Monocrystalline Only (epo) Patents (Class 257/E29.286)
  • Publication number: 20100308405
    Abstract: A semiconductor device is disclosed that includes a semiconductor-on-insulator substrate including a buried insulator layer and an overlying semiconductor layer. Source extension and drain extension regions are formed in the semiconductor layer. A deep drain region and a deep source region are formed in the semiconductor layer. A drain metal-semiconductor alloy contact is located on the upper portion of the deep drain region and abuts the drain extension region. A source metal-semiconductor alloy contact abuts the source extension region. The deep source region is located below and contacts a first portion of the source alloy contact. The deep source region is not located below and does not contact a second portion of the source alloy contact, such that the second portion of the source alloy contact is an internal body contact that directly contacts the semiconductor layer.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: International Business Machines Corporation
    Inventors: JIN CAI, STEVEN J. KOESTER, AMLAN MAJUMDAR
  • Publication number: 20100301415
    Abstract: It is an object to form single-crystalline semiconductor layers with high mobility over approximately the entire surface of a glass substrate even when the glass substrate is increased in size. A first single-crystalline semiconductor substrate is bonded to a substrate having an insulating surface, the first single-crystalline semiconductor substrate is separated such that a first single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface, a second single-crystalline semiconductor substrate is bonded to the substrate having an insulating surface so as to overlap with at least part of the first single-crystalline semiconductor layer provided over the substrate having an insulating surface, and the second single-crystalline semiconductor substrate is separated such that a second single-crystalline semiconductor layer is left remaining over the substrate having an insulating surface.
    Type: Application
    Filed: August 10, 2010
    Publication date: December 2, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Koichiro TANAKA
  • Publication number: 20100295127
    Abstract: Disclosed are embodiments of a method of forming, on an SOI wafer, a planar FET with embedded and faceted source/drain stressors. The method incorporates a directional ion implant process to create amorphous regions at the bottom surfaces of source/drain recesses in a single crystalline semiconductor layer of an SOI wafer. Then, an etch process selective to different crystalline planes over others and further selective to single crystalline semiconductor material over amorphous semiconductor material can be performed in order to selectively adjust the shape (i.e., the profile) of the recess sidewalls without increasing the depth of the recesses. Subsequently, an anneal process can be performed to re-crystallize the amorphous regions and an epitaxial deposition process can be used to fill the recesses with source/drain stressor material. Also disclosed are embodiments of a planar FET structure and a design structure for the planar FET.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Johnathan E. Faltermeier, Toshiharu Furukawa, Xuefeng Hua
  • Publication number: 20100295129
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: August 4, 2010
    Publication date: November 25, 2010
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20100295124
    Abstract: It is the purpose of the invention to provide a MOS transistor (20) which guarantees a voltage as high as possible, has a required area as small as possible and which enables the integration into integrated smart power circuits. It results there from as an object of the invention to form the edge structure of the transistors such that it certainly fulfils the requirements on high breakthrough voltages, a good isolation to the surrounding region and requires a minimum of surface on the silicon disc anyway. This is achieved with an elongated MOS power transistor having drain (30) and source (28) for high rated voltages above 100V, wherein the transistor comprises an isolating trench (22) in the edge area for preventing an early electrical breakthrough below the rated voltage. The trench is lined with an isolating material (70, 72), wherein the isolating trench terminates the circuit component.
    Type: Application
    Filed: June 14, 2007
    Publication date: November 25, 2010
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventor: Ralf Lerner
  • Publication number: 20100289037
    Abstract: The present invention provides a semiconductor device having a plurality of MOS transistors with controllable threshold values in the same face and easy to manufacture, a manufacturing method thereof and a display device. The invention is a semiconductor device having a plurality of MOS transistors in the same face each having a structure formed by stacking a semiconductor active layer, a gate insulator, and a gate electrode, wherein the semiconductor device includes: an insulating layer stacked on a side opposite to a gate electrode side of the semiconductor active layer; and a conductive electrode stacked on a side opposite to a semiconductor active layer side of the insulating layer and extending over at least two of the plurality of MOS transistors.
    Type: Application
    Filed: October 10, 2008
    Publication date: November 18, 2010
    Inventors: Shin Matsumoto, Yutaka Takafuji, Yasumori Fukushima, kenshi Tada
  • Publication number: 20100283103
    Abstract: A method for manufacturing a semiconductor device includes: a first step of forming a base layer, which includes an element portion having a gate electrode and a flat interlayer insulating film formed so as to cover the gate electrode; a second step of ion implanting a delamination material into the base layer to form a delamination layer; a third step of bonding the base layer to a substrate; and a fourth step of separating and removing a part of the base layer along the delamination layer. An implantation depth of the delamination material in the gate electrode is substantially the same as that of the delamination material in the interlayer insulating film.
    Type: Application
    Filed: November 14, 2008
    Publication date: November 11, 2010
    Inventors: Michiko Takei, Yasumori Fukushima, Kazuhide Tomiyasu, Masao Moriguchi, Yutaka Takafuji
  • Publication number: 20100283105
    Abstract: A technique of manufacturing a semiconductor device in which etching in formation of a contact hole can be easily controlled is proposed. A semiconductor device includes at least a semiconductor layer formed over an insulating surface; a first insulating layer formed over the semiconductor layer; a gate electrode formed over the first insulating layer; a second insulating layer formed over the gate electrode; and a conductive layer formed over the second insulating layer connected to the semiconductor layer via an opening which is formed at least in the semiconductor layer and the second insulating layer and partially exposes the insulating surface. The conductive layer is electrically connected to the semiconductor layer at the side surface of the opening which is formed in the semiconductor layer.
    Type: Application
    Filed: July 21, 2010
    Publication date: November 11, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hideomi SUZAWA, Shinya SASAGAWA, Motomu KURATA
  • Publication number: 20100283104
    Abstract: An element portion forming step includes an insulating film forming step of forming an insulating film on a surface of a base layer, a conductive layer forming step of uniformly forming a conductive layer on a surface of the insulating film, and an electrode forming step of patterning the conductive layer to form an electrode. A delamination layer forming step of ion implanting a delamination material into the base layer to form a delamination layer is performed before the electrode forming step.
    Type: Application
    Filed: November 25, 2008
    Publication date: November 11, 2010
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kenshi Tada, Yutaka Takafuji, Yasumori Fukushima, Kazuhide Tomiyasu, Michiko Takei, Kazuo Nakagawa, Shin Matsumoto
  • Patent number: 7816735
    Abstract: Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee, Byeong-Chan Lee, InSoo Jung
  • Publication number: 20100258870
    Abstract: A Fin field effect transistor includes a fin disposed over a substrate. A gate is disposed over a channel portion of the fin. A source region is disposed at a first end of the fin. A drain region is disposed at a second end of the fin. The source region and the drain region are spaced from the substrate by at least one air gap.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 14, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Rung HSU, Chen-Hua YU, Chen-Nan YEH
  • Publication number: 20100237418
    Abstract: It is an object of the present invention to manufacture a thin film transistor having a required property without complicating steps and devices. It is another object of the present invention to provide a technique for manufacturing a semiconductor device having high reliability and better electrical characteristics with a higher yield at lower cost. In the present invention, a lightly doped impurity region is formed in a source region side or a drain region side of a semiconductor layer covered with a gate electrode layer in a thin film transistor. The semiconductor layer is doped diagonally to the surface thereof using the gate electrode layer as a mask to form the lightly doped impurity region. Therefore, the properties of the thin film transistor can be minutely controlled.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Tetsuji YAMAGUCHI, Hiromichi GODO
  • Publication number: 20100230752
    Abstract: A structure, and a method for forming the same. The structure includes a semiconductor substrate which includes a top substrate surface, a buried dielectric layer on the top substrate surface, N active semiconductor regions on the buried dielectric layer, N active devices on the N active semiconductor regions, a plurality of dummy regions on the buried dielectric layer, a protection layer on the N active devices and the N active semiconductor regions, but not on the plurality of dummy regions. The N active devices comprise first active regions which comprise a first material. The plurality of dummy regions comprise first dummy regions which comprise the first material. A first pattern density of the first active regions and the first dummy regions is uniform across the structure. A trench in the buried dielectric layer such that side walls of the trench are aligned with the plurality of dummy regions.
    Type: Application
    Filed: August 26, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan Bernard Botula, David S. Collins, Alvin Jose Joseph, Howard Smith Landis, James Albert Slinkman
  • Publication number: 20100230753
    Abstract: A varactor diode includes a portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate and a gate electrode located thereupon. A first electrode having a doping of a first conductivity type laterally abuts a doped semiconductor region having the first conductivity type, which laterally abuts a second electrode having a doping of a second conductivity type, which is the opposite of the first conductivity type. A hyperabrupt junction is formed between the second doped semiconductor region and the second electrode. The gate electrode controls the depletion of the first and second doped semiconductor regions, thereby varying the capacitance of the varactor diode. A design structure for the varactor diode is also provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Publication number: 20100230755
    Abstract: A silicon substrate (SOI) is placed on a buried oxide layer (BOX). An MOS transistor is produced in an active zone of the substrate which is defined by an isolating region. A gate region and source and drain regions, which between them define a channel, are produced so that the gate region extends above the channel. The isolating region is produced by localized formation of a zone of material that can be selectively etched with respect to silicon. That material is selectively etched, and a dielectric material is deposited in the etched feature. The etching is carried out after the gate region has been produced. An upper surface of the substrate and an upper surface of the isolating region are flush with each other so as to define a planar surface on which the transistor gate region is formed.
    Type: Application
    Filed: May 25, 2010
    Publication date: September 16, 2010
    Applicants: STMicroelectronics (Crolles 2) SAS, Commissariat a L'Energie Atomique
    Inventors: Philippe Coronel, Claire Gallon, Claire Fenouillet-Beranger
  • Publication number: 20100213516
    Abstract: On a surface of a semiconductor substrate, a plurality of terraces formed stepwise by an atomic step are formed in the substantially same direction. Using the semiconductor substrate, a MOS transistor is formed so that no step exists in a carrier traveling direction (source-drain direction).
    Type: Application
    Filed: October 6, 2008
    Publication date: August 26, 2010
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Tomoyuki Suwa, Rihito Kuroda, Hideo Kudo, Yoshinori Hayamizu
  • Publication number: 20100213547
    Abstract: A semiconductor device includes a semiconductor island having at least one electrical dopant atom and encapsulated by dielectric materials including at least one dielectric material layer. At least two portions of the at least one dielectric material layer have a thickness less than 2 nm to enable quantum tunneling effects. A source-side conductive material portion and a drain-side conductive material portion abuts the two portions of the at least one dielectric material layer. A gate conductor is located on the at least one dielectric material layer between the source-side conductive material portion and the drain-side conductive material portion. The potential of the semiconductor island responds to the voltage at the gate conductor to enable or disable tunneling current through the two portions of the at least one dielectric material layer. Design structures for the semiconductor device are also provided.
    Type: Application
    Filed: December 22, 2009
    Publication date: August 26, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhong-Xiang He, Qizhi Liu
  • Publication number: 20100207212
    Abstract: To prevent bubbles from occurring along a transfer interface, the present method includes the steps of: forming a peeled layer 10 in a transferred member 6 by implanting a peeled-layer forming substance into the transferred member 6; forming a planar surface in the transferred member 6 by planarizing a surface of the transferred member 6; forming a composite including the transferred member 6 and a glass substrate 2 by directly combining the transferred member 6 via the planar surface with a surface of the glass substrate 2; and peeling a part of the transferred member 6 from the composite along the peeled layer 10 serving as an interface by heat-treating the composite.
    Type: Application
    Filed: October 21, 2008
    Publication date: August 19, 2010
    Inventors: Michiko Takei, Shin Matsumoto, Yasumori Fukushima, Yutaka Takafuji
  • Patent number: 7768070
    Abstract: A semiconductor device having a field effect transistor and a method of fabricating the same. In-situ doped epitaxial patterns are respectively formed at both sidewalls of a protruded channel pattern from a substrate by performing an in-situ doped epitaxial growth process. The in-situ doped epitaxial pattern has a conformal impurity concentration throughout. Accordingly, source/drain regions with a conformal impurity concentration are connected throughout a channel width of a channel region including both sidewalls of a protruded channel pattern. As a result, it is possible to maximize a driving current of the filed effect transistor, and an on-off characteristic can be highly stabilized.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Jung Yun, Hye-Jin Cho, Dong-Won Kim, Sung-Min Kim
  • Publication number: 20100181619
    Abstract: A method of forming a field effect transistor comprises providing a substrate comprising a biaxially strained layer of a semiconductor material. A gate electrode is formed on the biaxially strained layer of semiconductor material. A raised source region and a raised drain region are formed adjacent the gate electrode. Ions of a dopant material are implanted into the raised source region and the raised drain region to form an extended source region and an extended drain region. Moreover, in methods of forming a field effect transistor according to embodiments of the present invention, a gate electrode can be formed in a recess of a layer of semiconductor material. Thus, a field effect transistor wherein a source side channel contact region and a drain side channel contact region located adjacent a channel region are subject to biaxial strain can be obtained.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 22, 2010
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann
  • Publication number: 20100148260
    Abstract: In one embodiment, a method of fabricating a semiconductor device having a crystalline semiconductor layer includes preparing a semiconductor substrate and forming a preliminary active pattern on the semiconductor substrate. The preliminary active pattern includes a barrier pattern and a non-single crystal semiconductor pattern. A sacrificial non-single crystal semiconductor layer covers the preliminary active pattern and the semiconductor substrate. By crystallizing the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern, using the semiconductor substrate as a seed layer, the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern are changed to a sacrificial crystalline semiconductor layer and a crystalline semiconductor pattern, respectively. The crystalline semiconductor pattern and the barrier pattern constitute an active pattern. The sacrificial crystalline semiconductor layer is removed.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-Min Kim, Eun-Jung Yun
  • Publication number: 20100140707
    Abstract: Metal-oxide semiconductor field effect transistor (MOSFET) devices having metal gate stacks and techniques for improving performance thereof are provided. In one aspect, a metal-oxide semiconductor device is provided comprising a substrate having a buried oxide layer at least a portion of which is configured to serve as a primary background oxygen getterer of the device; and a gate stack separated from the substrate by an interfacial oxide layer. The gate stack comprises a high-K layer over the interfacial oxide layer; and a metal gate layer over the high-K layer.
    Type: Application
    Filed: January 5, 2010
    Publication date: June 10, 2010
    Applicant: International Business Machines Corporation
    Inventors: Amlan Majumdar, Renee Tong Mo, Zhibin Ren, Jeffrey Sleight
  • Publication number: 20100117152
    Abstract: Provided is a semiconductor device. The semiconductor device includes a semiconductor substrate, a first isolation dielectric pattern on the semiconductor substrate, and an active pattern on the first isolation dielectric pattern. A semiconductor pattern is interposed between the semiconductor substrate and the first isolation dielectric pattern, and a second isolation dielectric pattern is interposed between the semiconductor substrate and the semiconductor pattern. The semiconductor substrate and the semiconductor pattern are electrically connected by a connection pattern.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Inventor: Chang-Woo Oh
  • Publication number: 20100117151
    Abstract: The semiconductor device with a ?-shaped semiconductor conductive layer manufactured by the manufacturing method thereof utilizes two pathways of the ?-shaped semiconductor conductive layer connected to the silicon layer of a silicon-on-insulator (SOI) substrate for heat dissipation, so as to reduce the self-heating effects (SHEs). Furthermore, the semiconductor device of the invention utilizes the self-aligned technique to form a self-aligned structure with a gate unit and the silicon layer, so that the process is simple, the production cost is reduced, the compacted ability and the yield are improved, the off current and short-channel effects (SCEs) are still similar to a conventional UTSOI MOSFET, and the stability and the reliability are therefore superior.
    Type: Application
    Filed: May 7, 2009
    Publication date: May 13, 2010
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Jyi-Tsong Lin, Yi-Chuen Eng, Po-Hsieh Lin
  • Publication number: 20100084709
    Abstract: When a bulk silicon substrate and an SOI substrate are used separately, a board area is increased and so it is impossible to reduce the size of a semiconductor device as a whole. On the other hand, when an SOI-type MISFET and a bulk-type MISFET are formed on a same substrate, the SOI-type MISFET and the bulk-type MISFET should be formed in separate steps respectively, and thus the process gets complicated. A single crystal semiconductor substrate and an SOI substrate separated from the single crystal semiconductor substrate by a thin buried insulating film and having a thin single crystal semiconductor thin film (SOI layer) are used, and well diffusion layer regions, drain regions, gate insulating films and gate electrodes of the SOI-type MISFET and the bulk-type MISFET are formed in same steps. Since the bulk-type MISFET and the SOI-type MISFET can be formed on the same substrate, the board area can be reduced.
    Type: Application
    Filed: June 30, 2006
    Publication date: April 8, 2010
    Inventors: Ryuta Tsuchiya, Shinichiro Kimura
  • Publication number: 20100078723
    Abstract: Field programmable device (FPD) chips with large logic capacity and field programmability that are in-circuit programmable are described. FPDs use small versatile nonvolatile nanotube switches that enable efficient architectures for dense low power and high performance chip implementations and are compatible with low cost CMOS technologies and simple to integrate.
    Type: Application
    Filed: August 6, 2009
    Publication date: April 1, 2010
    Applicant: NANTERO, INC.
    Inventors: Claude L. BERTIN, Rinn CLEAVELIN, Thomas RUECKES
  • Publication number: 20100078722
    Abstract: This invention provides methods for fabricating high speed TFTs from silicon-on-insulator and bulk single crystal semiconductor substrates, such as Si(100) and Si(110) substrates. The TFTs may be designed to have a maximum frequency of oscillation of 3 GHz, or better.
    Type: Application
    Filed: September 8, 2006
    Publication date: April 1, 2010
    Inventors: Zhenqiang Ma, Hao-Chih Yuan, Guogong Wang
  • Publication number: 20100072551
    Abstract: A semiconductor device includes a semiconductor layer formed on an insulating layer; a gate electrode disposed on said semiconductor layer via a gate insulating film; a source/drain layer composed by including an alloy layer or a metal layer with a bottom surface in contact with the insulating layer, with joint surfaces to a channel region disposed along crystal orientation faces of said semiconductor layer; and impurity-doped layers formed in a self-aligned manner along interfaces of the alloy layer or the metal layer, and said semiconductor layer.
    Type: Application
    Filed: November 25, 2009
    Publication date: March 25, 2010
    Applicants: SEIKO EPSON CORPORATION, RENESAS TECHNOLOGY CORPORATION
    Inventors: Yukimune Watanabe, Shinji Migita, Nobuyuki Mise
  • Publication number: 20100073352
    Abstract: A current storing circuit capable of having a small area, a simple structure with the small number of devices, a low consumption current operation and high yield in manufacturing is provided. Applying the current storing circuit to the current-driving type of display device such as an OLED display device can improve the aperture rate of pixels and reliability of the display device as well as highly functionalize the display device. The invention is characterized by using a new semiconductor element in a shape of a transistor having plural drains or sources. When the semiconductor elements is used for both of a writing element and a driving element, reading in and storing a current value and outputting the current can be performed by only the two semiconductor elements, so that the area occupied by the devices would be easily reduced significantly.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Kazutaka INUKAI
  • Publication number: 20100052054
    Abstract: The present invention relates to a method of manufacturing a semiconductor memory device and a semiconductor memory device manufactured using the same. A method of manufacturing a semiconductor device comprises defining source/drain regions in semiconductor substrate through an etch process using a mask, and forming a gate and source/drain by depositing a conductive material over the defined regions and the semiconductor substrate and patterning the conductive material.
    Type: Application
    Filed: June 30, 2009
    Publication date: March 4, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Jae Yeon Lee
  • Patent number: 7652332
    Abstract: An extremely-thin silicon-on-insulator transistor is provided that includes a buried oxide layer above a substrate, a silicon layer above the buried oxide layer, a gate stack on the silicon layer, a nitride liner on the silicon layer and adjacent to the gate stack, an oxide liner on and adjacent to the nitride liner, and raised source/drain regions. The gate stack includes a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. Each of the raised source/drain regions has a first part comprising a portion of the silicon layer, a second part adjacent to parts of the oxide liner and the nitride liner, and a third part above the second part. Also provided is a method for fabricating an extremely-thin silicon-on-insulator transistor.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Steven J. Koester, Kingsuk Maitra, Amlan Majumdar, Renee T. Mo
  • Publication number: 20100013015
    Abstract: A Schottky barrier MOSFET (SB-MOS) device and a method of manufacturing having a silicon-on-nothing (SON) architecture in a channel region are provided. More specifically, metal source/drain SB-MOS devices are provided in combination with a channel structure comprising a semiconductor channel region such as silicon isolated from a bulk substrate by an SON dielectric layer. In one embodiment, the SON dielectric layer has a triple stack structure comprising oxide on nitride on oxide, which is in contact with the underlying semiconductor substrate.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Applicant: AVOLARE 2, LLC
    Inventor: John P. Snyder
  • Publication number: 20100013014
    Abstract: The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 21, 2010
    Applicant: AVOLARE 2, LLC
    Inventors: John P. Snyder, John M. Larson
  • Publication number: 20100013013
    Abstract: A memory device and a method of forming the memory device. The memory device comprises a storage transistor at a surface of a substrate comprising a body portion between first and second source/drain regions, wherein the source/drain regions are regions of a first conductivity type. The storage transistor also comprises a gate structure that wraps at least partially around the body portion in at least two spatial planes. A bit line is connected to the first source/drain region and a word line connected to the gate structure. The memory device does not require an additional capacitive storage element.
    Type: Application
    Filed: September 24, 2009
    Publication date: January 21, 2010
    Inventor: Chandra Mouli
  • Publication number: 20100006850
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: September 17, 2009
    Publication date: January 14, 2010
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Publication number: 20100006940
    Abstract: An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
    Type: Application
    Filed: July 6, 2009
    Publication date: January 14, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tetsuya KAKEHATA, Hideto OHNUMA, Yoshiaki YAMAMOTO, Kenichiro MAKINO
  • Publication number: 20100006939
    Abstract: A method for manufacturing a semiconductor device comprises including a insulating pattern and a silicon film over a SOI substrate, thereby increasing a reduced volume of a floating body after forming a floating body fin transistor so as to secure a data storage space. The method comprises: forming a insulating pattern and a first silicon film over an upper silicon film of a SOI substrate; and forming a fin structure in the first silicon film.
    Type: Application
    Filed: June 30, 2009
    Publication date: January 14, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventors: Joong Sik Kim, Sung Woong Chung
  • Publication number: 20100001322
    Abstract: The invention relates to a method of manufacturing a semiconductor device (10) with a substrate (11) and a semiconductor body (12) comprising silicon which is provided with at least one semiconductor element (T), wherein an epitaxial semiconductor layer (1) comprising silicon is grown on top of a first semiconductor substrate (14), wherein a splitting region (2) is formed in the epitaxial layer (1), wherein a second substrate (11) is attached by wafer bonding to the first substrate (12) at the side of the epitaxial layer (1) provided with the splitting region (2) while an electrically insulating region (3) is interposed between the epitaxial layer (1) and the second substrate (11), the structure thus formed is split at the location of the splitting region (2) as a result of which the second substrate (11) forms the substrate (11) with on top of the insulating region (3) a part (IA) of the epitaxial layer forming the semiconductor body (12) in which the semiconductor element (T) is formed.
    Type: Application
    Filed: October 5, 2006
    Publication date: January 7, 2010
    Applicant: NXP B.V.
    Inventors: Wolfgang Euen, Holger Schligtenhorst, Rainer Bauer, Marc Van Geffen, Karl-Heinz Kraft
  • Publication number: 20090321830
    Abstract: A semiconductor device, comprising a first semiconductor portion having a first end, a second end, and a slit portion, wherein the width of the slit portion is less than the width of at least one of the first end and the second end; a second portion that is a different material than the first semiconductor portion, a third portions that is a different material than the first semiconductor portion, wherein the second and third portions are on opposite sides of the slit portion, and at least three terminals selected from a group consisting of a first terminal connected to the first end, a second terminal connected to the second end, a third terminal connected to the second portion, and a fourth terminal connected to the third portion.
    Type: Application
    Filed: May 15, 2007
    Publication date: December 31, 2009
    Applicant: Carnegie Mellon University
    Inventor: Wojciech P. Maly
  • Patent number: 7638805
    Abstract: A semiconductor device with high reliability is provided using an SOI substrate. When the SOI substrate is fabricated by using a technique typified by SIMOX, ELTRAN, or Smart-Cut, a single crystal semiconductor substrate having a main surface (crystal face) of a {110} plane is used. In such an SOI substrate, adhesion between a buried insulating layer as an under layer and a single crystal silicon layer is high, and it becomes possible to realize a semiconductor device with high reliability.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 29, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani
  • Publication number: 20090315111
    Abstract: An active region, a source region, and a drain region are formed on a single crystal semiconductor substrate or a single crystal semiconductor thin film. Impurity regions called pinning regions are formed in striped form in the active region so as to reach both of the source region and the drain region. Regions interposed between the pinning regions serve as channel forming regions. A tunnel oxide film, a floating gate, a control gate, etc. are formed on the above structure. The impurity regions prevent a depletion layer from expanding from the source region toward the drain region.
    Type: Application
    Filed: April 21, 2009
    Publication date: December 24, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: SHUNPEI YAMAZAKI, Hisashi Ohtani, Jun Koyama, Takeshi Fukunaga
  • Publication number: 20090309138
    Abstract: An accumulation mode transistor has an impurity concentration of a semiconductor layer in a channel region at a value higher than 2×1017 cm?3 to achieve a large gate voltage swing.
    Type: Application
    Filed: July 12, 2007
    Publication date: December 17, 2009
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Rihito Kuroda
  • Publication number: 20090294852
    Abstract: A thin-film transistor includes an insulating substrate, a source electrode, and a drain electrode, disposed over the top of the insulating substrate, a semiconductor layer electrically continuous with the source electrode, and the drain electrode, respectively, a gate dielectric film formed over the top of at least the semiconductor layer; and a gate electrode disposed over the top of the gate dielectric film so as to overlap the semiconductor layer. Further, a first bank insulator is formed so as to overlie the source electrode, a second bank insulator is formed so as to overlie the drain electrode, and the semiconductor layer, the gate dielectric film, and the gate electrode are embedded in a region between the first bank insulator, and the second bank insulator.
    Type: Application
    Filed: April 24, 2009
    Publication date: December 3, 2009
    Inventors: Masahiro Kawasaki, Masaaki Fujimori, Takeo Shiba, Shuji Imazeki, Tadashi Arai
  • Publication number: 20090294854
    Abstract: Superior control of short-channel effects for an ultra-thin semiconductor-on-insulator field effect transistor (UTSOI-FET) is obtained by performing a halo implantation immediately after a gate reoxidation step. An offset is then formed and thereafter an extension implantation process is performed. This sequence of processing steps ensures that the halo implant is laterally separated from the extension implant by the width of the offset spacer. This construction produces equivalent or far superior short channel performance compared to conventional UTSOI-FETs. Additionally, the above processing steps permit the use of lower halo doses as compared to conventional processes.
    Type: Application
    Filed: August 8, 2009
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Omer H. Dokumaci, John M. Hergenrother, Shreesh Narasimha, Jeffrey W. Sleight
  • Publication number: 20090291535
    Abstract: A method of horizontally stacking transistors on a common semiconductor substrate is initiated by providing a single crystal, generally silicon, semiconductor substrate. A plurality of transistors are formed on the single crystal semiconductor substrate and encapsulated in an insulating layer, such as silicon dioxide. One or more openings are formed through the insulating layer between the plurality of transistors so as to expose a surface of the single crystal semiconductor substrate. A layer of single crystal rare earth insulator material is epitaxially grown on the exposed surface of the single crystal semiconductor substrate. A layer of single crystal semiconductor material, generally silicon, is epitaxially grown on the layer of single crystal rare earth insulator material. An intermixed transistor is formed on the layer of single crystal semiconductor material.
    Type: Application
    Filed: July 31, 2009
    Publication date: November 26, 2009
    Inventors: Petar B. Atanackovic, Michael Lebby
  • Publication number: 20090290082
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel unit is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an inter-layer insulation film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Application
    Filed: July 30, 2009
    Publication date: November 26, 2009
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Publication number: 20090289303
    Abstract: In one embodiment, the invention is a method and apparatus for fabricating an ultra thin silicon on insulator. One embodiment of a method for fabricating an ultra thin silicon on insulator includes providing a silicon layer, saturating the silicon layer with at least one reactant gas at a first temperature, the first temperature being low enough to substantially prevent the occurrence of any reactions involving the reactant gas, and raising the first temperature to a second temperature, the second temperature being approximately a dissociation temperature of the reactant gas.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Inventors: KEVIN K CHAN, Jakub Kedzierski, Raymond M. Sicina
  • Publication number: 20090267152
    Abstract: A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 29, 2009
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Scott D. Luning
  • Publication number: 20090261355
    Abstract: To provide: a thin film transistor which can be operated with a low threshold and has a high transistor withstand voltage; a production method of the thin film transistor; and a semiconductor device, an active matrix substrate, and a display device, each including such a thin film transistor. The present invention is a thin film transistor including a semiconductor layer, a gate insulating film, a gate electrode on a substrate in this order, wherein a cross section of the semiconductor layer has a forward tapered shape; the gate insulating film covers a top surface and a side surface of the semiconductor layer; and the gate insulating film has a multilayer structure including a silicon oxide film on a semiconductor layer side and a film made of a material with a dielectric constant higher than a dielectric constant of silicon oxide on a gate electrode side; the gate insulating film satisfies 0.
    Type: Application
    Filed: June 1, 2006
    Publication date: October 22, 2009
    Inventors: Hiroshi Matsukizono, Todayoshi Miyamoto
  • Publication number: 20090261359
    Abstract: Regions 106 which can be regarded as being monocrystalline are formed locally by irradiating with laser light, and at least the channel-forming region 112 is constructed using these regions. With thin-film transistors which have such a construction it is possible to obtain characteristics which are similar to those which employ monocrystals. Further, by connecting in parallel a plurality of such thin-film transistors it is possible to obtain characteristics which are effectively equivalent to those of a monocrystalline thin-film transistor in which the channel width has been increased.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 22, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Satoshi TERAMOTO