With Nonplanar Structure (e.g., Gate Or Source Or Drain Being Nonplanar) (epo) Patents (Class 257/E29.267)
  • Patent number: 11967633
    Abstract: A method for forming at least one doped region of a transistor includes providing a stack having an insulating layer, an active layer, and a gate pattern having a first lateral flank and removing a first portion of the active layer not overlaid by the gate pattern and extending down to the gate pattern, at the edge of a second portion of the active layer overlaid by the gate pattern, so as to expose an edge of the second portion. The edge extends substantially in a continuation of the lateral flank of the gate pattern. The method also includes forming a first spacer having an L shape and having a basal portion in contact with the insulating layer and a lateral portion in contact with the lateral flank; forming a second spacer on the first spacer; removing the basal portion of the first spacer by selective etching with respect to the second spacer, so as to expose the edge of the second portion; and forming the doped region by epitaxy from the exposed edge.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 23, 2024
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Shay Reboh
  • Patent number: 11948981
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11948938
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device comprising a source and drain region arranged within a substrate. A conductive gate is disposed over a doped region of the substrate. A gate dielectric layer is disposed between the source region and the drain region and separates the conductive gate from the doped region. A bottommost surface of the gate dielectric layer is below a topmost surface of the substrate. First and second sidewall spacers are arranged along first and second sides of the conductive gate, respectively. An inner portion of the first sidewall spacer and an inner portion of the second sidewall spacer respectively cover a first and second top surface of the gate dielectric layer. A drain extension region and a source extension region respectively separate the drain region and the source region from the gate dielectric layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Shi-Chuang Hsiao, Yu-Hong Kuo
  • Patent number: 11940411
    Abstract: The invention provides a dry electroblotting system for dry blotting gels, in which the system includes an electroblotting transfer stack that comprises an analysis gel and a blotting membrane, an anode, a body of anodic gel matrix juxtaposed with the anode between the anode and the transfer stack, a cathode, and a body of cathodic gel matrix juxtaposed with the cathode between the cathode and the transfer stack, in which the anodic gel matrix and the cathodic gel matrix each comprise an ion source for electrophoretic transfer. The dry electroblotting system does not use any liquid buffers that are added to the system just before electroblotting (such as when the transfer stack is being assembled). The anode, the cathode, or both can be separate from a power supply and provided as part of a disposable electrode assembly that also includes a body of gel matrix that includes ions for electrophoretic transfer.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: March 26, 2024
    Assignee: THERMO FISHER ISRAEL LTD.
    Inventors: Ilana Margalit, Uri Yogev, Itay Sela, Yuri Katz, Adam Sartiel, Timothy Updyke
  • Patent number: 11916111
    Abstract: A single crystal semiconductor structure includes: an amorphous substrate; a single crystal semiconductor layer provided on the amorphous substrate; and a thin orienting film provided between the amorphous substrate and the single crystal semiconductor layer, wherein the thin orienting film is a single crystal thin film, and the thin orienting film has a non-zero thickness that is equal to or less than 10 times a critical thickness hc.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: February 27, 2024
    Assignees: SAMSUNG ELECTRONICS CO., LTD., iBeam Materials, Inc.
    Inventors: Junhee Choi, Joohun Han, Vladimir Matias
  • Patent number: 11908747
    Abstract: A method of processing a substrate includes forming a first layer stack on a substrate, the first layer stack including conductive layers and dielectric layers that alternate in the first layer stack. An opening is formed in the first layer stack, the opening extending through each of the conductive layers in the first layer stack such that sidewalls of each of the conductive layers are exposed within the opening. A second stack of layers is formed within the opening, the second stack of layers including channel layers of semiconductor material positioned in the second stack such that each channel layer contacts exposed sidewalls of a respective conductive layer of the first layer stack. Transistor channels are from the channel layers of the second stack such that each transistor channel extends between exposed sidewalls of a respective conductive layer within the opening.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 20, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11894262
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of non-planar transistors. An insulation structure is provided between channel, source, and drain regions of neighboring fins. The insulation structure is formed during back side processing, wherein at least a first portion of the isolation material between adjacent fins is recessed to expose a sub-channel portion of the semiconductor fins. A spacer material is then deposited at least on the exposed opposing sidewalls of the exposed sub-channel portion of each fin. The isolation material is then further recessed to form an air gap between gate, source, and drain regions of neighboring fins. The air gap electrically isolates the source/drain regions of one fin from the source/drain regions of an adjacent fin, and likewise isolates the gate region of the one fin from the gate region of the adjacent fin. The air gap can be filled with a dielectric material.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Patrick Morrow
  • Patent number: 11887897
    Abstract: Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include providing a substrate. The substrate can include a first type region and a second type region. The method can also include forming a multilayer stack on the substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming first and second openings through the multilayer stack to uncover the first and second type regions, respectively. The method can also include forming first and second vertical channel structures within the first and second openings, respectively. Each of the first and second vertical channel structures can have source, gate and drain regions being in contact with vertical sidewalls of the metal layers of the multilayer stack uncovered by a respective one of the first and second openings.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11876125
    Abstract: Aspects of the present disclosure provide a 3D semiconductor apparatus and a method for fabricating the same. The 3D semiconductor apparatus can include a first semiconductor device including sidewall structures of a first gate metal sandwiched by dielectric layers, a first epitaxially grown channel surrounded by the sidewall structures; a second semiconductor device formed on the same substrate adjacent to the first semiconductor device that includes sidewall structures of a second gate metal sandwiched by dielectric layers, a second epitaxially grown channel surrounded by the sidewall structures; a salicide layer formed between the first and second semiconductor devices and metallization contacting each of the S/D regions and the gate regions. The 3D semiconductor apparatus may include a P+ epitaxially grown channel formed on the same substrate adjacent to an N+ epitaxially grown channel, the P+ epitaxially grown channel separated from N+ epitaxially grown channel by a diffusion break.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 16, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11869936
    Abstract: A semiconductor device includes a fin structure including a recess formed in an upper surface of the fin structure, an inner gate formed in the recess of the fin structure, and an outer gate formed outside and around the fin structure.
    Type: Grant
    Filed: August 14, 2021
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Marc Adam Bergendahl, Gauri Karve, Fee Li Lie, Eric R. Miller, Robert Russell Robison, John Ryan Sporre, Sean Teehan
  • Patent number: 11869937
    Abstract: A semiconductor device including a fin structure including a recess, a first gate formed in the recess of the fin structure, and a second gate formed outside the fin structure.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Marc Adam Bergendahl, Gauri Karve, Fee Li Lie, Eric R. Miller, Robert Russell Robison, John Ryan Sporre, Sean Teehan
  • Patent number: 11869972
    Abstract: A transistor structure includes a gate structure, a channel region, a drain region and a source region. The gate structure is positioned above a silicon surface of a first silicon material, the channel region is under the silicon surface, and the channel region includes a first terminal and a second terminal. The drain/source region is independent and not derived from the first silicon material, the drain region includes a first predetermined physical boundary directly connected to the first terminal of the channel region, and the source region includes a second predetermined physical boundary directly connected to the second terminal of the channel region. The drain/source region includes a lower portion below the silicon surface and the bottom of the lower portion of the drain/source region is confined to an isolator, and sidewalls of the drain/source region are confined to spacers except sidewalls of the lower portion of the drain/source region.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: January 9, 2024
    Assignees: Etron Technology, Inc., Invention And Collaboration Laboratory Pte. Ltd.
    Inventor: Chao-Chun Lu
  • Patent number: 11862467
    Abstract: A method of manufacturing a semiconductor structure, comprising providing a substrate; forming a fin structure over the substrate; depositing an insulation material over the fin structure; performing a plurality of ion implantation cycles in-situ with implantation energy increased or decreased stepwise; and removing at least a portion of the insulation material to expose a portion of the fin structure.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Chung Chen, Chung-Hao Chu, Chi-Feng Huang, Victor Chiang Liang
  • Patent number: 11843050
    Abstract: A method for forming a semiconductor arrangement comprises forming a fin over a semiconductor layer. A gate structure is formed over a first portion of the fin. A second portion of the fin adjacent to the first portion of the fin and a portion of the semiconductor layer below the second portion of the fin are removed to define a recess. A stress-inducing material is formed in the recess. A first semiconductor material is formed in the recess over the stress-inducing material. The first semiconductor material is different than the stress-inducing material.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Pei-Yu Wang, Sai-Hooi Yeong
  • Patent number: 11817499
    Abstract: In certain embodiments, a semiconductor device includes a substrate having an n-doped well feature and an epitaxial silicon germanium fin formed over the n-doped well feature. The epitaxial silicon germanium fin has a lower part and an upper part. The lower part has a lower germanium content than the upper part. A channel is formed from the epitaxial silicon germanium fin. A gate is formed over the epitaxial silicon germanium fin. A doped source-drain is formed proximate the channel.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Shu Kuan, Cheng-Han Lee
  • Patent number: 11810951
    Abstract: Disclosed are a semiconductor structure and method of forming the structure. The structure includes a field effect transistor (FET) with a channel region between source/drain regions that extend through a semiconductor layer and into an insulator layer, that include a first portion in the insulator layer, and a second portion on the first portion in the semiconductor layer and, optionally, extending above the semiconductor layer. The first portion is relatively wide, includes a shallow section below the second portion, and a deep section adjacent to the channel region and overlayed by the semiconductor layer. The uniquely shaped first portion boosts saturation current to be boosted to allow the height of the second portion to be reduced to minimize overlap capacitance. Optionally, each source/drain region includes multiple semiconductor materials including a stress-inducing semiconductor material grown laterally from the semiconductor layer to improve charge carrier mobility in the channel region.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: November 7, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jianwei Peng, Hong Yu, Viorel Ontalus
  • Patent number: 11749724
    Abstract: A semiconductor device includes a substrate, at least one semiconductor fin, and at least one epitaxy structure. The semiconductor fin is present on the substrate. The semiconductor fin has at least one recess thereon. The epitaxy structure is present in the recess of the semiconductor fin. The epitaxy structure includes a topmost portion, a first portion and a second portion arranged along a direction from the semiconductor fin to the substrate. The first portion has a germanium atomic percentage higher than a germanium atomic percentage of the topmost portion and a germanium atomic percentage of the second portion.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ming Chang, Chi-Wen Liu, Cheng-Chien Li, Hsin-Chieh Huang
  • Patent number: 11742199
    Abstract: First, an offset spacer including a stacked film of insulating films is formed on the upper surface of the semiconductor layer, the side surface of the gate electrode, and the side surface of the cap film. Next, a part of the insulating films is removed to expose the upper surface of the semiconductor layer. Next, in a state where the side surface of the gate electrode is covered with the insulating films, an epitaxial layer is formed on the exposed upper surface of the semiconductor layer. Here, among the offset spacers, the insulating film which is a silicon nitride film is formed at a position closest to the gate electrode, and the position of the upper end of the insulating film formed on the side surface of the gate electrode is higher than the position of the upper surface of the gate electrode.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: August 29, 2023
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Kazuhiko Segi
  • Patent number: 11735657
    Abstract: A method for fabricating a transistor includes providing a substrate, having a gate region and a first trench in the substrate at a first side of the gate region; forming a first gate insulating layer, disposed on a first portion of the gate region, opposite to the first trench; forming a second gate insulating layer, disposed on a second portion of the gate region and a first portion of the first trench abutting to the gate region, wherein the second gate insulating layer is thicker than the first gate insulating layer; forming a gate layer, disposed on the first and second gate insulating layers, having a downward protruding portion corresponding to the first trench; forming a first doped region in the substrate at least under the first trench; and forming a second doped region in the substrate at a second side of the gate region.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: August 22, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Tseng Hsun Liu, Min-Hsuan Tsai, Ke-Feng Lin, Ming-Yen Liu, Wen-Chung Chang, Cherng-En Sun
  • Patent number: 11676850
    Abstract: A semiconductor device and method of manufacturing the same are provided. The semiconductor device includes a substrate and a first isolation structure which has a first corner. The semiconductor device also includes a first well region with a first conductive type. The semiconductor device includes further includes a gate structure over the first well region and covers a portion of the first corner of the first isolation structure. In addition, the semiconductor device includes a first doped region and a second doped region disposed on two opposites of the gate structure. Each of the first doped region and the second doped region has the first conductive type. The semiconductor device also includes a first counter-doped region in the first well region with a second conductive type different from the first conductive type. The first counter-doped region covers the first corner of the first isolation structure.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Chen Chang, Yuan-Cheng Yang, Yun-Chi Wu
  • Patent number: 11653490
    Abstract: A semiconductor memory device including a substrate; a semiconductor pattern extending in a first horizontal direction on the substrate; bit lines extending in a second horizontal direction on the substrate perpendicular to the first horizontal direction, the bit lines being at a first end of the semiconductor pattern; word lines extending in a vertical direction on the substrate at a side of the semiconductor pattern; a capacitor structure on a second end of the semiconductor pattern opposite to the first end in the first horizontal direction, the capacitor structure including a lower electrode connected to the semiconductor pattern, an upper electrode spaced apart from the lower electrode, and a capacitor dielectric layer between the lower electrode and the upper electrode; and a capacitor contact layer between the second end of the semiconductor pattern and the lower electrode and including a pair of convex surfaces in contact with the semiconductor pattern.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 16, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seokho Shin, Taegyu Kang, Byeungmoo Kang, Joongchan Shin
  • Patent number: 11616128
    Abstract: A transistor structure includes a gate, a spacer, a channel region, a first concave, and a first conductive region. The gate is above a silicon surface. The spacer is above the silicon surface and at least covers a sidewall of the gate. The channel region is under the silicon surface. The first conductive region is at least partially formed in the first concave, wherein a conductive region of a neighborhood transistor structure next to the transistor structure is at least partially formed in the first concave.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: March 28, 2023
    Assignees: Etron Technology, Inc., Invention And Collaboration Laboratory Pte. Ltd.
    Inventors: Chao-Chun Lu, Li-Ping Huang
  • Patent number: 11594539
    Abstract: The present disclosure provides a semiconductor device with a composite dielectric structure and a method for forming the semiconductor device. The semiconductor device includes a conductive contact disposed over a semiconductor substrate, and a first dielectric layer disposed over the conductive contact. A top surface of the conductive contact is exposed by an opening. The semiconductor device also includes a bottom electrode extending along sidewalls of the opening and the top surface of the conductive contact, and a top electrode disposed over the bottom electrode and separated from the bottom electrode by a dielectric structure. The dielectric structure includes a second dielectric layer and dielectric portions disposed over the second dielectric layer. The dielectric portions cover top corners of the opening and extend partially along the sidewalls of the opening.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 28, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11557657
    Abstract: Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include forming a multilayer stack on a substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming at least one opening through the multilayer stack to uncover the substrate and forming at least two vertical channel structures within the opening that are stacked on each other. The vertical channel structures can have source, gate and drain regions being in contact with the metal layers of the multilayer stack, respectively. The method can also include removing a central portion of the vertical channel structures and filling the central portion of the vertical channel structures with a dielectric core. The dielectric core can isolate the vertical channel structures from each other and from the substrate.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 17, 2023
    Assignee: Tokyo Electron Limited
    Inventors: H. Jim Fulford, Mark I. Gardner
  • Patent number: 11525777
    Abstract: A system for optical imaging of defects on unpatterned wafers that includes an illumination module, relay optics, a segmented polarizer, and a detector. The illumination module is configured to produce a polarized light beam incident on a selectable area of an unpatterned wafer. The relay optics is configured to collect and guide, radiation scattered off the area, onto the polarizer. The detector is configured to sense scattered radiation passed through the polarizer. The polarizer includes at least four polarizer segments, such that (i) boundary lines, separating the polarizer segments, are curved outwards relative to a plane, perpendicular to the segmented polarizer, unless the boundary line is on the perpendicular plane, and (ii) when the area comprises a typical defect, a signal-to-noise ratio of scattered radiation, passed through the polarizer segments, is increased as compared to when utilizing a linear polarizer.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: December 13, 2022
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Yechiel Kapoano, Binyamin Kirshner, David Goldovsky
  • Patent number: 11522074
    Abstract: A semiconductor device includes a substrate, a first semiconductor fin, a second semiconductor fin, a gate structure, a plurality of source/drain structures, a shallow trench isolation (STI) oxide, and a dielectric layer. The first semiconductor fin extends upwardly from the substrate. The second semiconductor fin extends upwardly from the substrate. The gate structure extends across the first and second semiconductor fins. The source/drain structures are on the first and second semiconductor fins. The STI oxide extends continuously between the first and second semiconductor fins and has a U-shaped profile when viewed in a cross section taken along a lengthwise direction of the gate structure. The dielectric layer is partially embedded in the STI oxide and has a U-shaped profile when viewed in the cross section taken along the lengthwise direction of the gate structure.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Kuan-Lun Cheng, Chih-Hao Wang, Keng-Chu Lin, Shi-Ning Ju
  • Patent number: 11502194
    Abstract: An MOSFET manufacturing method, comprising: etching an oxide layer and a silicon nitride layer on a first conductivity type well region, and forming an opening exposing the first conductivity type well region; etching the first conductivity type well region to form a first trench; depositing a medium oxide layer and performing back etching; etching the first conductivity type well region to form a second trench that is connected to the first trench, and forming a grid on an inner wall of the second trench, forming a second conductivity type well region in the first conductivity type well region at the bottom of the second trench, and forming a source in the second conductivity type well region; and removing the oxide layer and the silicon nitride layer, and forming a drain at the first conductivity type well region outside of the trench.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: November 15, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Tse-huang Lo
  • Patent number: 11495686
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a gate structure on a substrate, forming a first spacer adjacent to the gate structure, forming a second spacer adjacent to the first spacer, forming an epitaxial layer adjacent to the second spacer, forming a second cap layer on the epitaxial layer, and then forming a first cap layer on the second cap layer. Preferably, a top surface of the first cap layer includes a V-shape and the first cap layer and the second cap layer are made of different materials.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: November 8, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Hsuan Tang, Chung-Ting Huang, Bo-Shiun Chen, Chun-Jen Chen, Yu-Shu Lin
  • Patent number: 11488978
    Abstract: A transistor is disclosed. The transistor includes a p-type region, an intrinsic region coupled to the p-type region, an n-type region coupled to the intrinsic region, and a gate electrode above the intrinsic region. The ferroelectric material is on a bottom, a first side and a second side of the gate electrode, and above the intrinsic region.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 1, 2022
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Brian Doyle, Ravi Pillarisetty, Abhishek Sharma, Elijah Karpov
  • Patent number: 11488837
    Abstract: A method for fabricating a high-voltage (HV) transistor is provided. The method includes providing a substrate, having a first isolation structure and a second isolation structure in the substrate and a recess in the substrate between the first and second isolation structures. Further, a hydrogen annealing process is performed over the recess. A sacrificial dielectric layer is formed on the recess. The sacrificial dielectric layer is removed, wherein a portion of the first and second isolation structures is also removed. A gate oxide layer is formed in the recess between the first and second isolation structures after the hydrogen annealing process.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 1, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Jung Hsu, Chun Yu Chen, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Patent number: 11474437
    Abstract: Disclosed herein is a method for increasing signal-to-noise (SNR) in optical imaging of defects on unpatterned wafers. The method includes: (i) irradiating a region of an unpatterned wafer with a substantially polarized, incident light beam, and (ii) employing relay optics to collect and guide, radiation scattered off the region, onto a segmented polarizer comprising at least four polarizer segments characterized by respective dimensions and polarization directions. The respective dimensions and polarization direction of each of the at least four polarizer segments are such that an overall power of background noise radiation, generated in the scattering of the incident light beam from the region and passed through all of the at least four polarizer segments, is decreased as compared to utilizing a linear polarizer.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 18, 2022
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Yechiel Kapoano, Binyamin Kirshner, David Goldovsky
  • Patent number: 11450768
    Abstract: A field effect transistor for a high voltage operation can include vertical current paths, which may include vertical surface regions of a pedestal semiconductor portion that protrudes above a base semiconductor portion. The pedestal semiconductor portion can be formed by etching a semiconductor material layer employing a gate structure as an etch mask. A dielectric gate spacer can be formed on sidewalls of the pedestal semiconductor portion. A source region and a drain region may be formed underneath top surfaces of the base semiconductor portion. Alternatively, epitaxial semiconductor material portions can be grown on the top surfaces of the base semiconductor portions, and a source region and a drain region can be formed therein. Alternatively, a source region and a drain region can be formed within via cavities in a planarization dielectric layer.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: September 20, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Mitsuhiro Togo
  • Patent number: 11424361
    Abstract: A first vertical T-FET has a source heavily doped with a source concentration of a source-type dopant, a drain doped with a drain concentration of a drain-type dopant, and a channel between the source and drain. The source, channel, and drain are stacked vertically in a fin or pillar perpendicular to a substrate. A gate stack encompasses the channel sides and has a drain overlap amount overlapping the drain sides and a source overlap amount overlapping the source sides. External contacts electrically connect the gate and source and/or drain. The source-type dopant and the drain-type dopant are opposite dopant types. In some embodiments, a second vertical T-FET is stacked on the first vertical T-FET. Different VT-FET devices are made by changing the materials, doping types and levels, and connections to the sources, channels, and drains. Device characteristics are designed/changed by changing the amount of source and drain overlaps of the gate stack(s).
    Type: Grant
    Filed: April 10, 2021
    Date of Patent: August 23, 2022
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Bahman Hekmatshoartabari, Alexander Reznicek
  • Patent number: 11417761
    Abstract: A transistor structure includes a substrate, having a gate region and a first trench in the substate at a first side of the gate region. Further, a first gate insulating layer is disposed on a first portion of the gate region, opposite to the first trench. A second gate insulating layer is disposed on a second portion of the gate region and a first portion of the first trench abutting to the gate region, wherein the second gate insulating layer is thicker than the first gate insulating layer. A gate layer is disposed on the first and second gate insulating layers, having a downward protruding portion corresponding to the first trench. A first doped region is in the substrate at least under the first trench. A second doped region is in the substrate at a second side of the gate region.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 16, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tseng Hsun Liu, Min-Hsuan Tsai, Ke-Feng Lin, Ming-Yen Liu, Wen-Chung Chang, Cherng-En Sun
  • Patent number: 11410890
    Abstract: A method includes providing a p-type S/D epitaxial feature and an n-type source/drain (S/D) epitaxial feature, forming a semiconductor material layer over the n-type S/D epitaxial feature and the p-type S/D epitaxial feature, processing the semiconductor material layer with a germanium-containing gas, where the processing of the semiconductor material layer forms a germanium-containing layer over the semiconductor material layer, etching the germanium-containing layer, where the etching of the germanium-containing layer removes the germanium-containing layer formed over the n-type S/D epitaxial feature and the semiconductor material layer formed over the p-type S/D epitaxial feature, and forming a first S/D contact over the semiconductor material layer remaining over the n-type S/D epitaxial feature and a second S/D contact over the p-type S/D epitaxial feature. The semiconductor material layer may have a composition similar to that of the n-type S/D epitaxial feature.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ding-Kang Shih, Pang-Yen Tsai
  • Patent number: 11404574
    Abstract: In certain embodiments, a semiconductor device includes a substrate having an n-doped well feature and an epitaxial silicon germanium fin formed over the n-doped well feature. The epitaxial silicon germanium fin has a lower part and an upper part. The lower part has a lower germanium content than the upper part. A channel is formed from the epitaxial silicon germanium fin. A gate is formed over the epitaxial silicon germanium fin. A doped source-drain is formed proximate the channel.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Shu Kuan, Cheng-Han Lee
  • Patent number: 11404370
    Abstract: A semiconductor device is provided. In an embodiment, the semiconductor device comprises a control region, a first power region, a second power region, an isolation region and/or a short circuit structure. The control region comprises a control terminal. The first power region comprises a first power terminal. The second power region comprises a second power terminal. The isolation region is between the control region and the first power region. The short circuit structure extends from the first power region, through the isolation region, to the control region. The short circuit structure is configured to form a low-resistive connection between the control region and the first power region during a failure state of the semiconductor device.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 2, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Basler, Andreas Huerner, Caspar Leendertz, Dethard Peters
  • Patent number: 11398552
    Abstract: High-voltage semiconductor device and method of forming the same, the high-voltage semiconductor device includes a substrate, a gate structure, a drain, a first insulating structure and a drain doped region. The gate structure is disposed on the substrate. The drain is disposed in the substrate, at one side of the gate structure. The first insulating structure is disposed on the substrate, under the gate structure to partially overlap with the gate structure. The drain doped region is disposed in the substrate, under the drain and the first insulating structure, and the drain doped region includes a discontinuous bottom surface.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 26, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsin Lin, Shin-Chen Lin, Yu-Hao Ho, Cheng-Tsung Wu, Chiu-Hao Chen
  • Patent number: 9024375
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: May 5, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Patent number: 9018739
    Abstract: The present application discloses a semiconductor device and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate; a first semiconductor layer on the semiconductor substrate; a second semiconductor layer surrounding the first semiconductor layer; a high k dielectric layer and a gate conductor formed on the first semiconductor layer; source/drain regions formed in the second semiconductor layer, wherein the second semiconductor layer has a slant sidewall in contact with the first semiconductor layer. The semiconductor device has an increased output current, an increased operating speed, and a reduced power consumption due to the channel region of high mobility.
    Type: Grant
    Filed: September 25, 2010
    Date of Patent: April 28, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Patent number: 8969156
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8901667
    Abstract: A non-planar semiconductor transistor device includes a substrate layer. Conductive channels extend between corresponding source and drain electrodes. A gate stack extending in a direction perpendicular to the conductive channels crosses over the plurality of conductive channels. The gate stack includes a dielectric layer running along the substrate and the plurality of conductive channels and arranged with a substantially uniform layer thickness, a work-function electrode layer covers the dielectric layer and is arranged with a substantially uniform layer thickness, and a metal layer, distinct from the work-function electrode layer, covers the work-function electrode layer and is arranged with a substantially uniform height with respect to the substrate such that the metal layer fills a gap between proximate conductive channels of the plurality of conductive channels.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Sivananda Kanakasabapathy
  • Patent number: 8836016
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8796097
    Abstract: Methods for forming a HEMT device are provided. The method includes forming an ultra-thin barrier layer on the plurality of thin film layers. A dielectric thin film layer is formed over a portion of the ultra-thin barrier layer to leave exposed areas of the ultra-thin barrier layer. A SAG S-D thin film layer is formed over the exposed areas of the ultra-thin barrier layer while leaving the dielectric thin film layer exposed. The dielectric thin film layer is then removed to expose the underlying ultra-thin barrier layer. The underlying ultra-thin barrier layer is treating with fluorine to form a treated area. A source and drain is added on the SAG S-D thin film layer, and a dielectric coating is deposited over the ultra-thin barrier layer treated with fluorine such that the dielectric coating is positioned between the source and the drain.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: August 5, 2014
    Assignee: University of South Carolina
    Inventors: Asif Khan, Qhalid Fareed, Vinod Adivarahan
  • Patent number: 8796759
    Abstract: A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary FinFET device includes a semiconductor substrate; a fin structure disposed over the semiconductor substrate; and a gate structure disposed on a portion of the fin structure. The gate structure traverses the fin structure and separates a source region and a drain region of the fin structure, the source and drain region defining a channel therebetween. The source and drain region of the fin structure include a strained source and drain feature. The strained source feature and the strained drain feature each include: a first portion having a first width and a first depth; and a second portion disposed below the first portion, the second portion having a second width and a second depth. The first width is greater than the second width, and the first depth is less than the second depth.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsu-Hsiu Perng, Chih Chieh Yeh, Tzu-Chiang Chen, Chia-Cheng Ho, Chih-Sheng Chang
  • Patent number: 8779509
    Abstract: A semiconductor device includes a doped layer which contains a first dopant of a first conductivity type. In the doped layer, a counter-doped zone is formed in an edge area that surrounds an element area of the semiconductor device. The counter-doped zone contains at least the first dopant and a second dopant of a second conductivity type, which is the opposite of the first conductivity type. A concentration of the second dopant is at least 20% and at most 100% of a concentration of the first dopant. The dopants in the counter-doped zone decrease charge carrier mobility and minority carrier lifetime such that the dynamic robustness of the semiconductor device is increased.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 15, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Franz Hirler
  • Publication number: 20140097487
    Abstract: In plasma doping a non-planar semiconductor device, a substrate having a non-planar semiconductor body formed thereon is obtained. The substrate having the non-planar semiconductor body may be placed into a chamber. A plasma may be formed in the chamber and the plasma may contain dopant ions. A first bias voltage may be generated to implant dopant ions into a region of the non-planar semiconductor body. A second bias voltage may be generated to implant dopant ions into the same region. In one example, the first bias voltage and the second bias voltage may be different.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Tzu-Shih YEN, Daniel TANG, Tsungnan CHENG
  • Patent number: 8652913
    Abstract: By providing a protection layer on a silicon/germanium material of high germanium concentration, a corresponding loss of strained semiconductor material may be significantly reduced or even completely avoided. The protection layer may be formed prior to critical cleaning processes and may be maintained until the formation of metal silicide regions. Hence, high performance gain of P-type transistors may be accomplished without requiring massive overfill during the selective epitaxial growth process.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Gehring, Maciej Wiatr, Andy Wei, Thorsten Kammler, Roman Boschke, Casey Scott
  • Patent number: 8648445
    Abstract: An MOS device includes a semiconductor layer of a first conductivity type and first and second source/drain regions of a second conductivity type formed in the semiconductor layer proximate an upper surface of the semiconductor layer. The first and second source/drain regions are spaced apart relative to one another. A gate is formed above and electrically isolated from the semiconductor layer, at least partially between the first and second source/drain regions. At least a given one of the first and second source/drain regions is configured having an effective width that is substantially greater than a width of a junction between the semiconductor layer and the given source/drain region.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 11, 2014
    Assignee: Agere Systems LLC
    Inventors: Muhammed Ayman Shibib, Shuming Xu
  • Patent number: 8637929
    Abstract: A disclosed MOS transistor has a drain region offset from a gate electrode structure, wherein the gate electrode structure includes at least a first gate electrode and a second gate electrode such that the second gate electrode is located at the drain side of the first gate electrode and the second gate electrode is isolated from the first gate electrode by an insulation film, and wherein the first and second gate electrodes are formed respectively on a first gate insulation film and a second gate insulation film having an increased thickness as compared with the first gate insulation film.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Shigeo Satoh, Takae Sukegawa