Pin Diode (epo) Patents (Class 257/E29.336)
  • Publication number: 20110227025
    Abstract: According to one embodiment, a semiconductor memory device includes a word line interconnection layer, a bit line interconnection layer and a pillar. The word line interconnection layer includes a plurality of word lines which extend in a first direction. The bit line interconnection layer includes a plurality of bit lines which extend in a second direction crossing over the first direction. The pillar is arranged between each of the word lines and each of the bit lines. The pillar includes a silicon diode and a variable resistance film, and the silicon diode includes a p-type portion and an n-type portion. The word line interconnection layer and the bit line interconnection layer are alternately stacked, and a compressive force is applied to the silicon diode in a direction in which the p-type portion and the n-type portion become closer to each other.
    Type: Application
    Filed: August 31, 2010
    Publication date: September 22, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Jun HIROTA, Yoko Iwakaji, Moto Yabuki
  • Patent number: 7993956
    Abstract: An integrated circuit device for converting an incident optical signal into an electrical signal comprises a semiconductor substrate, a well region formed inside the semiconductor substrate, a dielectric layer formed over the well region, and a layer of polysilicon for receiving the incident optical signal, formed over the dielectric layer, including a p-type portion, an n-type portion and an undoped portion disposed between the p-type and n-type portions, wherein the well region is biased to control the layer of polysilicon for providing the electrical signal.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 9, 2011
    Inventors: Yu-Da Shiu, Chyh-Yih Chang, Ming-Dou Ker, Che-Hao Chuang
  • Patent number: 7989328
    Abstract: An electronic structure includes a resistive memory device, and a P-I-N diode in operative association with the resistive memory device. A plurality of such electronic structures are used in a resistive memory array, with the P-I-N diodes functioning as select devices in the array. Methods are provided for fabricating such resistive memory device-P-I-N diode structures.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: August 2, 2011
    Assignee: Spansion LLC
    Inventors: Seungmoo Choi, Sameer Haddad
  • Publication number: 20110175085
    Abstract: Provided herein are PIN structures including a layer of amorphous n-type silicon, a layer of intrinsic GaAs disposed over the layer of amorphous n-type silicon, and a layer of amorphous p-type silicon disposed over the layer of intrinsic GaAs. The layer of intrinsic GaAs may be engineered by the disclosed methods to exhibit a variety of structural properties that enhance light absorption and charge carrier mobility, including oriented polycrystalline intrinsic GaAs, embedded particles of intrinsic GaAs, and textured surfaces. Also provided are devices incorporating the PIN structures, including photovoltaic devices.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 21, 2011
    Inventors: Ashutosh Tiwari, Makarand Karmarkar, Nathan Wheeler Gray
  • Patent number: 7948006
    Abstract: A photodetector with an improved electrostatic discharge damage threshold is disclosed, suitable for applications in telecommunication systems operating at elevated data rates. The photodetector may be a PIN or an APD fabricated in the InP compound semiconductor system. The increased ESD damage threshold is achieved by reducing the ESD induced current density in the photodetector by a suitable widening of the contact at a critical location, increasing the series resistance and promoting lateral current spreading by means of a current spreading layer.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: May 24, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Zhong Pan, David Venables
  • Patent number: 7939900
    Abstract: Polymerizable anions and/or cations can be used as the ionically conductive species for the formation of a p-i-n junction in conjugated polymer thin films. After the junction is formed, the ions are polymerized in situ, and the junction is locked thereafter. The resulting polymer p-i-n junction diodes could have a high current rectification ratio. Electroluminescence with high quantum efficiency and low operating voltage may be produced from this locked junction. The diodes may also be used for photovoltaic energy conversion. In a photovoltaic cell, the built-in potential helps separate electron-hole pairs and increases the open-circuit voltage.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: May 10, 2011
    Assignee: The Regents of the University of California
    Inventor: Qibing Pei
  • Publication number: 20110101298
    Abstract: Non-volatile memory devices comprising a memory string including a plurality of vertically superimposed diodes. Each of the diodes may be arranged at different locations along a length of the electrode and may be spaced apart from adjacent diodes by a dielectric material. The electrode may electrically couple the diodes of the memory strings to one another and to another memory device, such as, a MOSFET device. Methods of forming the non-volatile memory devices as well as intermediate structures are also disclosed.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20110062557
    Abstract: A semiconductor p-i-n diode and method for forming the same are described herein. In one aspect, a SiGe region is formed between a region doped to have one conductivity (either p+ or n+) and an electrical contact to the p-i-n diode. The SiGe region may serve to lower the contact resistance, which may increase the forward bias current. The doped region extends below the SiGe region such that it is between the SiGe region and an intrinsic region of the diode. The p-i-n diode may be formed from silicon. The doped region below the SiGe region may serve to keep the reverse bias current from increasing as result of the added SiGe region. In one embodiment, the SiGe is formed such that the forward bias current of an up-pointing p-i-n diode in a memory array substantially matches the forward bias current of a down-pointing p-i-n diode which may achieve better switching results when these diodes are used with the R/W material in a 3D memory array.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Inventors: Abhijit Bandyopadhyay, Kun Hou, Steven Maxwell
  • Patent number: 7888200
    Abstract: In some aspects, a method of forming a memory circuit is provided that includes (1) forming a two-terminal memory element on a substrate between a gate layer and a first metal layer of the memory circuit; and (2) forming a CMOS transistor on the substrate, the CMOS transistor for programming the two-terminal memory element. Numerous other aspects are provided.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: February 15, 2011
    Assignee: Sandisk 3D LLC
    Inventor: Christopher J. Petti
  • Publication number: 20110006276
    Abstract: A switching element that includes a first semiconductor layer, the first semiconductor layer having a first portion and a second portion; a second semiconductor layer, the second semiconductor layer having a first portion and a second portion; an insulating layer disposed between the first semiconductor layer and the second semiconductor layer; a first metal contact in contact with the first portion of the first semiconductor layer forming a first junction and in contact with the first portion of the second semiconductor layer forming a second junction; a second metal contact in contact with the second portion of the first semiconductor layer forming a third junction and in contact with the second portion of the second semiconductor layer forming a fourth junction, wherein the first junction and the fourth junction are Schottky contacts, and the second junction and the third junction are ohmic contacts.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 13, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Young Pil Kim, Nurul Amin, Dadi Setiadi, Venugopalan Vaithyanathan, Wei Tian, Insik Jin
  • Patent number: 7863703
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Patent number: 7863704
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Publication number: 20100320477
    Abstract: A process is described for producing silicon carbide crystals having increased minority carrier lifetimes. The process includes the steps of heating and slowly cooling a silicon carbide crystal having a first concentration of minority carrier recombination centers such that the resultant concentration of minority carrier recombination centers is lower than the first concentration.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 23, 2010
    Applicant: CREE, INC.
    Inventors: Calvin H. Carter, JR., Jason R. Jenny, David P. Malta, Hudson M. Hobgood, Valeri F. Tsvetkov, Mrinal K. Das
  • Publication number: 20100258919
    Abstract: A semiconductor patch antenna for microwave radiation having a wide pin-junction or pn-junction with the depletion region or embodiments having a separating buried oxide (SiO2) layer between p- and n-doped regions as the natural resonator volume. Embodiments that do not include a metal ground plane and/or a metal patch are disclosed.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 14, 2010
    Applicant: Worcester Polytechnic Institute
    Inventors: Sergey N. Makarov, Reinhold Ludwig, Francesca Scire-Scappuzzo, John McNeill
  • Patent number: 7812420
    Abstract: An integrated circuit device for converting an incident optical signal into an electrical signal comprises a semiconductor substrate, a well region formed inside the semiconductor substrate, a dielectric layer formed over the well region, and a layer of polysilicon for receiving the incident optical signal, formed over the dielectric layer, including a p-type portion, an n-type portion and an undoped portion disposed between the p-type and n-type portions, wherein the well region is biased to control the layer of polysilicon for providing the electrical signal.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: October 12, 2010
    Inventors: Yu-Da Shiu, Chyh-Yih Chang, Ming-Dou Ker, Che-Hao Chuang
  • Patent number: 7800204
    Abstract: A semiconductor device includes a stepwise impurity layer provided at one of an anode portion and an cathode portion of the semiconductor device by introducing an impurity of a predetermined conduction type from a major surface of the semiconductor substrate through to a first depth to provide a first region of the semiconductor substrate having the impurity of the predetermined conduction type introduced therein. The predetermined conduction type is a same conduction type as a conduction type of the one of the anode portion and the cathode portion. The stepwise impurity layer is further provided by melting a second, predetermined region of the semiconductor substrate having a second depth deeper than the first depth and including the first region to make uniform the impurity of the predetermined conduction type in a concentration from the major surface through to the second depth to provide a uniform stepwise impurity concentration profile.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 21, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hidenori Fujii
  • Publication number: 20100208517
    Abstract: A memory architecture that employs one or more semiconductor PIN diodes is provided. The memory employs a substrate that includes a buried bit/word line and a PIN diode. The PIN diode includes a non-intrinsic semiconductor region, a portion of the bit/word line, and an intrinsic semiconductor region positioned between the non-intrinsic region and the portion of the bit/word line.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: Spansion LLC
    Inventors: Wai Lo, Christie Marrian, Tzu-Ning Fang, Sameer Haddad
  • Patent number: 7777290
    Abstract: The present invention provides high-speed, high-efficiency PIN diodes for use in photodetector and CMOS imagers. The PIN diodes include a layer of intrinsic semiconducting material, such as intrinsic Ge or intrinsic GeSi, disposed between two tunneling barrier layers of silicon oxide. The two tunneling barrier layers are themselves disposed between a layer of n-type silicon and a layer of p-type silicon.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: August 17, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Zhenqiang Ma
  • Patent number: 7772667
    Abstract: The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: August 10, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuusuke Sugawara, Kazuo Nishi, Tatsuya Arao, Daiki Yamada, Hidekazu Takahashi, Naoto Kusumoto
  • Publication number: 20100181657
    Abstract: A nonvolatile memory cell includes: a rail-shaped first conductor formed at a first height above a substrate; a rail-shaped second conductor formed above the first conductor; and a vertically oriented first pillar comprising a p-i-n first diode; wherein the first pillar is disposed between the second conductor and the first conductor; wherein the first diode comprises an intrinsic or lightly doped region; and wherein the intrinsic or lightly doped region has a first thickness of about 300 angstroms or greater. Numerous additional aspects are provided.
    Type: Application
    Filed: June 10, 2009
    Publication date: July 22, 2010
    Applicant: SanDisk 3D LLC
    Inventors: S. Brad Herner, Steven J. Radigan
  • Publication number: 20100176375
    Abstract: In accordance with an embodiment, a diode comprises a substrate, a dielectric material including an opening that exposes a portion of the substrate, the opening having an aspect ratio of at least 1, a bottom diode material including a lower region disposed at least partly in the opening and an upper region extending above the opening, the bottom diode material comprising a semiconductor material that is lattice mismatched to the substrate, a top diode material proximate the upper region of the bottom diode material, and an active diode region between the top and bottom diode materials, the active diode region including a surface extending away from the top surface of the substrate.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Anthony J. Lochtefeld
  • Patent number: 7755173
    Abstract: A series-shunt switch is provided. The switch includes a PIN diode having an input electrical terminal, an output electrical terminal and a thermal terminal. The thermal terminal is configured to provide continuity of diode thermal ground with respect to a circuit thermal ground node.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: July 13, 2010
    Assignee: M/A-COM Technology Solutions Holdings, Inc.
    Inventors: Anthony Paul Mondi, Joseph Gerard Bukowski
  • Patent number: 7750442
    Abstract: A high-frequency switch includes a semiconductor body made of a semiconductor material having a first surface and a second surface, and two direct current terminals and two high-frequency terminals.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: July 6, 2010
    Assignee: Infineon Technologies AG
    Inventor: Reinhard Gabl
  • Publication number: 20100148324
    Abstract: An integrated circuit including vertically oriented diode structures between conductors and methods of fabricating the same are provided. The diode is a metal-insulator diode having a first metal layer, a first insulating layer, a second insulating layer and a second metal layer. At least one asymmetric interface state is provided at the intersection of at least two of the layers to increase the ratio of the diode's on-current to its reverse bias leakage current. In various examples, the asymmetric interface state is formed by a positive or negative sheet charge that alters the barrier height and/or electric field at one or more portions of the diode. Two-terminal devices such as passive element memory cells can utilize the diode as a steering element in series with a state change element. The devices can be formed using pillar structures at the intersections of upper and lower conductors.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 17, 2010
    Inventors: Xiying Chen, Deepak Chandra Sekar, Mark Clark, Dat Nguyen, Tanmay Kumar
  • Patent number: 7737534
    Abstract: A process is provided for fabricating a semiconductor device having a germanium nanofilm layer that is selectively deposited on a silicon substrate in discrete regions or patterns. A semiconductor device is also provided having a germanium film layer that is disposed in desired regions or having desired patterns that can be prepared in the absence of etching and patterning the germanium film layer. A process is also provided for preparing a semiconductor device having a silicon substrate having one conductivity type and a germanium nanofilm layer of a different conductivity type. Semiconductor devices are provided having selectively grown germanium nanofilm layer, such as diodes including light emitting diodes, photodetectors, and like. The method can also be used to make advanced semiconductor devices such as CMOS devices, MOSFET devices, and the like.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Sean R. McLaughlin, Narsingh Bahadur Singh, Brian Wagner, Andre Berghmans, David J. Knuteson, David Kahler, Anthony A. Margarella
  • Patent number: 7732886
    Abstract: A PIN photodiode structure includes a substrate, a P-doped region disposed in the substrate, an N-doped region disposed in the substrate, and a first semiconductor material disposed in the substrate and between the P-doped region and the N-doped region.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: June 8, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Hung-Lin Shih, Tsan-Chi Chu, Wen-Shiang Liao, Wen-Ching Tsai
  • Publication number: 20100127358
    Abstract: A method of making a semiconductor device includes forming a first conductivity type polysilicon layer over a substrate, forming an insulating layer over the first conductivity type polysilicon layer, where the insulating layer comprises an opening exposing the first conductivity type polysilicon layer, and forming an intrinsic polysilicon layer in the opening over the first conductivity type polysilicon layer. A nonvolatile memory device contains a first electrode, a steering element located in electrical contact with the first electrode, a storage element having a U-shape cross sectional shape located over the steering element, and a second electrode located in electrical contact with the storage element.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Inventor: Yoichiro Tanaka
  • Patent number: 7719091
    Abstract: A diode having a first semiconductor region of a first polarity and a second semiconductor region of an opposite polarity at least partially surrounding the first semiconductor region. A metal contact coupled to the second semiconductor region at least partially surrounding the first semiconductor region. The diode offers improvements in switching speed.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 18, 2010
    Assignee: M/A-COM Technology Solutions Holdings, Inc.
    Inventor: James Joseph Brogle
  • Publication number: 20100117725
    Abstract: A semiconductor diode with integrated resistor has a semiconductor body with a front surface, a back surface and a diode structure with an anode electrode and a cathode electrode.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Philipp Seng
  • Publication number: 20100096664
    Abstract: A semiconductor device includes: a first semiconductor layer; a first electrode provided on a first surface side of the first semiconductor layer; a first insulating layer; and a second semiconductor layer. The first insulating layer is provided between the first semiconductor layer and the first electrode and configured to constrict current flowing between the first semiconductor layer and the first electrode. The second semiconductor layer has a first conductivity type and is provided at least on a path of the current constricted by the first insulating layer. The second semiconductor layer is in contact with the first electrode. The second semiconductor layer contains first impurities at a concentration higher than a concentration of impurities contained in the first semiconductor layer.
    Type: Application
    Filed: August 21, 2009
    Publication date: April 22, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masanori TSUKUDA
  • Patent number: 7687874
    Abstract: In a mesa type PIN-PD formed using a heavily doped semiconductor material, a high frequency response is degraded as slow carriers occur in a heavily doped layer when light incident into a light receiving section transmits through an absorbing layer and reaches the heavily doped layer on a side near the substrate. In a p-i-n multilayer structure, a portion corresponding to a light receiving section of a heavily doped layer on a side near a substrate is previously made thinner than the periphery of the light receiving section by an etching or selective growth technique, over which an absorbing layer and another heavily doped layer are grown to form the light receiving section of mesa structure. This makes it possible to form a good ohmic contact and to realize a PIN-PD with excellent high frequency response characteristics.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 30, 2010
    Assignee: Opnext Japan, Inc.
    Inventors: Kazuhiro Komatsu, Yasushi Sakuma, Daisuke Nakai, Kaoru Okamoto, Ryu Washino
  • Patent number: 7679160
    Abstract: A high voltage/power semiconductor device has at least one active region having a plurality of high voltage junctions electrically connected in parallel. At least part of each of the high voltage junctions is located in or on a respective membrane such that the active region is provided at least in part over plural membranes. There are non-membrane regions between the membranes. The device has a low voltage terminal and a high voltage terminal. At least a portion of the low voltage terminal and at least a portion of the high voltage terminal are connected directly or indirectly to a respective one of the high voltage junctions. At least those portions of the high voltage terminal that are in direct or indirect contact with one of the high voltage junctions are located on or in a respective one of the plural membranes.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 16, 2010
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Gehan Anil Joseph Amaratunga
  • Publication number: 20100038675
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 18, 2010
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Koh Yoshikawa
  • Publication number: 20100025827
    Abstract: A PIN diode has an n? drift layer, a p anode layer, an n buffer layer, an n+ layer, a front surface electrode and a back surface electrode. The n+ layer has an impurity concentration having a stepwise profile substantially fixed for a predetermined depth measured from a second major surface. The n buffer layer has an impurity concentration gently decreasing as seen at the n+ layer toward n? drift layer. The n? drift layer has an impurity concentration reflecting that of the semiconductor substrate and thus substantially fixed depthwise. The p anode layer has an impurity concentration relatively steeply decreasing as seen at a first major surface toward the n? drift layer. Thus there can be provided a semiconductor device that can provide characteristics, as desired, with high precision to accommodate the product applied, and a method of fabricating the semiconductor device.
    Type: Application
    Filed: December 8, 2008
    Publication date: February 4, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Hidenori FUJII
  • Patent number: 7649236
    Abstract: A semiconductor photodetector 10 has a first semiconductor substrate 1 that is of a first conductive type and a low resistivity and has a (111) front surface, and a second semiconductor substrate 2 that is of the first conductive type and a high resistivity, has a (100) front surface, and is adhered onto first semiconductor substrate 1. A semiconductor region 3 of a second conductive type is formed on the front surface side of second semiconductor substrate 2. A region of a periphery of semiconductor region 3 is etched until first semiconductor substrate 1 is exposed. A first electrode 1e and a second electrode 2e are electrically connected to the exposed front surface of first semiconductor substrate 1 and to semiconductor region 3, respectively.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: January 19, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Kouji Okamoto, Akira Sakamoto
  • Patent number: 7638799
    Abstract: An image sensor structure includes a plurality of pixels formed on a substrate. Each pixel includes an image senor interconnect structure, a separator layer and an electrode layer, wherein the separator layer has a first thickness an a sidewall of the separator layer is recessed from a sidewall of the electrode layer. A first doped amorphous silicon layer id formed on the electrode layer, wherein the separator layer and the first doped amorphous silicon layer of a pixel are disconnected from that of an adjacent pixel.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: December 29, 2009
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Jin-Wei Chang, Hong-Xian Wang
  • Publication number: 20090302426
    Abstract: A process is provided for fabricating a semiconductor device having a germanium nanofilm layer that is selectively deposited on a silicon substrate in discrete regions or patterns. A semiconductor device is also provided having a germanium film layer that is disposed in desired regions or having desired patterns that can be prepared in the absence of etching and patterning the germanium film layer. A process is also provided for preparing a semiconductor device having a silicon substrate having one conductivity type and a germanium nanofilm layer of a different conductivity type. Semiconductor devices are provided having selectively grown germanium nanofilm layer, such as diodes including light emitting diodes, photodetectors, and like. The method can also be used to make advanced semiconductor devices such as CMOS devices, MOSFET devices, and the like.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Inventors: Sean R. McLaughlin, Narsingh Bahadur Singh, Brian Wagner, Andre Berghmans, David J. Knuteson, David Kahler, Anthony A. Margarella
  • Publication number: 20090268508
    Abstract: One embodiment of the invention provides a semiconductor diode device including a first conductivity type region, a second conductivity type region, where the second conductivity type is different from the first conductivity type, an intrinsic region located between the first conductivity type region and the second conductivity type region; a first halo region of the first conductivity type located between the second conductivity type region and the intrinsic region, and optionally a second halo region of the second conductivity type located between the first conductivity type region and the intrinsic region.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Inventors: Xiying Chen, Mark H. Clark, S. Brad Herner, Tanmay Kumar
  • Patent number: 7592199
    Abstract: A method is provided for reducing or eliminating leakage between a pinned photodiode and shallow trench isolation structure fabricated therewith while optimizing the sensitivity of the photodiode. An N+ region is implanted in a P-type substrate and a P-type well separates the N+ region from the shallow trench isolation (STI) structure. At least a P+ region is formed over the N+ region and overlapping at least part of the P-type well and a substrate portion between the N+ region and P-type well. The space between the N+ region and a damaged region adjacent the STI is greater than the expansion distance of the depletion region between the N+ region and the P-type well. The junctions of the various features are optimized to maximize a photosensitive response for the wavelength of the absorbed light as well as for reducing or eliminating electrical leakage.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: September 22, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventor: Dun-Nian Yaung
  • Publication number: 20090230516
    Abstract: A PIN diode comprising an N-type substrate comprising a cathode of the PIN diode and having an intrinsic layer disposed upon the N-type substrate and having a top surface a P-type material disposed upon the top surface of the intrinsic layer comprising an anode of the PIN diode and a N-type material disposed over the sidewall of the cathode and over the sidewall and a portion of the top surface of the intrinsic material that is not occupied by the anode, wherein a horizontal gap is defined between the anode and the cathode through the intrinsic material, the gap being variable in width and/or the horizontal gap is less than the thickness of the intrinsic layer.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Applicant: M/A-Com, Inc.
    Inventors: Joel Lee Goodrich, James Joseph Brogle
  • Publication number: 20090201228
    Abstract: A photo sensor that is capable of generating a photo sensing signal corresponding only to ambient light by comprehending changes in electrical current depending on the change of temperature and compensating for the electrical current according the change of temperature and a flat panel display device using the photo sensor, and the photo sensor including a photo sensing unit generating a first current corresponding to an ambient light and a second current corresponding to an ambient temperature; a temperature compensating unit including a dark diode generating a third current having a same magnitude as the second current, corresponding to the ambient temperature due to block of light to be incident; and a buffer unit outputting a light sensing signal corresponding to current having the same magnitude as the first current by subtracting the third current generated in the temperature compensating unit from the second current generated in the photo sensing unit.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 13, 2009
    Inventors: Do-Youb Kim, Matsueda Yojiro, Keum-Nam Kim
  • Publication number: 20090179310
    Abstract: A method of making a semiconductor device includes providing an insulating layer containing a plurality of openings, forming a first semiconductor layer in the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the first semiconductor layer, such that first conductivity type second portions of the first semiconductor layer remain in lower portions of the plurality of openings in the insulating layer, and upper portions of the plurality of openings in the insulating layer remain unfilled. The method also includes forming a second semiconductor layer in the upper portions of the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the second semiconductor layer located over the insulating layer.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Inventors: Vance Dunton, S. Brad Herner, Paul Wai Kie Poon, Chuanbin Pan, Michael Chan, Michael Konevecki, Usha Raghuram
  • Publication number: 20090127673
    Abstract: A semi-conducting device has at least one layer doped with a doping agent and a layer of another type deposited on the doped layer in a single reaction chamber. An operation for avoiding the contamination of the other layer by the doping agent separates the steps of depositing each of the layers.
    Type: Application
    Filed: January 28, 2009
    Publication date: May 21, 2009
    Applicant: OERLIKON TRADING AG, TRUEBBACH
    Inventors: Ulrich Kroll, Cedric Bucher, Jacques Schmitt, Markus Poppeller, Christoph Hollenstein, Juliette Ballutaud, Alan Howling
  • Patent number: 7535074
    Abstract: The invention relates to a monolithically integrated vertical pin photodiode which is produced according to BiCMOS technology and comprises a planar surface facing the light and a rear face and anode connections located across p areas on a top face of the photodiode. An i-zone of the pin photodiode is formed by combining a low doped first p-epitaxial layer, which has maximum thickness and doping concentration, placed upon a particularly high doped p substrate, with a low doped second n? epitaxial layer that borders the first layer, and n+ cathode of the pin photodiode being integrated into the second layer. The p areas delimit the second n epitaxial layer in a latent direction while another anode connecting area of the pin diode is provided on the rear face in addition to the anode connection.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 19, 2009
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Wolfgang Einbrodt, Horst Zimmermann, Michael Foertsch
  • Patent number: 7485950
    Abstract: An input signal comprising electronic carriers is injected into an impact ionization device with a high electric field whereupon the electronic carriers are accelerated toward an electron collector or hole sink and subsequently ionize additional electrons and holes that accelerated toward the electron collector and hole sink respectively. When properly biased an avalanche effect may occur that is proportional to the current injected into the impact ionization device via the input electrode. As a result, the input signal is amplified to provide an amplified signal. The described amplifier may be integrated with an input device such as a photodiode, and a transimpedance output amplifier onto a common substrate resulting in high performance high density sensor arrays and the like.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: February 3, 2009
    Assignee: Brigham Young University
    Inventors: Aaron R. Hawkins, Hong-Wei Lee
  • Patent number: 7473986
    Abstract: Semiconductor devices and fabrication methods thereof. A first dielectric layer with a first conductor line along a first direction is disposed on a semiconductor substrate, wherein the top surface of the first conductor line is lower than the top surface of the first dielectric layer. A second dielectric layer comprising an opening corresponding to the first diode element is disposed on the first dielectric layer. A semiconductor diode component comprises a first diode element disposed on the first conductor line, wherein the top surface of the first diode element is level with the top surface of the first dielectric layer; and a second diode element and a third diode element are filled in the opening.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 6, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kern-Huat Ang, Ling-Sung Wang
  • Publication number: 20090001527
    Abstract: A series-shunt switch is provided. The switch includes a PIN diode having an input electrical terminal, an output electrical terminal and a thermal terminal. The thermal terminal is configured to provide continuity of diode thermal ground with respect to a circuit thermal ground node.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 1, 2009
    Inventors: Anthony Paul Mondi, Joseph Gerard Bukowski
  • Publication number: 20080290462
    Abstract: A protective structure is produced by providing a semiconductor substrate with a doping of a first conductivity type. A semiconductor layer with a doping of a second conductivity type is applied at a surface of the semiconductor substrate. A buried layer with doping of a second conductivity type is formed in a first region of the semiconductor layer, wherein the buried layer is produced at the junction between the semiconductor layer and semiconductor substrate. A first dopant zone with a doping of a first conductivity type is formed in the first region of the semiconductor layer above the buried layer. A second dopant zone with a doping of a second conductivity type is formed in a second region of the semiconductor layer. An electrical insulation is formed between the first region and the second region of the semiconductor layer. A common connection device is formed for the first dopant zone and the second dopant zone.
    Type: Application
    Filed: May 14, 2008
    Publication date: November 27, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: ANDRE SCHMENN, DAMIAN SOJKA, CARSTEN AHRENS
  • Publication number: 20080258173
    Abstract: A P-N junction device and method of forming the same are disclosed. The P-N junction device may include a P-N diode, a PiN diode or a thyristor. The P-N junction device may have a monocrystalline or polycrystalline raised anode. In one embodiment, the P-N junction device results in a raised polycrystalline silicon germanium (SiGe) anode. In another embodiment, the P-N junction device includes a first terminal (anode) including a conductor layer positioned above an upper surface of a substrate and a remaining structure positioned in the substrate, the first terminal positioned over an opening in an isolation region; and a second terminal (cathode contact) positioned over the opening in the isolation region adjacent the first terminal. This latter embodiment reduces parasitic resistance and capacitance, and decreases the required size of a cathode implant area since the cathode contact is within the same STI opening as the anode.
    Type: Application
    Filed: June 25, 2008
    Publication date: October 23, 2008
    Inventors: Benjamin T. Voegeli, Steven H. Voldman
  • Patent number: 7439597
    Abstract: An integrated circuit device for converting an incident optical signal into an electrical signal comprises a semiconductor substrate, a well region formed inside the semiconductor substrate, a dielectric layer formed over the well region, and a layer of polysilicon for receiving the incident optical signal, formed over the dielectric layer, including a p-type portion, an n-type portion and an undoped portion disposed between the p-type and n-type portions, wherein the well region is biased to control the layer of polysilicon for providing the electrical signal.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 21, 2008
    Inventors: Yu-Da Shiu, Chyh-Yih Chang, Ming-Dou Ker, Che-Hao Chuang