In Combination With Bipolar Transistor (epo) Patents (Class 257/E27.015)
  • Publication number: 20120241870
    Abstract: The present invention discloses a bipolar junction transistor (BJT) with surface protection and a manufacturing method thereof. The BJT includes: a first conductive type base, a second conductive type emitter, and a second conductive type collector, which are formed in a substrate, wherein the base is formed between and separates the emitter and the collector, and the base includes a base contact region functioning as an electrical contact node of the base; and a gate structure which is formed on the substrate between the base contact region and the second conductive type emitter.
    Type: Application
    Filed: November 8, 2011
    Publication date: September 27, 2012
    Inventors: Chien-Ling Chan, Yuh-Chyuan Wang, Hung-Der Su
  • Patent number: 8253203
    Abstract: An electrostatic discharge (ESD) protection circuit that includes a parallel connection of parasitic vertical and lateral bipolar junction transistors (BJTs) each with a floating base and a metal oxide semiconductor (MOS) field transistor with a floating body is disclosed. The three transistors may be connected in parallel between a bond (input or output) pad and a substantially fixed voltage level (e.g., a ground (or zero potential) or Vcc, depending on the transistor configuration) in a semiconductor electronic device so as to protect transistor gates or other circuit portions from damage from electrostatic voltages. The parasitic BJTs and the field transistor may be configured to remain cut off so long as an input voltage at the pad is between a negative V1 voltage (?V1) (V1>0) and a +V2 voltage (V2>Vcc), thereby allowing a greater input voltage swing without signal clamping.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Joohyun Jin
  • Patent number: 8242007
    Abstract: Provided are a semiconductor device including a source/drain and a gate formed using a doped polysilicon process, and a method of fabricating the semiconductor device. The method comprises: forming a gate insulating layer on a part of an active region on a first conductivity type epitaxial layer; forming a conductive layer on the epitaxial layer; implanting high concentration impurities of a second conductivity type a first portion of the conductive layer on the gate insulating layer and second portions of the conductive layer on both sides of the first insulating layer; patterning the conductive layer; forming a second insulating layer on the epitaxial layer and high concentration impurity regions of the second conductivity type below the second conductive pattern; and implanting low-concentration impurities of the second conductivity type into the epitaxial layer between a gate structure and the high concentration impurity regions.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 14, 2012
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Jong-ho Park, Chang-ki Jeon, Hyi-jeong Park
  • Patent number: 8237191
    Abstract: Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The method includes forming two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20120181619
    Abstract: A semiconductor structure contains a bipolar transistor (101) and a spacing structure (265-1 or 265-2). The transistor has an emitter (241), a base (243), and a collector (245). The base is formed with an intrinsic base portion (243I), a base link portion (243L), and a base contact portion (245C). The intrinsic base portion is situated below the emitter and above material of the collector. The base link portion extends between the intrinsic base portion and the base contact portions. The spacing structure includes an isolating dielectric layer (267-1 or 267-2) and a spacing component. The dielectric layer extends along the upper semiconductor surface. The spacing component includes a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, situated on the dielectric layer above the base link portion.
    Type: Application
    Filed: August 4, 2011
    Publication date: July 19, 2012
    Inventors: Jeng-Jiun Yang, Constantin Bulucea
  • Publication number: 20120176178
    Abstract: A switch circuit capable of preventing voltage spike, includes an input end for receiving an input voltage, an output end for outputting an output voltage, a switch unit for controlling an electrical connection between the input end and the output end according to a control signal, a protection unit for generating the control signal according to an input current passing through the input end, and a first parasitic transistor for controlling an electrical connection between a second end and a third end according to the control signal, wherein when the input current is greater than a threshold value, the switch unit turns off electrical connection between the input end and the output end according to the control signal, and the first parasitic transistor turns on electrical connection between the second end and the third end of first parasitic transistor according to the control signal to reduce variation of input current.
    Type: Application
    Filed: July 6, 2011
    Publication date: July 12, 2012
    Inventors: Tse-Lung Yang, Hsiang-Chung Chang
  • Patent number: 8212292
    Abstract: An improved bipolar transistor (40, 40?) is provided, manufacturable by a CMOS IC process without added steps. The improved transistor (40, 40?) comprises an emitter (48) having first (482) and second (484) portions of different depths (4821, 4841), a base (46) underlying the emitter (48) having a central portion (462) of a first base width (4623) underlying the first portion (482) of the emitter (48), a peripheral portion (464) having a second base width (4643) larger than the first base width (4623) partly underlying the second portion (484) of the emitter (48), and a transition zone (466) of a third base width (4644) and lateral extent (4661) lying laterally between the first (462) and second (464) portions of the base (46), and a collector (44) underlying the base (46). The gain of the transistor (40, 40?) is much larger than a conventional bipolar transistor (20) made using the same CMOS process.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: July 3, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kia Zuo
  • Publication number: 20120139056
    Abstract: A high-k gate dielectric layer and a metal gate layer are formed and patterned to expose semiconductor surfaces in a bipolar junction transistor region, while covering a CMOS region. A disposable material portion is formed on a portion of the exposed semiconductor surfaces in the bipolar junction transistor area. A semiconductor layer and a dielectric layer are deposited and patterned to form gate stacks including a semiconductor portion and a dielectric gate cap in the CMOS region and a cavity containing mesa over the disposable material portion in the bipolar junction transistor region. The disposable material portion is selectively removed and a base layer including an epitaxial portion and a polycrystalline portion fills the cavity formed by removal of the disposable material portion. The emitter formed by selective epitaxy fills the cavity in the mesa.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas A. Wallner, Ebenezer E. Eshun, Daniel J. Jaeger, Phung T. Nguyen
  • Publication number: 20120139006
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT. In some implementations, a second FET can be provided so as to be located over the substrate and configured to include a channel formed in a semiconductor material that forms an emitter of the HBT. One or more of the foregoing features can be implemented in devices such as a die, a packaged module, and a wireless device.
    Type: Application
    Filed: November 3, 2011
    Publication date: June 7, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, JR., Hsiang-Chih Sun
  • Publication number: 20120132999
    Abstract: Consistent with an example embodiment, there is method of manufacturing a bipolar transistor comprising providing a substrate including an active region; depositing a layer stack; forming a base window over the active region in said layer stack; forming at least one pillar in the base window, wherein a part of the pillar is resistant to polishing; depositing an emitter material over the resultant structure, thereby filling said base window; and planarizing the deposited emitter material by polishing. Consistent with another example embodiment, a bipolar transistor may be manufactured according to the afore-mentioned method.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicant: NXP B.V.
    Inventors: Evelyne Gridelet, Tony Vanhoucke, Johannes Josephus Theodorus Marinus Donkers, Hans Mertens, Blandine Duriez
  • Publication number: 20120126288
    Abstract: A semiconductor device having first and second stacks formed successively over a common substrate, in which the first stack that remains after removing the second stack comprises a field effect transistor, the second stack that is stacked over the first stack comprises a device different from the field effect transistor, and the first stack comprising the field effect transistor has an etching stopper layer that defines a stopping position of a recess formed in the first stack and comprises InGaP, a lower compound semiconductor layer that is disposed below a gate electrode disposed in the recess and comprises AlGaAs, and a spacer layer that is interposed between the etching stopper layer and the lower compound semiconductor layer for preventing phosphorus contained in the etching stopper layer from thermally diffusing as far as the lower compound semiconductor layer and chemically bonding with constituents elements of the lower compound semiconductor layer.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 24, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Yasunori Bito
  • Publication number: 20120112243
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Publication number: 20120104462
    Abstract: A semiconductor wafer includes a first semiconductor, and a second semiconductor formed directly or indirectly on the first semiconductor. The second semiconductor contains a first impurity atom exhibiting p-type or n-type conductivity, and a second impurity atom selected such that the Fermi level of the second semiconductor containing both the first and second impurity atoms is closer to the Fermi level of the second semiconductor containing neither the first impurity atom nor the second impurity atom, than the Fermi level of the second semiconductor containing the first impurity atom is. For example, the majority carrier of the second semiconductor is an electron, and the Fermi level of the second semiconductor containing the first and second impurity atoms is lower than the Fermi level of the second semiconductor containing the first impurity atom.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 3, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Osamu ICHIKAWA
  • Publication number: 20120091503
    Abstract: The present invention discloses a high-voltage ESD protection device including a silicon controlled rectifier and a first PNP transistor. The silicon controlled rectifier includes a high-voltage P-well and N-well; a first N+ and P+ diffusion region are formed in the high-voltage P-well; a second N+ and P+ diffusion region are formed in the high-voltage N-well. The first PNP transistor comprises an N-type buried layer; a low-voltage N-well formed in the N-type buried layer; and a base, emitter and collector formed in the low-voltage N-well. The base and emitter are shorted together; the collector is shorted to the second N+ diffusion region and the second P+ diffusion region; the first N+ diffusion region is shorted to the first P+ diffusion region to act as a ground terminal. The high-voltage ESD protection device can effectively adjust the ESD trigger voltage and improve the snapback sustaining voltage after the device is switched on.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 19, 2012
    Inventor: Qing Su
  • Patent number: 8159026
    Abstract: This invention provides a lateral high-voltage semiconductor device, which is a three-terminal one with two types of carriers for conduction and consists of a highest voltage region and a lowest voltage region referring to the substrate and a surface voltage-sustaining region between the highest voltage region and the lowest voltage region. The highest voltage region and the lowest region have an outer control terminal and an inner control terminal respectively, where one terminal is for controlling the flow of majorities of one conductivity type and another for controlling the flow of majorities of the other conductivity type. The potential of the inner control terminal is regulated by the voltage applied to the outer control terminal.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 17, 2012
    Assignee: University of Electronics Science and Technology
    Inventor: Xingbi Chen
  • Publication number: 20120061734
    Abstract: Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a semiconductive layer disposed over a substrate. A trench is disposed in the semiconductive layer, the trench with a first sidewall and an opposite second sidewall. A first insulating material layer is disposed over an upper portion of the first sidewall, and a conductive material disposed within the trench. An air gap is disposed between the conductive material and the semiconductive layer.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: Infineon Technologies AG
    Inventors: Karl-Heinz Mueller, Bernhard Winkler, Robert Gruenberger
  • Patent number: 8134212
    Abstract: An n-type isolation structure is disclosed which includes an n-type BISO layer in combination with a shallow n-well, in an IC. The n-type BISO layer is formed by implanting n-type dopants into a p-type IC substrate in addition to a conventional n-type buried layer (NBL), prior to growth of a p-type epitaxial layer. The n-type dopants in the BISO implanted layer diffuse upward from the p-type substrate to between one-third and two-thirds of the thickness of the p-type epitaxial layer. The shallow n-type well extends from a top surface of the p-type epitaxial layer to the n-type BISO layer, forming a continuous n-type isolation structure from the top surface of the p-type epitaxial layer to the p-type substrate. The width of the n-type BISO layer may be less than the thickness of the epitaxial layer, and may be used alone or with the NBL to isolate components in the IC.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Seetharaman Sridhar, James Robert Todd
  • Patent number: 8119436
    Abstract: An image sensor and a method for manufacturing the same are disclosed. The image sensor can include a semiconductor substrate that includes photodiodes arranged for each unit pixel; an interlayer dielectric layer and metal wirings disposed on the semiconductor substrate; and a photorefractive unit that is formed on the periphery of an optical path incident on the photodiodes. The photorefractive unit has a lower refractive index than the interlayer dielectric layer. The slantly incident light can be incident on the photodiodes, while maintaining the slanted optical path as it is. The light sensitivity of the photodiodes can be improved, thereby improving image quality.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 21, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Seung Ryong Park
  • Publication number: 20120038002
    Abstract: Disclosed is a method of manufacturing a vertical bipolar transistor in a CMOS process, comprising implanting an impurity of a first type into a the substrate (100) to form a buried region (150, 260) therein; forming a halo implant (134) using an impurity of a second type and a shallow implant (132) using an impurity of the first type, said halo implant enveloping the shallow implant in the substrate and being located over said buried region (150, 250); forming, adjacent to the halo implant (134), a further implant (136) using an impurity of the second type for providing a conductive connection to the halo implant; and providing respective connections (170, 160, 270) to the further implant (136), the shallow implant (132) and the buried region (150, 260) allowing the shallow implant, halo implant and buried region to be respectively operable as emitter, base and collector of the vertical bipolar transistor.
    Type: Application
    Filed: January 15, 2010
    Publication date: February 16, 2012
    Applicant: NXP B.V.
    Inventors: Tony Vanhoucke, Anco Heringa, Johannes Josephus Theodorus Martinus Donkers, Jan Willem Slotboom
  • Publication number: 20120037953
    Abstract: A semiconductor device comprises a vertical MOS transistor including a semiconductor substrate having a silicon pillar, a gate electrode formed along a sidewall of the silicon pillar, a gate insulating film formed between the gate electrode and the silicon pillar, an upper diffusion layer formed on the top of the silicon pillar, and a lower diffusion layer formed lower than the upper diffusion layer in the semiconductor substrate; and a pad electrically connected to the lower diffusion layer. Breakdown occurs between the lower diffusion layer and the semiconductor substrate when a surge voltage is applied.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 16, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kiminori HAYANO
  • Publication number: 20120018811
    Abstract: Provided is a semiconductor device that includes a first transistor and a second transistor that are formed on the same substrate. The first transistor includes a first collector, a first base, and a first emitter. The first collector includes a first doped well disposed in the substrate. The first base includes a first doped layer disposed above the substrate and over the first doped well. The first emitter includes a doped element disposed over a portion of the first doped layer. The second transistor includes a second collector, a second base, and a second emitter. The second collector includes a doped portion of the substrate. The second base includes a second doped well disposed in the substrate and over the doped portion of the substrate. The second emitter includes a second doped layer disposed above the substrate and over the second doped well.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Der-Chyang Yeh, Li-Weng Chang, Hua-Chou Tseng, Chih-Ping Chao
  • Publication number: 20120007176
    Abstract: A bipolar transistor structure includes an epitaxial layer on a semiconductor substrate, a bipolar transistor device formed in the epitaxial layer and a trench structure formed in the epitaxial layer adjacent at least two opposing lateral sides of the bipolar transistor device. The trench structure includes a field plate spaced apart from the epitaxial layer by an insulating material. The bipolar transistor structure further includes a base contact connected to a base of the bipolar transistor device, an emitter contact connected to an emitter of the bipolar transistor device and isolated from the base contact and an electrical connection between the emitter contact and the field plate.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Christoph KADOW, Thorsten MEYER, Norbert KRISCHKE
  • Publication number: 20120007191
    Abstract: The present invention discloses a bipolar device. An emitter is formed in a semiconductor substrate. A collector is laterally spaced from the emitter in the substrate. A gate terminal is formed on the substrate, defining a space between the emitter and the collector. An extrinsic base is formed on the substrate with a predetermined distance from either the emitter or the collector, wherein the base, the emitter, the collector and the gate terminal are located in an active area defined by a hole in a surrounding isolation structure in the substrate.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 12, 2012
    Inventor: Shine CHUNG
  • Publication number: 20110316050
    Abstract: A semiconductor device with a heterojunction bipolar transistor (HBT) and a field effect transistor (FET) formed over the same substrate; providing improved HBT characteristics and a lowered HBT collector resistance and also satisfactory etching of the FET gate recess, along with low ON-resistance in the FET. The sub-collector layer of a heterojunction bipolar transistor (HBT) is a laminated structure of multiple semiconductor layers, and moreover with a collector electrode formed on a section projecting out from one collector layer. In two of the FET, at least one semiconductor layer on the semiconductor substrate side of the semiconductor layers forming the sub-collector layer of the HBT also serves as at least a portion of a capacitor layer. The total film thickness of the HBT sub-collector layer is 500 nm or more; and the total film thickness of the FET capacitor layer is between 50 nm and 300 nm.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 29, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: YASUNORI BITO
  • Publication number: 20110303987
    Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 15, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, JR., Hsiang-Chih Sun
  • Publication number: 20110266630
    Abstract: A configuration of a lateral transistor suited for the hybrid-integration (BiCMOS) of a high-performance lateral transistor (HCBT) and a CMOS transistor, and a method for manufacturing the lateral transistor are provided. A semiconductor device includes a HCBT 100 and a CMOS transistor 200 hybrid-integrated therein. The HCBT 100 has an open region 21 opened by etching a device isolating oxide film 6 surrounding an n-hill layer 11, an emitter electrode 31A and a collector electrode 31B each of which is formed in the open region 21 and is composed of a polysilicon film having such a thickness as to expose the n-hill layer 11 exposed by etching the device isolating oxide film, and an ultrathin oxide film 24 covering at least a part of the n-hill layer 11. The ultrathin oxide film 24 functions as a protective film for protecting the n-hill layer 11 from being etched when the polysilicon film is etched to form the emitter electrode 31A and the collector electrode 31B.
    Type: Application
    Filed: December 19, 2008
    Publication date: November 3, 2011
    Applicant: ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Tomislav Suligoj, Marko Koricic, Hidenori Mochizuki, Soichi Morita
  • Publication number: 20110241069
    Abstract: In an ultra high voltage lateral DMOS-type device (UHV LDMOS device), a central pad that defines the drain region is surrounded by a racetrack-shaped source region with striations of alternating n-type and p-type material radiating outwardly from the pad to the source to provide for an adjustable snapback voltage.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventor: Vladislav Vashchenko
  • Patent number: 8026555
    Abstract: According to an exemplary embodiment, a bipolar/dual FET structure includes a bipolar transistor situated over a substrate. The bipolar/dual FET structure further includes an enhancement-mode FET and a depletion-mode FET situated over the substrate. In the bipolar/dual FET structure, the channel of the enhancement-mode FET is situated above the base of the bipolar transistor and the channel of the depletion-mode FET is situated below the base of the bipolar transistor. The channel of the enhancement-mode FET is isolated from the channel of the depletion-mode FET so as to decouple the enhancement-mode FET from the depletion mode FET.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 27, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Publication number: 20110220963
    Abstract: The present disclosure provides a semiconductor device having a transistor. The transistor includes a substrate. The transistor includes a collector region that is formed in a portion of the substrate. The transistor includes a base region that is surrounded by the collector region. The transistor includes an emitter region that is surrounded by the based region. The transistor includes an isolation structure that is disposed adjacent the emitter region. The transistor includes a gate structure that is disposed over a portion of the emitter region and a portion of the isolation structure.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 15, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry Hak-Lay Chuang, Lee-Wee Teo, Ming Zhu
  • Patent number: 8017957
    Abstract: A sub-substrate, a blue-violet semiconductor laser device, an insulating layer, and a red semiconductor laser device are stacked in order on a support member through a plurality of fusion layers. The insulating layer is stacked on an n-side pad electrode of the blue-violet semiconductor laser device, and a conductive layer is formed on the insulating layer. The red semiconductor laser device is stacked on the conductive layer through a fusion layer. The conductive layer is electrically connected to a p-side pad electrode of the red semiconductor laser device. The n-side pad electrode of the blue-violet semiconductor laser device and the n-side pad electrode of the red semiconductor laser device are electrically connected to each other.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 13, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daijiro Inoue, Masayuki Hata, Yasuyuki Bessho
  • Patent number: 8017975
    Abstract: A semiconductor device and manufacturing method satisfies both of the trade-off characteristic advantages of the HBT and the HFET. The semiconductor device is an HBT and HFET integrated circuit. The HBT includes a sub-collector layer, a GaAs collector layer, a GaAs base layer, and an InGaP emitter layer that are sequentially stacked. The sub-collector layer includes a GaAs external sub-collector region, and a GaAs internal sub-collector region disposed on the GaAs external sub-collector region. A mesa-shaped collector part and a collector electrode are separately formed on the GaAs external sub-collector region. The HFET includes a GaAs cap layer, a source electrode, and a drain electrode. The GaAs cap layer includes a portion of the GaAs external sub-collector region. The source electrode and the drain electrode are formed on the GaAs cap layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: September 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Keiichi Murayama, Akiyoshi Tamura, Hirotaka Miyamoto, Kenichi Miyajima
  • Patent number: 8012842
    Abstract: An integrated semiconductor structure that has first and second bipolar transistor structures. The first bipolar transistor structure has a doped tank region in contact with a doped tank region located underneath a contacting sinker. The second bipolar transistor structure has a doped buried region that is the same dopant type as its doped tank region. A method for fabricating an integrated semiconductor structure in a bulk semiconductor wafer. A first patterned photomask is used to form a doped buried region and a doped tank region within the first bipolar transistor structure. A second patterned photomask is used to form a doped buried region and a doped tank region within the second bipolar transistor, plus a doped buried region and a doped tank region underneath a contacting sinker adjacent to the first bipolar transistor.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 6, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Scott Balster, Badih El-Kareh, Hiroshi Yasuda
  • Publication number: 20110210302
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, a first insulating film region that is embedded in a trench formed on the semiconductor substrate, a gate electrode that covers a lower surface of the first insulating film region, and a gate insulating film that is provided between the gate electrode and the semiconductor substrate. The semiconductor device further includes a first diffusion region that covers a first side surface of the first insulating film region, a second diffusion region that covers a second side surface of the first insulating film region, and a third diffusion region that covers an upper surface of the second diffusion region. A selective element includes a field-effect transistor that is constituted by the gate electrode, the first diffusion region, and the second diffusion region, and a bipolar transistor that is constituted by the substrate and the second and third diffusion regions.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 1, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Shuichi TSUKADA, Yasuhiro Uchiyama
  • Patent number: 8008727
    Abstract: To reduce the leak current in the MOSFET connected between the pad and the ground. There are provided a pad PAD for an input or output signal, an n-type MOSFET M1a connected between the pad PAD and the ground and having its gate terminal and backgate connected in common, and a potential control circuit 10 that controls a potential Vb of the gate terminal and the backgate of the n-type MOSFET M1a based on a potential Vin of the pad PAD. The potential control circuit 10 comprises n-type MOSFETs M2 and M3; the n-type MOSFET M1a has its gate terminal and backgate connected to backgates and drains of the n-type MOSFETs M2 and M3; the n-type MOSFET M2 has its source grounded and its gate terminal connected to the pad PAD via a resistance R; and the n-type MOSFET M3 has its source connected to the pad PAD and its gate terminal grounded.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Okamoto, Morihisa Hirata
  • Patent number: 7999345
    Abstract: Provided is a technology, in a semiconductor device having a power MISFET and a Schottky barrier diode on one semiconductor substrate, capable of suppressing a drastic increase in the on-resistance of the power MISFET while making the avalanche breakdown voltage of the Schottky barrier diode greater than that of the power MISFET. In the present invention, two epitaxial layers, one having a high doping concentration and the other having a low doping concentration, are formed over a semiconductor substrate and the boundary between these two epitaxial layers is located in a region equal in depth to or shallower than the bottom portion of a trench.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 16, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshito Nakazawa, Hitoshi Matsuura
  • Publication number: 20110193174
    Abstract: A structure and method for providing a multiple silicide integration is provided. An embodiment comprises forming a first transistor and a second transistor on a substrate. The first transistor is masked and a first silicide region is formed on the second transistor. The second transistor is then masked and a second silicide region is formed on the first transistor, thereby allowing for device specific silicide regions to be formed on the separate devices.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 11, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Der-Chyang Yeh, Hsing-Kuo Hsia, Hao-Hsun Lin, Chih-Ping Chao, Chin-Hao Su, Hsi-Kuei Cheng
  • Patent number: 7989845
    Abstract: The object of the present invention is to provide a semiconductor device and the manufacturing method thereof which are capable of preventing decrease in the collector breakdown voltage and reducing the collector resistance. The semiconductor device according to the present invention includes: a HBT formed on a first region of a semiconductor substrate; and an HFET formed on a second region of the semiconductor substrate, wherein the HBT includes: an emitter layer of a first conductivity; a base layer of a second conductivity that has a band gap smaller than that of the emitter layer; a collector layer of the first conductivity or a non-doped collector layer; and a sub-collector layer of the first conductivity which are formed sequentially on the first region, and the HFET includes an electron donor layer including a part of the emitter layer, and a channel layer formed under the electron donor layer.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Panasonic Corporation
    Inventors: Keiichi Murayama, Akiyoshi Tamura, Hirotaka Miyamoto, Kenichi Miyajima
  • Publication number: 20110180842
    Abstract: An integrated circuit containing an SCRMOS transistor. The SCRMOS transistor has one drain structure with a centralized drain diffused region and distributed SCR terminals, and a second drain structure with distributed drain diffused regions and SCR terminals. An MOS gate between the centralized drain diffused region and a source diffused region is shorted to the source diffused region. A process of forming the integrated circuit having the SCRMOS transistor is also disclosed.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sameer P. PENDHARKAR
  • Publication number: 20110133275
    Abstract: A semiconductor device includes a semiconductor-on-insulator region on a substrate. The semiconductor-on-insulator region includes a first semiconductor region overlying a dielectric region. The device includes an MOS transistor and a bipolar transistor. The MOS transistor has a drain region, a body region, and a source region in the first semiconductor region. The MOS transistor also includes a gate. The device also includes a second semiconductor region overlying the substrate and adjacent to the drain region, and a third semiconductor region overlying the substrate and adjacent to the second semiconductor region. The bipolar transistor includes has the drain region of the MOS transistor as an emitter, the second semiconductor region as a base, and the third semiconductor region as a collector. Accordingly, the drain of the MOS transistor also functions as the emitter of the bipolar transistor. Additionally, the gate and the base are coupled by a resistive element.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 9, 2011
    Inventor: James Pan
  • Publication number: 20110133289
    Abstract: A process for forming bipolar junction transistors having a plurality of different collector doping densities on a semiconductor substrate and an integrated circuit comprising bipolar junction transistors having a plurality of different collector doping densities. A first group of the transistors are formed during formation of a triple well for use in providing triple well isolation for complementary metal oxide semiconductor field effect transistors also formed on the semiconductor substrate. Additional bipolar junction transistors with different collector doping densities are formed during a second doping step after forming a gate stack for the field effect transistors. Implant doping through bipolar transistor emitter windows forms bipolar transistors having different doping densities than the previously formed bipolar transistors.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Inventors: Daniel Charles Kerr, Michael Scott Carroll, Amal Ma Hamad, Thiet The Lai, Roger W. Key
  • Publication number: 20110127615
    Abstract: A high-performance semiconductor apparatus which can be easily introduced into the MOS process, reduces the leakage current (electric field strength) between the emitter and the base, and is insusceptible to noise or surge voltage, and a manufacturing method of the semiconductor apparatus. The emitter 111 is formed by performing the ion implantation twice by using the conductive film (109) as a mask. The second emitter area (111b) is formed by ion implantation of a low impurity density impurity ion, and the first emitter area (111a) is formed by ion implantation of a high impurity density impurity ion. As a result, the low impurity density second emitter area is formed in the circumference of the emitter 111, which lowers the electric field strength, and reduces the leakage current. Also the conductive film is connected with the emitter electrode (116), which makes the apparatus insusceptible to noise.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventor: Mitsuo TANAKA
  • Publication number: 20110101375
    Abstract: Semiconductor switching devices include a wide band-gap drift layer having a first conductivity type (e.g., n-type), and first and second wide band-gap well regions having a second conductivity type (e.g., p-type) on the wide band-gap drift layer. First and second wide band-gap source/drain regions of the first conductivity type are on the first and second wide band-gap well regions, respectively. A wide band-gap JFET region having the first conductivity type is provided between the first and second well regions. This JFET region includes a first local JFET region that is adjacent a side surface of the first well region and a second local JFET region that is adjacent a side surface of the second well region. The local JFET regions have doping concentrations that exceed a doping concentration of a central portion of the JFET region that is between the first and second local JFET regions of the JFET region.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Inventor: Qingchun Zhang
  • Publication number: 20110084324
    Abstract: Radiation hardened NMOS devices suitable for application in NMOS, CMOS, or BiCMOS integrated circuits, and methods for fabricating them. A device includes a p-type silicon substrate, a field oxide surrounding a moat region on the substrate tapering through a bird's beak region to a gate oxide within the moat region, a heavily-doped p-type guard region underlying at least a portion of the bird's beak region and terminating at the inner edge of the bird's beak region, a gate crossing the moat region, and n-type source and drain regions spaced by a gap from the inner edge of the guard region. A variation of a local oxidation of silicon process is used with an additional bird's beak implantation mask as well as minor alterations to the conventional moat and n-type source/drain masks. The resulting devices have improved radiation tolerance while having a high breakdown voltage and minimal impact on circuit density.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Emily Ann Donnelly, Byron Neville Burgess, Randolph W. Kahn, Todd Douglas Stubblefield
  • Publication number: 20110073955
    Abstract: A semiconductor device comprising a first transistor device (130) on or in a semiconductor substrate (115) and a second transistor device (132) on or in the substrate. The device further comprises an insulating trench (200) located between the first transistor device and the second transistor device. At least one upper corner (610) of the insulating trench is a rounded corner in a lateral plane (620) of the substrate.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, John Lin, Philip L. Hower, Steven L. Merchant
  • Publication number: 20110062548
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Publication number: 20110057266
    Abstract: A high-k gate dielectric layer and a metal gate layer are formed and patterned to expose semiconductor surfaces in a bipolar junction transistor region, while covering a CMOS region. A disposable material portion is formed on a portion of the exposed semiconductor surfaces in the bipolar junction transistor area. A semiconductor layer and a dielectric layer are deposited and patterned to form gate stacks including a semiconductor portion and a dielectric gate cap in the CMOS region and a cavity containing mesa over the disposable material portion in the bipolar junction transistor region. The disposable material portion is selectively removed and a base layer including an epitaxial portion and a polycrystalline portion fills the cavity formed by removal of the disposable material portion. The emitter formed by selective epitaxy fills the cavity in the mesa.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas A. Wallner, Ebenezer E. Eshun, Daniel J. Jaeger, Phung T. Nguyen
  • Publication number: 20110049599
    Abstract: In Trench-Gate Fin-FET, in order that the advantage which is exerted in Fin-FET can be sufficiently taken even if a transistor becomes finer and, at the same time, decreasing of on-current can be suppressed by saving a sufficiently large contact area in the active region, a fin width 162 of a channel region becomes smaller than a width 161 of an active region.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 3, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Hiroaki TAKETANI
  • Patent number: 7898038
    Abstract: The invention, in one aspect, provides a method for fabricating a semiconductor device, which includes conducting an etch through an opening in an emitter layer to form a cavity from an underlying oxide layer that exposes a doped tub. A first silicon/germanium (SiGe) layer, which has a Ge concentration therein, is formed within the cavity and over the doped tub by adjusting a process parameter to induce a strain in the first SiGe layer. A second SiGe layer is formed over the first SiGe layer, and a capping layer is formed over the second SiGe layer.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 1, 2011
    Assignee: Agere Systems, Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh
  • Publication number: 20110042717
    Abstract: An integrated low leakage diode suitable for operation in a power integrated circuit has a structure similar to a lateral power MOSFET, but with the current flowing through the diode in the opposite direction to a conventional power MOSFET. The anode is connected to the gate and the comparable MOSFET source region which has highly doped regions of both conductivity types connected to the channel region to thereby create a lateral bipolar transistor having its base in the channel region. A second lateral bipolar transistor is formed in the cathode region. As a result, substantially all of the diode current flows at the upper surface of the diode thereby minimizing the substrate leakage current. A deep highly doped region in contact with the layers forming the emitter and the base of the vertical parasitic bipolar transistor inhibits the ability of the vertical parasitic transistor to fully turn on.
    Type: Application
    Filed: November 2, 2010
    Publication date: February 24, 2011
    Applicant: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 7893463
    Abstract: An integrated pair of HBT and FET transistors shares a common compound semiconductor III-V epitaxial layer. The integrated pair of transistors includes a semi-insulating substrate of a compound semiconductor III-V material, a first epitaxial structure disposed on top of the substrate, a second epitaxial structure on top of the first epitaxial structure, and a third epitaxial structure disposed on top of the second epitaxial structure. The first epitaxial structure forms a portion of the HBT transistor. A concentration profile of a first contaminant, which contributes electrical charge, decreases substantially smoothly across an interface between the semi-insulating substrate and the first epitaxial structure. In some cases, the interface is free of a second contaminant that was present, during formation of the epitaxial structures, in a chamber in which the epitaxial structures were formed.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 22, 2011
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Jr., Victor Labyuk, Sherry Qianwen Ye