Thyristor Only (epo) Patents (Class 257/E27.052)
  • Patent number: 8866125
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8796729
    Abstract: Junction-isolated blocking voltage devices and methods of forming the same are provided. In certain implementations, a blocking voltage device includes an anode terminal electrically connected to a first p-well, a cathode terminal electrically connected to a first n-well, a ground terminal electrically connected to a second p-well, and an n-type isolation layer for isolating the first p-well from a p-type substrate. The first p-well and the first n-well operate as a blocking diode. The blocking voltage device further includes a PNPN silicon controlled rectifier (SCR) associated with a P+ region formed in the first n-well, the first n-well, the first p-well, and an N+ region formed in the first p-well. Additionally, the blocking voltage device further includes an NPNPN bidirectional SCR associated with an N+ region formed in the first p-well, the first p-well, the n-type isolation layer, the second p-well, and an N+ region formed in the second p-well.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Analog Devices, Inc.
    Inventors: David J Clarke, Javier Alejandro Salcedo, Brian B Moane, Juan Luo, Seamus Murnane, Kieran K Heffernan, John Twomey, Stephen Denis Heffernan, Gavin Patrick Cosgrave
  • Patent number: 8598621
    Abstract: A memory cell includes a thyristor having a plurality of alternately doped, vertically superposed semiconductor regions; a vertically oriented access transistor having an access gate; and a control gate operatively laterally adjacent one of the alternately doped, vertically superposed semiconductor regions. The control gate is spaced laterally of the access gate. Other embodiments are disclosed, including methods of forming memory cells and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Sanh D. Tang
  • Publication number: 20130285113
    Abstract: A bidirectional electrostatic discharge (ESD) protection device includes a substrate having a topside semiconductor surface that includes a first silicon controlled rectifier (SCR) and a second SCR formed therein including a patterned p-buried layer (PBL) including a plurality of PBL regions. The first SCR includes a first and second n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a first merged drain. The second SCR includes a third and a fourth n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a second merged drain. The plurality of PBL regions are directly under at least a portion of the sources while being excluded from being directly under either of the merged drains.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: HENRY LITZMANN EDWARDS, AKRAM A. SALMAN
  • Publication number: 20130169068
    Abstract: A device includes a first thyristor element configured to be coupled to a first voltage line and a second voltage line, wherein the first voltage line is configured to transmit power in a first phase and the second voltage line is configured to transmit power in a second phase. The device includes a second thyristor element configured to be coupled to the second voltage line and a third voltage line, wherein the third voltage line is configured to transmit power in a third phase. The device includes a third thyristor element configured to be coupled to the first voltage line and the third voltage line.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: General Electric Company
    Inventors: Robert Gregory Wagoner, Petar Jovan Grbovic
  • Patent number: 8390124
    Abstract: Provided is a semiconductor device including a substrate, and a first wiring layer, a second wiring layer, and a switch via formed on the substrate. The first wiring layer has first wiring formed therein and the second wiring layer has second wiring formed therein. The switch via connects the first wiring and the second wiring. The switch via includes at least at its bottom a switch element including a resistance change layer. A resistance value of the resistance change layer changes according to a history of an electric field applied thereto.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Naoya Inoue, Yoshihiro Hayashi, Kishou Kaneko
  • Patent number: 8324656
    Abstract: Embodiments of integrated circuits for mitigating against electrostatic coupling are described. In an embodiment, first gate dielectrics are respectively located over first active regions. First isolation regions are respectively located between the first active regions. Second gate dielectrics are respectively located over second active regions. Second isolation regions are respectively located between the second active regions. In an embodiment, the first active regions are approximately 20 to 80 percent shorter in height/thickness than the second active regions. In another embodiment, the first isolation regions extend above an uppermost surface of the first gate dielectrics while providing gaps between the first isolation regions and sidewalls of the first active regions for receipt of material used in formation of conductive lines. In yet another embodiment, active area stripes are narrower in width at p-base regions and n-base regions than at cathode regions and anode regions respectively thereof.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 4, 2012
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Rajesh N. Gupta, Marc Laurent Tarabbia, Kevin J. Yang
  • Patent number: 8129292
    Abstract: An integrated circuit arrangement includes a Shockley diode or a thyristor. An inner region of the diode or of the thyristor is completely or partially shielded during the implantation of a p-type well. This gives rise to a Shockley diode or a thyristor having improved electrical properties, in particular with regard to the use as an ESD protection element.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 6, 2012
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Glaser, Harald Gossner, Kai Esmark
  • Patent number: 8080830
    Abstract: A semiconductor device includes: a bulk semiconductor substrate; a thyristor formed in the bulk semiconductor substrate; a gate electrode formed at the third region; and a well region. The thyristor included a first region of a first conduction type, a second region of a second conduction type opposite to the first conduction type, a third region of the first conduction type, and a fourth region of the second conduction type, junctioned in order. The well region of the second conduction type is formed in the bulk semiconductor substrate, the third region is formed in the well region. A first voltage is impressed on the first region side of the thyristor, a second voltage higher than the first voltage is impressed on the fourth region side of the thyristor, and a voltage higher than or equal to the first voltage is impressed on the well region.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: December 20, 2011
    Assignee: Sony Corporation
    Inventor: Taro Sugizaki
  • Publication number: 20110215372
    Abstract: An ESD protection device is provided. The ESD protection device comprises an SCR and an ESD detection circuit. The SCR is coupled between a high voltage and a ground and has a special semiconductor structure which saves area. When the ESD detection circuit detects an ESD event, the ESD detection circuit drives the SCR to provide a discharging path.
    Type: Application
    Filed: April 25, 2011
    Publication date: September 8, 2011
    Applicant: MEDIATEK INC.
    Inventor: Chien-Hui Chuang
  • Patent number: 7888701
    Abstract: An integrated circuit arrangement includes a Shockley diode or a thyristor. An inner region of the diode or of the thyristor is completely or partially shielded during the implantation of a p-type well. This gives rise to a Shockley diode or a thyristor having improved electrical properties, in particular with regard to the use as an ESD protection element.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: February 15, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Glaser, Harald Gossner, Kai Esmark
  • Patent number: 7714393
    Abstract: Disclosed herein is a semiconductor device including an N-channel insulated gate field effect transistor and a P-channel insulated gate field effect transistor, the device having: a first insulating layer and a second insulating layer; and gate electrode contact plugs. Each of the gate electrodes of the N-channel insulated gate field effect transistor and the P-channel insulated gate field effect transistor is buried in a gate electrode formation opening provided in the first insulating layer.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 11, 2010
    Assignee: Sony Corporation
    Inventors: Kaori Tai, Masanori Tsukamoto, Masashi Nakata, Itaru Oshiyama
  • Patent number: 7687826
    Abstract: A main thyristor (1) has a recovery protection which is integrated into a drive thyristor (2) whose n-doped emitter (25) is electrically connected to a main thyristor control terminal (140). Moreover, the p-doped emitter (28) of the drive thyristor (2) is electrically connected to the p-doped emitter (18) of the main thyristor (1). Various optional measures for realizing a recovery protection are provided in this case. A method for producing a thyristor system having a main thyristor and a drive thyristor, the drive thyristor (2) having anode short circuits (211) involves introducing particles (230) into a target region (225) of the semiconductor body (200) of the drive thyristor (2), the distance between the target region (225) and a front side (201) of the semiconductor body (200) opposite to the rear side (202) being less than or equal to the distance between the p-doped emitter (28) and the front side (201).
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: March 30, 2010
    Inventors: Hans-Joachim Schulze, Franz Josef Niedernostheide, Uwe Kellner-Werdehausen, Reiner Barthelmess
  • Patent number: 7679103
    Abstract: An integrated circuit arrangement includes a Shockley diode or a thyristor. An inner region of the diode or of the thyristor is completely or partially shielded during the implantation of a p-type well. This gives rise to a Shockley diode or a thyristor having improved electrical properties, in particular with regard to the use as an ESD protection element.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: March 16, 2010
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Glaser, Harald Gossner, Kai Esmark
  • Patent number: 7615801
    Abstract: High voltage silicon carbide (SiC) devices, for example, thyristors, are provided. A first SiC layer having a first conductivity type is provided on a first surface of a voltage blocking SiC substrate having a second conductivity type. A first region of SiC is provided on the first SiC layer and has the second conductivity type. A second region of SiC is provided in the first SiC layer, has the first conductivity type and is adjacent to the first region of SiC. A second SiC layer having the first conductivity type is provided on a second surface of the voltage blocking SiC substrate. A third region of SiC is provided on the second SiC layer and has the second conductivity type. A fourth region of SiC is provided in the second SiC layer, has the first conductivity type and is adjacent to the third region of SiC. First and second contacts are provided on the first and third regions of SiC, respectively. Related methods of fabricating high voltage SiC devices are also provided.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: November 10, 2009
    Assignee: Cree, Inc.
    Inventors: Sei-Hyung Ryu, Jason R. Jenny, Mrinal K. Das, Anant K. Agarwal, John W. Palmour, Hudson McDonald Hobgood
  • Patent number: 7385230
    Abstract: A thyristor and family of high speed transistors and optoelectronic devices are obtained on a monolithic substrate (149) with an epitaxial layer structure comprised of two modulation doped transistor structures inverted with respect to each other. The transistor structures are obtained by adding planar doping to the Pseudomorphic High Electron Mobility Transistor (PHEMT) structure. For one transistor, two sheets of planar doping of the same polarity separated by a lightly doped layer are added which are opposite to the modulation doping of the PHEMT. The combination is separated from the PHEMT modulation doping by undoped material. The charge sheets are thin and highly doped. The top charge sheet (168) achieves low gate contact resistance and the bottom charge sheet (153) defines the capacitance of the field-effect transistor (FET) with respect to the modulation doping layer of the PHEMT. For the other transistor, only one additional sheet is added.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 10, 2008
    Assignees: The University of Connecticut, Opel, Inc.
    Inventor: Geoff W. Taylor
  • Patent number: 7332752
    Abstract: An optoelectronic circuit includes a resonant cavity formed on a substrate and into which is injected an input digital optical signal that encodes bits of information (each bit representing an OFF logic level or an ON logic level). A heterojunction thyristor device, formed in the resonant cavity, produces an output digital electrical signal corresponding to the input digital optical signal. A sampling clock defines sampling periods that overlap the bits (e.g., ON/OFF pulse durations) in the input digital optical signal. The sampling clock can be in the form of electrical pulses supplied to the n-channel injector terminal(s) and/or p-channel injector terminals of the heterojunction thyristor device. Alternatively, the sampling clock can be in the form of optical pulses that are part of the Optical IN signal that is resonantly absorbed by the device. The heterojunction thyristor device operates in an OFF state and an ON state.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 19, 2008
    Assignees: The University of Connecticut, Opel, Inc.
    Inventors: Geoff W. Taylor, Jianhong Cai
  • Patent number: 7279367
    Abstract: In a method of processing a semiconductor device, a silicide-blocking layer may be formed over a semiconductor material. After defining the silicide-blocking layer, impurities may be implanted into portions of the semiconductor material as defined by the silicide-blocking layer. After the implant, silicide may be formed in a surface region of the semiconductor material as permitted by the silicide-blocking layer. Regions of the impurity implant may comprise boundaries that are related to the outline of the silicide formed thereover. In a further embodiment, the implant may define a base region to a thyristor device. The implant may be performed with an angle of incidence to extend portions of the base region beneath a peripheral edge of the blocking mask. Next, an anode-emitter region may be formed using an implant of a substantially orthogonal angle of incidence and self-aligned to the mask.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: October 9, 2007
    Assignee: T-Ram Semiconductor, Inc.
    Inventors: Andrew E. Horch, Fred Hause
  • Patent number: 7262442
    Abstract: A triac including on its front surface side an autonomous starting well of the first conductivity type containing a region of the second conductivity type arranged to divide it, in top view, into a first and a second well portion, the first portion being connected to a control terminal and the second portion being connected with said region to the main front surface terminal.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 28, 2007
    Assignee: STMicroelectronics S.A.
    Inventor: Samuel Menard
  • Patent number: 7205583
    Abstract: A thyristor and a method for manufacturing the thyristor that includes providing a semiconductor substrate that has first and second major surfaces. A first doped region is formed in the semiconductor substrate, wherein the first doped extends from the first major surface into the semiconductor substrate. The first doped region has a vertical boundary that has a notched portion. A second doped region is formed in first doped region, wherein the second doped region extends from the first major surface into the first doped region. A third doped region is formed in the semiconductor substrate, wherein the third doped region extends from the second major surface into the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Emmanuel Saucedo-Flores
  • Patent number: 7154152
    Abstract: A semiconductor device has a p-type substrate, a low-concentration n-type region formed in the p-type substrate, a first high-concentration p-type region formed in the low-concentration n-type region and connected to a first electrode, a first high-concentration n-type region formed in the low-concentration n-type region and connected via a resistive element to the first electrode, a low-concentration p-type region formed contiguously with the first high-concentration n-type region, a second high-concentration n-type region and a second high-concentration p-type region formed in the p-type substrate and connected to a second electrode, and an element separator portion formed between the low-concentration p-type region and the second high-concentration n-type region. This makes it possible to control the switching characteristic of the electrostatic protection circuit with high accuracy and thus to cope with the thinning of the gate oxide film protected by the protection circuit.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 26, 2006
    Assignee: Rohm Co., Ltd.
    Inventor: Toshiaki Kojima
  • Patent number: 7145201
    Abstract: A semiconductor component (10) is proposed in which a control resistance element (NTC) is provided in electrical contact between a control region (G) for setting operating properties and a first input/output region (S), the control resistance element (NTC) having an operating temperature range in which the nonreactive resistance falls monotonically as the operating temperature increases.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 5, 2006
    Assignee: Infineon Technologies AG
    Inventor: Frank Pfirsch
  • Publication number: 20060186435
    Abstract: The temperature of a bipolar semiconductor element using a wide-gap semiconductor is raised using heating means, such as a heater, to obtain a power semiconductor device being large in controllable current and low in loss. The temperature is set at a temperature higher than the temperature at which the decrement of the steady loss of the wide-gap bipolar semiconductor element corresponding to the decrement of the built-in voltage lowering depending on the temperature rising of the wide-gap bipolar semiconductor element is larger than the increment of the steady loss corresponding to the increment of the ON resistance increasing depending on the temperature rising.
    Type: Application
    Filed: April 19, 2006
    Publication date: August 24, 2006
    Applicant: THE KANSAI ELECTRIC POWER CO, INC.
    Inventor: Yoshitaka Sugawara