Vertical Bipolar Transistor In Combination With Diode, Capacitor, Or Resistor (epo) Patents (Class 257/E27.02)
  • Patent number: 9472301
    Abstract: A method of programming a memory cell is provided. The memory cell includes a memory element having a first conductive material layer, a first dielectric material layer above the first conductive material layer, a second conductive material layer above the first dielectric material layer, a second dielectric material layer above the second conductive material layer, and a third conductive material layer above the second dielectric material layer. One or both of the first and second conductive material layers comprises a stack of a metal material layer and a highly doped semiconductor material layer. The memory cell has a first memory state upon fabrication corresponding to a first read current. The method includes applying a first programming pulse to the memory cell with a first current limit. The first programming pulse programs the memory cell to a second memory state that corresponds to a second read current greater than the first read current.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: October 18, 2016
    Assignee: SanDisk Technologies LLC
    Inventors: Abhijit Bandyopadhyay, Tanmay Kumar, Scott Brad Herner, Christopher J. Petti, Roy E. Scheuerlein
  • Patent number: 8975133
    Abstract: One illustrative integrated circuit product disclosed herein includes a metal-1 metallization layer positioned above a semiconducting substrate, a capacitor positioned between a surface of the substrate and a bottom of the metal-1 metallization layer, wherein the capacitor includes a plurality of conductive plates that are oriented in a direction that is substantially normal relative to the surface of the substrate, and at least one region of insulating material positioned between the plurality of conductive plates.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kok Yong Yiang, Patrick R. Justison
  • Patent number: 8587094
    Abstract: A semiconductor device having an active element and an MIM capacitor and a structure capable of reducing the number of the manufacturing steps thereof and a manufacturing method therefor are provided. The semiconductor device has a structure that the active element having an ohmic electrode and the MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode are formed on a semiconductor substrate, wherein the lower electrode and ohmic electrode have the same structure. In an MMIC 100 in which an FET as an active element and the MIM capacitor are formed on a GaAs substrate 10, for example, a source electrode 16a and a drain electrode 16b, which are ohmic electrodes of the FET, are manufactured simultaneously with a lower electrode 16c of the MIM capacitor. Here the electrodes are formed with the same metal.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: November 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Publication number: 20130092976
    Abstract: A trench semiconductor power device integrated with four types of ESD clamp diodes for optimization of total perimeter of the ESD clamp diodes, wherein the ESD clamp diodes comprise multiple back to back Zener diodes with alternating doped regions of a first conductivity type next to a second conductivity type, wherein each of the doped regions has a closed ring structure.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Applicant: FORCE MOS TECHNOLOGY CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Patent number: 8421154
    Abstract: A semiconductor device having a super junction structure includes: multiple first columns extending in a current flowing direction; and multiple second columns extending in the current flowing direction. The first and second columns are alternately arranged in an alternating direction. Each first column provides a drift layer. The first and second columns have a boundary therebetween, from which a depletion layer expands in case of an off-state. At least one of the first columns and the second columns have an impurity dose, which is inhomogeneous by location with respect to the alternating direction.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 16, 2013
    Assignee: DENSO CORPORATION
    Inventor: Takeshi Miyajima
  • Patent number: 8399319
    Abstract: A semiconductor device includes a substrate and a plurality of unit cells vertically arranged on the substrate.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: March 19, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Soo Lee
  • Publication number: 20120018778
    Abstract: A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: ZI-PING CHEN, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Patent number: 8039879
    Abstract: A semiconductor has an IGBT active section and a control circuit section for detecting an IGBT abnormal state. A collector region is formed on the back surface side (i.e., on the IGBT collector side) in a selective manner, namely right under the IGBT active section.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 18, 2011
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Katsunori Ueno
  • Patent number: 7994068
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 9, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Patent number: 7968940
    Abstract: Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n? drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Anpec Electronics Corporation
    Inventor: Florin Udrea
  • Patent number: 7915094
    Abstract: A method of making a nonvolatile memory device includes fabricating a diode in a low resistivity, programmed state without an electrical programming step. The memory device includes at least one memory cell. The memory cell is constituted by the diode and electrically conductive electrodes contacting the diode.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 7718546
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: May 18, 2010
    Assignee: Sandisk 3D LLC
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Patent number: 7671371
    Abstract: A semiconductor layer structure includes a donor substrate and a detach region carried by the donor substrate. A device structure is carried by the donor substrate and positioned proximate to the detach region. The device structure includes a stack of crystalline semiconductor layers. The stack of crystalline semiconductor layers includes a pn junction.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 2, 2010
    Inventor: Sang-Yun Lee
  • Patent number: 7618850
    Abstract: A method of making a nonvolatile memory device includes fabricating a diode in a low resistivity, programmed state without an electrical programming step. The memory device includes at least one memory cell. The memory cell is constituted by the diode and electrically conductive electrodes contacting the diode.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 17, 2009
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
  • Patent number: 7488625
    Abstract: A three-dimensional, field-programmable, non-volatile memory includes multiple layers of first and second crossing conductors. Pillars are self-aligned at the intersection of adjacent first and second crossing conductors, and each pillar includes at least an anti-fuse layer. The pillars form memory cells with the adjacent conductors, and each memory cell includes first and second diode components separated by the anti-fuse layer. The diode components form a diode only after the anti-fuse layer is disrupted.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: February 10, 2009
    Assignee: Sandisk 3D LLC
    Inventor: Johan Knall
  • Patent number: 7352042
    Abstract: The invention relates to a radiation-emitting semiconductor device (10) with a semiconductor body (1) and a substrate (2), wherein the semiconductor body (1) comprises a vertical bipolar transistor with an emitter region (3), a base region (4) and a collector region (5), which regions are each provided with a connection region (6, 7, 8), and the border between the base region (4) and the collector region (5) forms a pn-junction and, in operation, at a reverse bias of the pn-junction or at a sufficiently large collector current, avalanche multiplication of charge carriers occurs whereby radiation is generated in the collector region (5). According to the invention, the collector region (5) has a thickness through which transmission of the generated radiation occurs, and the collector region (5) borders on a free surface of the semiconductor body (1).
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 1, 2008
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Johan Hendrik Klootwijk, Jan Willem Slotboom