Thin-film Mesfet (epo) Patents (Class 257/E29.32)
  • Patent number: 11751386
    Abstract: Field-effect transistors, and integrated circuit devices containing such field-effect transistors, might include a semiconductor material having a first conductivity type, a first source/drain region having a second conductivity type, a second source/drain region having the second conductivity type, a first contact connected to the first source/drain region, a conductor overlying an active area of the semiconductor material and having an annular portion surrounding the first contact and a spur portion extending from an outer perimeter of the annular portion of the conductor, a second contact connected to the second source/drain region outside the annular portion of the conductor, a dielectric between the conductor and the active area, and a third contact overlying the active area and connected to the spur portion of the conductor.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 5, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Patent number: 11698552
    Abstract: According to one embodiment, an illumination device comprises a plurality of light emitting elements that are disposed on a main surface of a wiring board, a light diffusion distance maintaining layer, a wavelength conversion layer, and a prism sheet, wherein the main surface of the wiring board is divided into a plurality of segment regions, n (n>1) light emitting elements are provided in each of the segment regions, the light emitting elements are independently driven in units of the segment regions, and a thickness of the light diffusion distance maintaining layer is ½ times or more a pitch of the segment regions adjacent to each other.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: July 11, 2023
    Assignee: Japan Display Inc.
    Inventor: Takashi Ota
  • Patent number: 8450713
    Abstract: A three-dimensional memory cell array of memory cells with two terminals having a variable resistive element is formed such that: one ends of memory cells adjacent in Z direction are connected to one of middle selection lines extending in Z direction aligned in X and Y directions; the other ends of the memory cells located at the same point in Z direction are connected to one of third selection lines aligned in Z direction; a two-dimensional array where selection transistors are aligned in X and Y directions is adjacent to the memory cell array in Z direction; gates of selection transistors adjacent in X direction, drains of selection transistors adjacent in Y direction and sources of selection transistors are connected to same first selection line, second selection line, and different middle selection lines, respectively; and first, second and third selection lines are connected to X, Y and Z decoders, respectively.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: May 28, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobuyoshi Awaya, Yoshiji Ohta, Yoshiaki Tabuchi
  • Patent number: 8410531
    Abstract: A thin film transistor having Schottky barrier includes a substrate, a first gate conductive layer formed on the substrate, a first semiconductor layer having a first conductive type formed on the first gate conductive layer, a source conductive layer and a drain conductive layer electrically isolated from each other and positioned on the first semiconductor layer, a second semiconductor layer having a second conductive type formed on the source conductive layer and the drain conductive layer, and a second gate conductive layer formed on the second semiconductor layer. The first conductive type is complementary to the second conductive type.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 2, 2013
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Ming-Tse Chang, Chun-Wei Su
  • Publication number: 20120235251
    Abstract: A MEMS device is disclosed. The MEMS device comprises a MEMS substrate and a CMOS substrate having a front surface, a back surface and one or more metallization layers. The front surface being bonded to the MEMS substrate. The MEMS device includes one or more conductive features on the back surface of the CMOS substrate and electrical connections between the one or more metallization layers and the one or more conductive features.
    Type: Application
    Filed: February 6, 2012
    Publication date: September 20, 2012
    Applicant: INVENSENSE, INC.
    Inventors: Michael J. DANEMAN, Steven S. NASIRI, Martin LIM
  • Patent number: 8129803
    Abstract: A micromachined microphone is formed from a silicon or silicon-on-insulator (SOI) wafer. A fixed sensing electrode for the microphone is formed from a top silicon layer of the wafer. Various polysilicon microphone structures are formed above a front side of the top silicon layer by depositing at least one oxide layer, forming the structures, and then removing a portion of the oxide underlying the structures from a back side of the top silicon layer through trenches formed through the top silicon layer. The trenches allow sound waves to reach the diaphragm from the back side of the top silicon layer. In an SOI wafer, a cavity is formed through a bottom silicon layer and an intermediate oxide layer to expose the trenches for both removing the oxide and allowing the sound waves to reach the diaphragm. An inertial sensor may be formed on the same wafer, with various inertial sensor structures formed at substantially the same time and using substantially the same processes as corresponding microphone structures.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: March 6, 2012
    Assignee: Analog Devices, Inc.
    Inventors: John R. Martin, Timothy J. Brosnihan, Craig Core, Thomas Kieran Nunan, Jason Weigold, Xin Zhang
  • Patent number: 8063420
    Abstract: A field-effect transistor with improved moisture resistance without an increase in gate capacitance, and a method of manufacturing the field-effect transistor are provided. The field-effect transistor includes: a T-shaped gate electrode on a semiconductor layer; and a first highly moisture-resistant protective film including one of an insulating film and an organic film having high etching resistance, the first highly moisture-resistant protective film being located above the T-shaped gate electrode, over all of a region in which the T-shaped gate electrode is located. A cavity is located between the semiconductor layer and the first highly moisture-resistant protective film, below a canopy of the T-shaped gate electrode. An end surface of the cavity is closed by a second highly moisture-resistant film.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: November 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hirotaka Amasuga
  • Patent number: 7939865
    Abstract: In one embodiment, a metal-semiconductor field effect transistor (MESFET) comprises a first silicon layer, an insulator layer formed on the first silicon layer, and a second silicon layer formed on the insulator layer. A gate region, a source region, and a drain region are formed in the second silicon layer. A first partial trench is formed in the second silicon layer between at least a portion of the gate region and at least a portion of the source region, wherein the first partial trench stops short of the insulator layer. A second partial trench formed in the second silicon layer between at least a portion of the gate region and at least a portion of the drain region, wherein the second partial trench stops short of the insulator layer. First and second oxide spacers are formed in the first and second partial trenches. The first and second oxide spacers and the source region, gate region, and the drain region are substantially planar.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 10, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Fechner
  • Patent number: 7932519
    Abstract: A pixel structure includes a scan line, a data line, a gate electrode, a semiconductor layer, a source electrode, a drain electrode including a comb-shaped part surrounding the source electrode and a connecting part, and a pixel electrode electrically connected to the drain electrode. The scan line and the data line are arranged intersectedly and electrically insulated from each other. At least a portion of the source electrode and the drain electrode are disposed on the semiconductor layer. At least one branch of the comb-shaped part extends outside one side of the gate electrode to form a protrusion part. The connecting part extends from the comb-shaped part beyond the other side of the gate electrode. The protrusion part and the connecting part aligned with the margin of the gate electrode have a first width and a third width respectively, wherein the first width substantially equals to the third width.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: April 26, 2011
    Assignee: Century Display(ShenZhen)Co.,Ltd.
    Inventor: Chih-Chung Liu
  • Patent number: 7923732
    Abstract: Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-Gwang Jeong, Young-Wook Lee, Sang-Gab Kim, Woo-Geun Lee, Min-Seok Oh, Jang-Soo Kim, Kap-Soo Yoon, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Seung-Hwan Shim, Sung-Hoon Yang, Ki-Hun Jeong
  • Patent number: 7825412
    Abstract: The present invention provides a display device which can obviate the occurrence of a leak current in a thin film transistor. In a display device including a substrate, and gate signal lines, an insulation film, semiconductor layers and conductor layers which are sequentially stacked on the substrate, the conductor layer forms at least a drain electrode which is connected to a drain signal line and a source electrode which is connected to a pixel electrode, and the semiconductor layer is formed in a pattern in which the semiconductor layer has a protruding portion which protrudes outwardly from the conductor layer at a portion thereof except for a distal end of the drain electrode as viewed in a plan view.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 2, 2010
    Assignees: Hitachi Displays, Ltd., IPS Alpha Technology, Ltd.
    Inventors: Kunihiko Watanabe, Junichi Uehara, Miyo Ishii
  • Patent number: 7804097
    Abstract: A liquid crystal display device comprises at least two insulating layers formed on a first conductive layer, a second conductive layer formed between the at least two insulating layers, a first contact hole penetrating an upper insulating layer of the at least two insulating layers on the second conductive layer, a second contact hole penetrating the at least two insulating layers and exposing a portion of the first conductive layer, and a contact part comprising a bridge electrode formed of a third conductive layer for connecting the first and second conductive layers through the first and second contact holes. The second contact hole comprises an internal hole penetrating the at least two insulating layers and an external hole surrounding the internal hole forming in the upper insulating layers.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Tack Kang, Jeong Il Kim, Jong Hyuk Lee, Yu Jin Kim, Hyang Shik Kong, Myung Koo Hur, Sung Man Kim
  • Patent number: 7772620
    Abstract: A junction field effect transistor comprises a silicon-on-insulator architecture. A front gate region and a back gate region are formed in a silicon region of the SOI architecture. The silicon region has a thin depth such that the back gate region has a thin depth, and whereby a depletion region associated with the back gate region recedes substantially up to an insulating layer of the SOI architecture.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 10, 2010
    Assignee: SuVolta, Inc.
    Inventor: Ashok K. Kapoor
  • Patent number: 7566904
    Abstract: A thin film transistor has a semiconductor thin film including zinc oxide, a protection film formed on entirely the upper surface of the semiconductor thin film, a gate insulating film formed on the protection film, a gate electrode formed on the gate insulating film above the semiconductor thin film, and a source electrode and drain electrode formed under the semiconductor thin film so as to be electrically connected to the semiconductor thin film.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: July 28, 2009
    Assignee: Casio Computer Co., Ltd.
    Inventor: Hiromitsu Ishii
  • Patent number: 7465978
    Abstract: An electric field effect transistor of high breakdown voltage and a method of manufacturing the same are disclosed. A recessed portion is formed at the channel region and is filled by a protective oxide layer. Lightly doped source/drain regions are formed under the protective oxide layer. The protective oxide layer protects the lightly doped source/drain regions. Accordingly, the protective oxide layer prevents the electric field from being concentrated to a bottom corner portion of the gate structure. In addition, the effective channel length is elongated since an electric power source is connected to heavily doped source/drain regions from an outside source of the transistor, instead of being connected to lightly doped source/drain regions.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: December 16, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Su Kim, Sung-Hoan Kim
  • Patent number: 7307329
    Abstract: An electronic device includes a substrate, an insulating layer arranged on the substrate, the insulating layer having an opening in an area of the surface of the substrate, an active layer arranged within the opening on the surface of the substrate, the active layer including a guard ring in those areas of the surface and of the active layer which are adjacent to the insulating layer, and a contacting layer arranged on an area of the active layer, the contact layer being adjacent to an area of the guard ring. The device may be produced by a process of three-fold self-alignment, to be precise utilizing a spacer process by means of which a diffusion source having a lateral extension far below the lithography limit is made possible.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: December 11, 2007
    Assignee: Infineon Technologies AG
    Inventors: Cartens Ahrens, Ulf Bartl, Bernd Eisener, Wolfgang Hartung, Christian Herzum, Raimund Peichl, Stefan Pompl, Hubert Werthmann
  • Patent number: 7304329
    Abstract: A field effect transistor includes a semiconductor substrate having an active region, a source region, and a drain region at an upper portion of the substrate. The active region is located between the source and drain regions. A gate electrode is located on the active region. A source electrode is located on the source region and forms an ohmic contact with the source region. A drain electrode has a base part on and in ohmic contact with the drain region and an extended part having edge close to the gate electrode and over a boundary between the active region and the drain region. An insulating film is located between the boundary and the extended part and has a thickness that increases along a direction from the drain electrode toward the gate electrode in a step-by-step or continuous manner.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: December 4, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshitaka Kamo, Tetsuo Kunii