Channel Structure Lying Under Slanted Or Vertical Surface Or Being Formed Along Surface Of Groove (e.g., Trench Gate Dmosfet) (epo) Patents (Class 257/E29.26)
  • Patent number: 9041057
    Abstract: A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin
  • Patent number: 8987812
    Abstract: The invention provides an ultra-low-on-resistance, excellent-reliability semiconductor device that can finely be processed using SiC and a semiconductor device producing method.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Kono, Takashi Shinohe, Makoto Mizukami
  • Patent number: 8981467
    Abstract: A semiconductor device includes an active region including a surface region and a first recess formed on both sides of the surface region, the active region extending along a first direction; a device isolation structure surrounding the active region; a pair of gate lines extending along the surface region of the active region in a second direction perpendicular to the first direction; a plurality of second recesses formed in the device isolation structure beneath the gate lines and including given portions of the gate lines filled into the second recesses; a plurality of first junction regions formed in the active region beneath the first recesses; and a second junction region formed in the surface region between the gate lines, wherein the second junction region defines at least two vertical-type channels below the gate line with the plurality of first junction regions.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: March 17, 2015
    Assignee: SK hynix Inc.
    Inventor: Jung Woo Park
  • Patent number: 8975692
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The method includes: forming a trench in a semiconductor substrate of a first conductive type; forming a trench dopant containing layer including a dopant of a second conductive type on a sidewall and a bottom surface of the trench; forming a doping region by diffusing the dopant in the trench dopant containing layer into the semiconductor substrate; and removing the trench dopant containing layer.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: March 10, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Gi Kim, Jin-Gun Koo, Seong Wook Yoo, Jong-Moon Park, Jin Ho Lee, Kyoung Il Na, Yil Suk Yang, Jongdae Kim
  • Patent number: 8957474
    Abstract: A MOS transistor, can include a u-shaped cross-sectional channel region including spaced apart protruding portions separated by a trench and connected to one another by a connecting portion of the channel region at lower ends of the spaced apart protruding portions of the channel region. First and second impurity regions can be located at opposite ends of the -shaped cross-sectional channel region and separated from one another by the trench. A gate electrode can cover at least a planar face of the u-shaped cross-sectional channel region including the spaced apart protruding portions and the connecting portion and exposing the first and second impurity regions.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Ji-Young Kim, Hyeong-Sun Hong
  • Patent number: 8946816
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers and the active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 3, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Patent number: 8940604
    Abstract: The disclosure relates to an integrated circuit comprising a nonvolatile memory on a semiconductor substrate. The integrated circuit comprises a doped isolation layer implanted in the depth of the substrate, isolated conductive trenches reaching the isolation layer and forming gates of selection transistors of memory cells, isolation trenches perpendicular to the conductive trenches and reaching the isolation layer, and conductive lines parallel to the conductive trenches, extending on the substrate and forming control gates of charge accumulation transistors of memory cells. The isolation trenches and the isolated conductive trenches delimit a plurality of mini wells in the substrate, the mini wells electrically isolated from each other, each having a floating electrical potential and comprising two memory cells.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 27, 2015
    Assignee: STMicroelectronics (Rousset) SAS
    Inventor: Francesco La Rosa
  • Patent number: 8937350
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 20, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8933508
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 13, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8907411
    Abstract: A memory device and a manufacturing method of the same are provided. The memory device includes a substrate, a memory material layer, a first dielectric layer, a first gate layer, a second gate layer, and a source/drain (S/D) region. The substrate has a trench, and the memory material layer is formed on a sidewall of the trench. The first gate layer, the second gate layer, and the first dielectric layer, which is formed between the first gate layer and the second gate layer, are filled in the trench. The source/drain region is formed in the substrate and adjacent to the memory material layer. The first gate layer is extended in a direction perpendicular to a direction in which the source/drain region is extended.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 9, 2014
    Assignee: Macronix International Co., Ltd.
    Inventor: Chi-Sheng Peng
  • Patent number: 8878295
    Abstract: A DMOS transistor with a lower on-state drain-to-source resistance and a higher breakdown voltage utilizes a slanted super junction drift structure that lies along the side wall of an opening with the drain region at the bottom of the opening and the source region near the top of the opening.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 4, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, William French, Erika Mazotti, Richard Wendell Foote, Jr., Punit Bhola, Vladislav Vashchenko
  • Patent number: 8853779
    Abstract: An embodiment of a process for manufacturing a power semiconductor device envisages the steps of: providing a body of semiconductor material having a top surface and having a first conductivity; forming columnar regions having a second type of conductivity within the body of semiconductor material, and surface extensions of the columnar regions above the top surface; and forming doped regions having the second type of conductivity, in the proximity of the top surface and in contact with the columnar regions. The doped regions are formed at least partially within the surface extensions of the columnar regions; the surface extensions and the doped regions have a non-planar surface pattern, in particular with a substantially V-shaped groove.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 7, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Alfio Guarnera, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 8841722
    Abstract: A semiconductor device includes a semiconductor substrate having a first groove. The first groove has a bottom and first and second side surfaces opposite to each other. A first gate insulator extends alongside the first side surface. A first gate electrode is formed in the first groove and on the first gate insulator. A second gate insulator extends alongside the second side surface. A second gate electrode is formed in the first groove and on the second gate insulator. The second gate electrode is separate from the first gate electrode.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 23, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Masayoshi Sammi
  • Patent number: 8836024
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate, wherein the patterned semiconductor layer defines first and second trenches. The electronic device can also include a first conductive structure within the first trench, a gate electrode within the first trench and overlying the first conductive structure, a first insulating member within the second trench, and a second conductive structure within the second trench. The second conductive structure can include a first portion and a second portion overlying the first portion, the first insulating member can be disposed between the patterned semiconductor layer and the first portion of the second conductive structure; and the second portion of the second conductive structure can contact the patterned semiconductor layer at a Schottky region. Processes of forming the electronic device can take advantage of integrating formation of the Schottky region into a contact process flow.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Balaji Padmanabhan, James Sellers
  • Patent number: 8836023
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: September 16, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8829605
    Abstract: A MOSFET includes: a substrate made of silicon carbide and having a first trench and a second trench formed therein, the first trench having an opening at the main surface side, the second trench having an opening at the main surface side and being shallower than the first trench; a gate insulating film; a gate electrode; and a source electrode disposed on and in contact with a wall surface of the second trench. The substrate includes a source region, a body region, and a drift region. The first trench is formed to extend through the source region and the body region and reach the drift region. The second trench is formed to extend through the source region and reach the body region.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi, Shinji Matsukawa
  • Patent number: 8829602
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8823096
    Abstract: A device includes a semiconductor region in a semiconductor chip, a gate dielectric layer over the semiconductor region, and a gate electrode over the gate dielectric. A drain region is disposed at a top surface of the semiconductor region and adjacent to the gate electrode. A gate spacer is on a sidewall of the gate electrode. A dielectric layer is disposed over the gate electrode and the gate spacer. A conductive field plate is over the dielectric layer, wherein the conductive field plate has a portion on a drain side of the gate electrode. A deep metal via is disposed in the semiconductor region. A source electrode is underlying the semiconductor region, wherein the source electrode is electrically shorted to the conductive field plate through the deep metal via.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Ruey-Hsin Liu, Chun-Wai Ng
  • Patent number: 8802530
    Abstract: A semiconductor power device includes a thick bottom insulator formed in a lower portion of a trench in a semiconductor epitaxial region. An electrically conductive gate electrode is formed in the trench above the bottom insulator. The gate electrode is electrically insulated from the epitaxial region by the bottom insulator and a gate insulator. Charge is deliberately induced in the thick bottom insulator proximate an interface between the bottom insulator and the epitaxial semiconductor region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Anup Bhalla, Daniel Ng
  • Patent number: 8785275
    Abstract: Methods for fabricating an electronic device and electronic devices therefrom are provided. A method includes forming one or more masking layers on a semiconducting surface of a substrate and forming a plurality of dielectric isolation features and a plurality of fin-type projections using the masking layer. The method also includes processing the masking layers and the plurality of fin-type projections to provide an inverted T-shaped cross-section for the plurality of fin-type projections that includes a distal extension portion and a proximal base portion. The method further includes forming a plurality of bottom gate layers on the distal extension portion and forming a plurality of control gate layers on the plurality of dielectric isolation features and the plurality of bottom gate layers.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 22, 2014
    Assignee: Spansion LLC
    Inventors: Chun Chen, Shenqing Fang
  • Patent number: 8753935
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers and the active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 17, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Patent number: 8748979
    Abstract: Disclosed is a semiconductor device whose breakdown voltage is made high by controlling local concentration of an electric field. A source region faces a second plane, one of side faces of a groove part, and a part thereof extends in a direction in parallel to a nodal line of first and second planes. A drift region faces a third plane being the other side face of the groove part opposite to the second plane with a part thereof extending in a direction parallel to the nodal line of the first plane and the third plane, and is formed at a lower concentration than the source region. The drain region is provided so as to be placed on the other side of the drift region opposite to the groove part and so as to touch the drift region, and is formed at a higher concentration than the drift region.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: June 10, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Takeda
  • Patent number: 8742501
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: June 3, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 8735249
    Abstract: A trenched power semiconductor device on a lightly doped substrate is provided. Firstly, a plurality of trenches including at least a gate trench and a contact window are formed on the lightly doped substrate. Then, at least two trench-bottom heavily doped regions are formed at the bottoms of the trenches. These trench-bottom heavily doped regions are then expanded to connect with each other by using thermal diffusion process so as to form a conductive path. Afterward, the gate structure and the well are formed above the trench-bottom heavily doped regions, and then a conductive structure is formed in the contact window to electrically connect the trench-bottom heavily doped regions to an electrode.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 27, 2014
    Assignee: Great Power Semiconductor Corp.
    Inventors: Yi-Yun Tsai, Yuan-Shun Chang, Kao-Way Tu
  • Patent number: 8710586
    Abstract: A SiC semiconductor device includes: a substrate, a drift layer, and a base region stacked in this order; first and second source regions and a contact layer in the base region; a trench penetrating the source and base regions; a gate electrode in the trench; an interlayer insulation film with a contact hole covering the gate electrode; a source electrode coupling with the source region and the contact layer via the contact hole; a drain electrode on the substrate; and a metal silicide film. The high concentration second source region is shallower than the low concentration first source region, and has a part covered with the interlayer insulation film, which includes a low concentration first portion near a surface and a high concentration second portion deeper than the first portion. The metal silicide film on the second part has a thickness larger than the first portion.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: April 29, 2014
    Assignees: DENSO CORPORATION, Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshimasa Yamamoto, Masahiro Sugimoto, Hidefumi Takaya, Jun Morimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
  • Patent number: 8686492
    Abstract: Methods for fabricating an electronic device and electronic devices therefrom are provided. A method includes forming one or more masking layers on a semiconducting surface of a substrate and forming a plurality of dielectric isolation features and a plurality of fin-type projections using the masking layer. The method also includes processing the masking layers and the plurality of fin-type projections to provide an inverted T-shaped cross-section for the plurality of fin-type projections that includes a distal extension portion and a proximal base portion. The method further includes forming a plurality of bottom gate layers on the distal extension portion and forming a plurality of control gate layers on the plurality of dielectric isolation features and the plurality of bottom gate layers.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 1, 2014
    Assignee: Spansion LLC
    Inventors: Chun Chen, Shenqing Fang
  • Patent number: 8680610
    Abstract: A trench MOSFET comprising source regions having a doping profile of a Gaussian-distribution along the top surface of epitaxial layer and floating dummy cells formed between edge trench and active area is disclosed. A SBR of n region existing at cell corners renders the parasitic bipolar transistor difficult to turn on, and the floating dummy cells having no parasitic bipolar transistor act as buffer cells to absorb avalanche energy when gate bias is increasing for turning on channel, therefore, the UIS failure issue is avoided and the avalanche capability of the trench MOSFET is enhanced.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 25, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8659078
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: February 25, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8648398
    Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 11, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
  • Patent number: 8643090
    Abstract: In various embodiments, a semiconductor device is provided. The semiconductor device may include a first source/drain region, a second source/drain region, an active region electrically coupled between the first source/drain region and the second source/drain region, a trench disposed between the second source/drain region and at least a portion of the active region, a first isolation layer disposed over the bottom and the sidewalls of the trench, electrically conductive material disposed over the isolation layer in the trench, a second isolation layer disposed over the active region, and a gate region disposed over the second isolation layer. The electrically conductive material may be coupled to an electrical contact.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Patent number: 8643103
    Abstract: A semiconductor device for preventing an outer well from being separated by a trench gate electrode from the well of a cell region while suppressing increase in the gate resistance in which buried gate electrodes extending in a direction overlapping a gate contact region extend only before a gate electrode so as not to overlap the gate electrode, the source contact situated between each of the buried gate electrodes is shorter than the buried gate electrode in the vertical direction, the ends of the buried gate electrodes on the side of the gate electrode are connected with each other by a buried connecting electrode disposed before the gate electrode, the buried connecting electrode extends in a direction parallel with the longer side of the semiconductor device, and is not connected to the buried gate electrode on the side of the contact situated adjacent to the contact-side buried gate electrode.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: February 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiya Kawashima
  • Patent number: 8592894
    Abstract: A method of forming a power semiconductor device comprises forming a first semiconductor layer of a first conductivity type extending across the power semiconductor device; forming an epitaxial layer of the first conductivity type over the first semiconductor layer, the epitaxial layer having a doping concentration that increases from a first surface of the epitaxial layer towards the first semiconductor layer; forming a body region of a second conductivity type in the epitaxial layer extending from the first surface of the epitaxial layer into the epitaxial layer, wherein a junction between the body region and the epitaxial layer is at or substantially adjacent to a region of the epitaxial layer having a maximum doping concentration; and forming a gate region such that the gate region is adjacent at least a portion of the body region. In operation of the semiconductor device, the portion of the body region adjacent the gate region functions as a channel region of the semiconductor device.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 26, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean Michel Reynes, Evgueniy Stafanov, Yann Weber
  • Patent number: 8587047
    Abstract: A capacitor structure for a pumping circuit includes a substrate, a U-shaped bottom electrode in the substrate, a T-shaped top electrode in the substrate and a dielectric layer disposed between the U-shaped bottom and T-shaped top electrode. The contact area of the capacitor structure between the U-shaped bottom and T-shaped top electrode is extended by means of the cubic engagement of the U-shaped bottom electrode and the T-shaped top electrode.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 19, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Yu-Wei Ting, Shing-Hwa Renn, Yu-Teh Chiang, Chung-Ren Li, Tieh-Chiang Wu
  • Patent number: 8564061
    Abstract: A semiconductor device has elongate plug structures extending in the lateral direction. The plug structures serve as electrical lines in order to enable locally defined lateral current flows within the cell array, within edge regions or logic regions of the semiconductor device.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: October 22, 2013
    Assignee: Infineon Technologies AG
    Inventors: Walter Rieger, Franz Hirler, Martin Poelzl, Manfred Kotek
  • Patent number: 8552493
    Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Vijay Parthasarathy, Wayne Bryan Grabowski
  • Patent number: 8492816
    Abstract: Solutions for forming a silicided deep trench decoupling capacitor are disclosed. In one aspect, a semiconductor structure includes a trench capacitor within a silicon substrate, the trench capacitor including: an outer trench extending into the silicon substrate; a dielectric liner layer in contact with the outer trench; a doped polysilicon layer over the dielectric liner layer, the doped polysilicon layer forming an inner trench within the outer trench; and a silicide layer over a portion of the doped polysilicon layer, the silicide layer separating at least a portion of the contact from at least a portion of the doped polysilicon layer; and a contact having a lower surface abutting the trench capacitor, a portion of the lower surface not abutting the silicide layer.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: James S. Nakos, Edmund J. Sprogis, Anthony K. Stamper
  • Patent number: 8487362
    Abstract: A semiconductor device includes a semiconductor substrate having first and second regions, a first pillar transistor, and a second pillar transistor, wherein the first pillar transistor comprises a first semiconductor pillar disposed in the first region, and a first gate electrode covering a side surface of the first semiconductor pillar, wherein the second pillar transistor comprises a second semiconductor pillar disposed in the second region, and a second gate electrode covering a side surface of the second semiconductor pillar, wherein the first gate electrode is different in height from the second gate electrode, and the first and second pillar transistors form a CMOS device.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Hiro Nishi, Eiichirou Kakehashi
  • Patent number: 8476702
    Abstract: A semiconductor device according to the present invention includes: a body region of a first conductive type; trenches formed by digging in from a top surface of the body region; gate electrodes embedded in the trenches; source regions of a second conductive type formed at sides of the trenches in a top layer portion of the body region; and body contact regions of the first conductive type, penetrating through the source regions in a thickness direction and contacting the body region. The body contact regions are formed in a zigzag alignment in a plan view.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 2, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Naoki Izumi
  • Patent number: 8476701
    Abstract: A semiconductor device includes a transistor that has a trench formed in an element forming region of a substrate, a gate insulating film formed on side faces and a bottom face of the trench, a gate electrode formed on the gate insulating film so as to bury the trench, a source region formed on one side in the gate longitude direction, which is formed on the surface of the substrate, and a drain region formed on the other side in the gate longitude direction. Here, the gate electrode is formed so as to be exposed also on the substrate outside the trench, and the gate electrode is disposed so as to cover upper portions of both ends of the trench and so as to form at least one concave portion having a depth reaching the substrate in a center portion.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takehiro Ueda, Hiroshi Kawaguchi
  • Patent number: 8461625
    Abstract: An integrated circuit with stress enhanced channels, a design structure and a method of manufacturing the integrated circuit is provided. The method includes forming a dummy gate structure on a substrate and forming a trench in the dummy gate structure. The method further includes filling a portion of the trench with a strain inducing material and filling a remaining portion of the trench with gate material.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 11, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8455318
    Abstract: An embodiment of a process for manufacturing a power semiconductor device envisages the steps of: providing a body of semiconductor material having a top surface and having a first conductivity; forming columnar regions having a second type of conductivity within the body of semiconductor material, and surface extensions of the columnar regions above the top surface; and forming doped regions having the second type of conductivity, in the proximity of the top surface and in contact with the columnar regions. The doped regions are formed at least partially within the surface extensions of the columnar regions; the surface extensions and the doped regions have a non-planar surface pattern, in particular with a substantially V-shaped groove.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 4, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alfio Guarnera, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 8455942
    Abstract: A semiconductor device includes an active region including a surface region and a first recess formed below the surface region, the active region extending along a first direction; a device isolation structure provided on an edge of the active region; a gate line traversing over the surface region of the active region along a second direction orthogonal to the first direction; a second recess formed in the device isolation structure to receive a given portion of the gate line into the second recess; a first junction region formed in the active region beneath the first recess and on a first side of the gate line; and a second junction region formed on a second side of the gate line and above the first junction region. The first and second junction regions define a vertical-type channel that extends along lateral and vertical directions.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 4, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jung-Woo Park
  • Patent number: 8441065
    Abstract: A semiconductor device which combines reliability and the guarantee of electrical characteristics is provided. A power MOSFET and a protection circuit formed over the same semiconductor substrate are provided. The power MOSFET is a trench gate vertical type P-channel MOSFET and the conduction type of the gate electrode is assumed to be P-type. The protection circuit includes a planar gate horizontal type offset P-channel MOSFET and the conduction type of the gate electrode is assumed to be N-type. These gate electrode and gate electrode are formed in separate steps.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 14, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hirokatsu Suzuki, Atsushi Fujiki, Yoshito Nakazawa
  • Patent number: 8431989
    Abstract: This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one of the cells constituting an active cell has a source region disposed next to a trenched gate electrically connecting to a gate pad and surrounding the cell. The trenched gate further has a bottom-shielding electrode filled with a gate material disposed below and insulated from the trenched gate. At least one of the cells constituting a source-contacting cell surrounded by the trench with a portion functioning as a source connecting trench is filled with the gate material for electrically connecting between the bottom-shielding electrode and a source metal disposed directly on top of the source connecting trench.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 30, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Sik K. Lui
  • Patent number: 8426911
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: April 23, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8409954
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorous. The novel red Phosphorous doped substrate enables a desirable low drain-source resistance.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: April 2, 2013
    Assignee: Vishay-Silconix
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Patent number: 8405145
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: March 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8399925
    Abstract: A termination structure with multiple embedded potential spreading capacitive structures (TSMEC) and method are disclosed for terminating an adjacent trench MOSFET atop a bulk semiconductor layer (BSL) with bottom drain electrode. The BSL has a proximal bulk semiconductor wall (PBSW) supporting drain-source voltage (DSV) and separating TSMEC from trench MOSFET. The TSMEC has oxide-filled large deep trench (OFLDT) bounded by PBSW and a distal bulk semiconductor wall (DBSW). The OFLDT includes a large deep oxide trench into the BSL and embedded capacitive structures (EBCS) located inside the large deep oxide trench and between PBSW and DBSW for spatially spreading the DSV across them. In one embodiment, the EBCS contains interleaved conductive embedded polycrystalline semiconductor regions (EPSR) and oxide columns (OXC) of the OFLDT, a proximal EPSR next to PBSW is connected to an active upper source region and a distal EPSR next to DBSW is connected to the DBSW.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 19, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaobin Wang, Anup Bhalla, Hamza Yilmaz, Daniel Ng
  • Patent number: RE44547
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: October 22, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, John M. Parsey, Peter J. Zdebel, Gordon M. Grivna
  • Patent number: RE45365
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Components Industries
    Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna