuit, the base encapsulation having an encapsulation top side and an encapsulation recess with the conductive post partially exposed within the encapsulation recess, the encapsulation top side above the protrusion top side.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 1, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JoonYoung Choi, YongHyuk Jeong, DaeSik Choi
  • Patent number: 8536700
    Abstract: An electronic package includes a first layer having a first surface, the first layer includes a first device having a first electrical node, and a first contact pad in electrical communication with the first electrical node and positioned within the first surface. The package includes a second layer having a second surface and a third surface, the second layer includes a first conductor positioned within the second surface and a second contact pad positioned within the third surface and in electrical communication with the first conductor. A first anisotropic conducting paste (ACP) is positioned between the first contact pad and the first conductor to electrically connect the first contact pad to the first conductor such that an electrical signal may pass therebetween.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: James Sabatini, Christopher James Kapusta, Glenn Forman
  • Patent number: 8525315
    Abstract: A semiconductor power module according to the present invention includes a base member, a semiconductor power device having a surface and a rear surface with the rear surface bonded to the base member, a metal block, having a surface and a rear surface with the rear surface bonded to the surface of the semiconductor power device, uprighted from the surface of the semiconductor power device in a direction separating from the base member and employed as a wiring member for the semiconductor power device, and an external terminal bonded to the surface of the metal block for supplying power to the semiconductor power device through the metal block.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: September 3, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Toshio Hanada
  • Patent number: 8513796
    Abstract: A package structure, a method of fabricating the package structure, and a package-on-package device are provided, where the package structure includes a metal sheet having perforations and a semiconductor chip including an active surface having electrode pads thereon, where the semiconductor chip is combined with the metal sheet via an inactive surface thereof. Also, a protective buffer layer is formed on the active surface to cover the conductive bumps, and the perforations are arranged around a periphery of the inactive surface of the semiconductor chip. Further, an encapsulant is formed on the metal sheet and in the perforations, for encapsulating the semiconductor chip and exposing the protective buffer layer; and a circuit fan-out layer is formed on the encapsulant and the protective buffer layer and having conductive vias penetrating the protective buffer layer and electrically connecting to the conductive bumps.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: August 20, 2013
    Assignee: Unimicron Technology Corporation
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu, Yu-Shan Hu
  • Patent number: 8476774
    Abstract: A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Vage Oganesian, David Ovrutsky, Laura Wills Mirkarimi
  • Patent number: 8466569
    Abstract: An improved alignment structure for photolithographic pattern alignment is disclosed. A topographical alignment mark in an IC under a low reflectivity layer may be difficult to register. A reflective layer is formed on top of the low reflectivity layer so that the topography of the alignment mark is replicated in the reflective layer, enabling registration of the alignment mark using common photolithographic scanners and steppers. The reflective layer may be one or more layers, and may be metallic, dielectric or both. The reflective layer may be global over the entire IC or may be local to the alignment mark area. The reflective layer may be removed during subsequent processing, possibly with assist from an added etch stop layer, or may remain in the completed IC. The disclosed alignment mark structure is applicable to an IC with a stack of ferroelectric capacitor materials.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 18, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen Arlon Meisner, Scott R. Summerfelt
  • Patent number: 8466559
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a patterned die backside film (DBF) on a backside of a die, wherein the patterned DBF comprises an opening surrounding at least one through silicon via (TSV) pad disposed on the backside of the die.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 18, 2013
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Mohit Mamodia, Dingying Xu, Javier S. Gonzalez, Edward R. Prack
  • Patent number: 8461672
    Abstract: A stacked microelectronic unit is provided which can include a plurality of vertically stacked microelectronic elements (12, 12A) each having a front surface (117), contacts (22) exposed at the front surface, a rear surface (118) and edges (18, 20) extending between the front and rear surfaces. Traces (24) connected with the contacts may extend along the front surfaces towards edges of the microelectronic elements with the rear surface of at least one of the stacked microelectronic elements being adjacent to a top face (90) of the microelectronic unit. A plurality of conductors (66) may extend along edges of the microelectronic elements from the traces (24) to the top face (90). The conductors may be conductively connected with unit contacts (76) such that the unit contacts overlie the rear surface (118) of the at least one microelectronic element (12A) adjacent to the top face.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 11, 2013
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Giles Humpston, David Ovrutsky, Laura Mirkarimi
  • Patent number: 8455992
    Abstract: Provided is a semiconductor package and a method of fabricating the same. The semiconductor package includes: a package body including a plurality of sheets; semiconductor chips mounted in the package body; and an external connection terminal provided on a first side of the package body, wherein the sheets are stacked in a parallel direction to the first side.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: June 4, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Woojin Chang
  • Patent number: 8456020
    Abstract: A semiconductor package has: a first chip; and a second chip. The first chip has: an insulating resin layer formed on a principal surface of the first chip; a bump-shaped first internal electrode group that is so formed in a region of the insulating resin layer as to penetrate through the insulating resin layer and is electrically connected to the second chip; an external electrode group used for electrical connection to an external device; and an electrostatic discharge protection element group electrically connected to the external electrode group. The first internal electrode group is not electrically connected to the electrostatic discharge protection element group.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: June 4, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichiro Kurita, Masaya Kawano
  • Patent number: 8450838
    Abstract: An electro-optic apparatus has an electro-optic panel, driver semiconductor chips bonded onto the terminal portion of the electro-optic panel, and two protection films either or both of which are transparent, wherein the electro-optic panel is sealed by being sandwiched between the two protection films, and one protection film that covers the terminal portion has openings for exposing the driver semiconductor chips.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 28, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Kozo Gyoda
  • Patent number: 8421200
    Abstract: A semiconductor integrated circuit device is made by stacking a plurality of semiconductor chips. The semiconductor integrated circuit device includes: a penetrating electrode formed to penetrate the plurality of semiconductor chips; a plurality of electrodes formed in respective layers constituting each of the plurality of semiconductor chips and having respective openings within which the penetrating electrode penetrates; and a plurality of vias each of which electrically connects electrodes of the plurality of electrodes located in adjacent layers. The vias are each formed so that the side face thereof is in contact with the penetrating electrode.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Kenichi Tajika, Takehisa Kishimoto
  • Patent number: 8330279
    Abstract: A semiconductor device includes a supporting board having a protection film thereon; a semiconductor chip provided on the supporting board; a first internal connecting terminal formed on the supporting board; a second internal connecting terminal formed on the semiconductor chip; a first insulation layer for covering an upper surface of the supporting board and upper and lateral surfaces of the semiconductor chip; a wiring pattern provided on the first insulation layer, the wiring pattern connecting the first and second internal connecting terminals; a solder resist layer provided on the first insulation layer and the wiring pattern, the solder resist layer having an opening part; an external connecting terminal provided so as to connect to the wiring pattern through the opening part; a groove part formed on outer peripheries of the supporting board, the protection film, and the first insulation layer; and a resin layer formed in the groove part.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: December 11, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Syota Miki
  • Patent number: 8319318
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include forming a cavity in a carrier material, attaching a die in the cavity, wherein a backside of the die comprises a metal filled DBF, forming a dielectric material adjacent the die and on a bottom side of the carrier material, forming a coreless substrate by building up layers on the dielectric material, and removing the carrier material from the coreless substrate.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 27, 2012
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, Drew Delaney
  • Patent number: 8304895
    Abstract: A semiconductor package is provided. The semiconductor package includes a package body, a plurality of semiconductor chips, and an external connection terminal. The package body is stacked with a plurality of sheets where conductive patterns and vias are disposed. The plurality of semiconductor chips are inserted into insert slots extending from one surface of the package body. The external connection terminal is provided on other surface opposite to the one surface of the package body. Here, the plurality of semiconductor chips are electrically connected to the external connection terminal.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 6, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woojin Chang, Soon Il Yeo, Hae Cheon Kim, Eun Soo Nam
  • Patent number: 8293579
    Abstract: A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 23, 2012
    Assignee: IBIDEN Co., Ltd.
    Inventors: Hajime Sakamoto, Dongdong Wang
  • Patent number: 8253250
    Abstract: An interconnection is formed on an object having a step by a screen printing method. The interconnection is formed by printing it on a substrate having an upper stage surface and a lower stage surface. A multilayer interconnection structure having a plurality of layers which are stacked is formed by repeatedly performing a process of printing and drying an interconnection pattern on the lower stage surface. Then, when the height of the multilayer interconnection structure approaches the height of the upper stage surface, an interconnection pattern of the uppermost layer is printed on the multilayer interconnection structure to extend onto the upper stage surface. Because the interconnection pattern of the uppermost layer is printed in a smaller step, the print characteristic is good. Thus, by the printing, the interconnection structure is formed which has a narrow interconnection width and surely connects the upper surface and the lower surface in a larger step than the interconnection width.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: August 28, 2012
    Assignee: NEC Corporation
    Inventor: Yuuki Momokawa
  • Patent number: 8222723
    Abstract: An electronic module including a conductive-pattern layer; an insulating-material layer supporting the conductive-pattern layer; and at least one component inside the insulating-material layer is disclosed. The component includes a first surface and contact zones on the first surface. The electronic module further includes a first hardened adhesive layer on the first surface of the component; a second hardened adhesive layer in contact with the conductive-pattern layer and the first hardened adhesive layer; holes in the first and second hardened adhesive layer at the locations of the contact zones; and conductive material in the holes and in electrical connection with the contact zones of the component and the conductive-pattern layer.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: July 17, 2012
    Assignee: Imbera Electronics Oy
    Inventors: Risto Tuominen, Petteri Palm