Including, Apart From Doping Material Or Other Impurity, Only Compound Other Than Group Ii-vi, Iii-v, And Iv Compound (epo) Patents (Class 257/E31.026)
  • Patent number: 11854815
    Abstract: A substrate drying apparatus, a substrate drying method and a storage medium are capable of sublimating a sublimable substance filled in recesses of a pattern formed on a substrate while preventing pattern collapse. A first unit includes a solution supplier which supplies a sublimable substance solution containing a sublimable substance and a solvent to a processing surface, and a first liquid remover which forms a solid film of the sublimable substance on the processing surface by removing the solvent and a processing liquid from the processing surface. A second unit includes a second liquid remover which vaporize the solvent and the processing liquid remaining in the solid film by heating the substrate, and maintaining the substrate at a temperature within a first temperature range, and a solid film remover which remove the solid film from the processing surface by heating the substrate at a temperature within a second temperature range.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 26, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Yosuke Kawabuchi
  • Patent number: 9850592
    Abstract: Provided is a method of forming a complex plating film using multi-layer graphene metal particles. The method of forming the plating film may include preparing a powder with a metal particle structure coated with multi-layer graphene, and forming a plating film by adding the powder to a plating solution through electric plating.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: December 26, 2017
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Su-Jeong Suh, Young-Il Song, Jung-Ho Park, Jung-Kab Park, Tae-Yoo Kim, Hwa-Jin Son, Jin-Ha Shin, Mi-Ri Lee, Jungwoo Lee, Changhyoung Lee, Younglae Cho, Seung-Bin Baeg, Byung-Wook Ahn, Sook-Young Yun
  • Patent number: 8946699
    Abstract: A light energy reuse type display device, light-emitting device, and lighting device with low power consumption, which efficiently convert light emitted from a light source (including light emission from a light-emitting element) into electric power, are provided. A photoelectric conversion element interposed between a pair of substrates functions as a color filter (a colored layer); thus, light emitted from a light source (including light emission from a light-emitting element) is efficiently converted into electric power, and a light energy reuse type display device, light-emitting device, and lighting device with low power consumption can be provided.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaoru Hatano, Satoshi Seo, Yoshiaki Oikawa
  • Patent number: 8923666
    Abstract: Embodiments of the present invention provide an electrically controlled optical fuse. The optical fuse is activated electronically instead of by the light source itself. An applied voltage causes the fuse temperature to rise, which induces a transformation of a phase changing material from transparent to opaque. A gettering layer absorbs excess atoms released during the transformation.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Raghavasimhan Sreenivasan
  • Patent number: 8912037
    Abstract: A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 16, 2014
    Assignees: First Solar, Inc., Alliance for Sustainable Energy, LLC
    Inventors: James Neil Johnson, David Scott Albin, Scott Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman
  • Patent number: 8772122
    Abstract: Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: July 8, 2014
    Assignee: Seagate Technology LLC
    Inventors: Nurul Amin, Insik Jin, Wei Tian, Andrew James Wirebaugh, Venugopalan Vaithyanathan, Ming Sun
  • Patent number: 8748216
    Abstract: The present invention provides a non-vacuum method of depositing a photovoltaic absorber layer based on electrophoretic deposition of a mixture of nanoparticles with a controlled atomic ratio between the elements. The nanoparticles are first dispersed in a liquid medium to form a colloidal suspension and then electrophoretically deposited onto a substrate to form a thin film photovoltaic absorber layer. The absorber layer may be subjected to optional post-deposition treatments for photovoltaic absorption.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: June 10, 2014
    Assignee: IMRA America, Inc.
    Inventors: Wei Guo, Yu Jin, Bing Liu, Yong Che, Kevin V. Hagedorn
  • Patent number: 8741182
    Abstract: This invention relates to methods for materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to thin film AIGS, AIS, and AGS materials made by a process of providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 3, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Publication number: 20140038344
    Abstract: Embodiments relate to a method including forming a layer of copper zinc tin sulfide (CZTS) on a first layer of molybdenum (Mo) and annealing the CZTS layer and the first Mo layer to form a layer of molybdenum disulfide (MoS2) between the layer of CZTS and the first layer of Mo. The method includes forming a back contact on a first surface of the CZTS layer opposite the first Mo layer and separating the first Mo layer and the MoS2 layer from the CZTS layer to expose a second surface of the CZTS layer opposite the first surface. The method further includes forming a buffer layer on the second surface of the CZTS layer.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Keith E. Fogel, Supratik Guha, Byungha Shin
  • Publication number: 20130306928
    Abstract: Embodiments of the present invention provide an electrically controlled optical fuse. The optical fuse is activated electronically instead of by the light source itself. An applied voltage causes the fuse temperature to rise, which induces a transformation of a phase changing material from transparent to opaque. A gettering layer absorbs excess atoms released during the transformation.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Raghavasimhan Sreenivasan
  • Patent number: 8586457
    Abstract: A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25?0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: November 19, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Haifan Liang, Sang Lee, Wei Liu, Sandeep Nijhawan, Jeroen Van Duren
  • Patent number: 8585933
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making AIGS, AIS or AGS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 8585932
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 19, 2013
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 8525244
    Abstract: A germanium (Ge) compound is provided. The Ge compound has a chemical formula GeR1xR2y. “R1” is an alkyl group, and “R2” is one of hydrogen, amino group, allyl group and vinyl group. “x” is greater than zero and less than 4, and the sum of “x” and “y” is equal to 4. Methods of forming the Ge compound, methods of fabricating a phase change memory device using the Ge compound, and phase change memory devices fabricated using the Ge compound are also provided.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Young Park, Myong-Woon Kim, Jin-Dong Kim, Choong-Man Lee, Jin-Il Lee
  • Patent number: 8507906
    Abstract: Provided is a complementary metal oxide semiconductor (CMOS) image sensor having a structure capable of increasing areas of photodiodes in unit pixels and expanding light receiving areas of the photodiodes. In the CMOS image sensor, transfer transistors may be formed on the photodiode, and reset transistors, source follower transistors, and selection transistors may be formed on a layer on which the transfer transistors are not formed. In such a CMOS image sensor, the areas of the photodiodes may be increased in unit pixels so that a size of the unit pixels may be reduced and sensitivity of the pixel may be improved.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, I-hun Song, Wook Lee, Sang-wook Kim, Sun-il Kim, Jae-chul Park
  • Publication number: 20130160831
    Abstract: A method of manufacturing a solar cell including providing a substrate, depositing a first electrode over the substrate and depositing at least one p-type semiconductor absorber layer over the first electrode. The p-type semiconductor absorber layer comprises a copper indium selenide (CIS) based alloy material. The method also includes depositing by reactive sputtering an n-type In-VI semiconductor layer over the at least one p-type semiconductor absorber layer and depositing a second electrode over the n-type In-VI semiconductor layer.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: MiaSole
    Inventors: Robert Zubeck, Randy Dorn
  • Publication number: 20130164885
    Abstract: Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for depositing a Cu-rich precursor layer followed by a Cu-poor precursor layer. Methods are described for depositing a Cu-poor precursor layer followed by a Cu-rich precursor layer. Methods are described for depositing a Cu-poor precursor layer followed by a Cu-poor precursor layer. Methods are described for depositing a Cu-rich precursor layer followed by removing excess Cu-chalcogenide using a wet etch, followed by a Cu-poor precursor layer. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer.
    Type: Application
    Filed: August 28, 2012
    Publication date: June 27, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Haifan Liang, Jeroen Van Duren
  • Publication number: 20130115727
    Abstract: An etching composition and a method of manufacturing a display substrate using the etching composition are disclosed. The etching composition includes phosphoric acid (H3PO4) of about 40% by weight to about 70% by weight, nitric acid (HNO3) of about 5% by weight to about 15% by weight, acetic acid (CH3COOH) of about 5% by weight to about 20% by weight, and a remainder of water. Thus, a metal layer including copper may be stably etched.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 9, 2013
    Applicants: DONGWOO FINE-CHEM CO., LTD., SAMSUNG DISPLAY CO., LTD.
    Inventors: Hong-Sick Park, Wang-Woo Lee, Bong-Kyun Kim, O-Byoung Kwon, Kyung-Bo Shim, Sang-Hoon Jang
  • Publication number: 20130105824
    Abstract: Devices incorporating a single to a few-layer MoS2 channels in combination with optimized substrate, dielectric, contact and electrode materials and configurations thereof, exhibit light emission, photoelectric effect, and superconductivity, respectively.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Inventors: Makarand Paranjape, Paola Barbara, Amy Liu, Marcio Fontana
  • Patent number: 8426854
    Abstract: Exemplary embodiments of the described technology relate generally to display devices including dye-sensitized solar cells. The display device according to an exemplary embodiment includes a display element for displaying an image, and a dye-sensitized solar cell for converting light into electricity to offset the power consumption of the display element. The dye-sensitized solar cell includes a selective photo-absorption material for selectively absorbing light from at least one wavelength band.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 23, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Chang-Yun Moon
  • Publication number: 20130068274
    Abstract: A method for manufacturing a thermoelectric component is provided. The method comprises the following steps: producing a plurality of first layers of a first thermoelectric material, and producing a plurality of second layers of a second thermoelectric material, such that the first layers are arranged in alternation with the second layers. Producing the first and/or the second thermoelectric layers each comprises producing at least one first initial layer and at least one second initial layer.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 21, 2013
    Applicant: MICROPELT GMBH
    Inventors: Joachim Nurnus, Harald Boettner, Axel Schubert
  • Publication number: 20130025671
    Abstract: Disclosed are a method of manufacturing a light-absorption layer for a solar cell, a method manufacturing a thin film solar cell using the same, and a thin film solar cell fabricated using the same. The method of manufacturing a light-absorption layer for a solar cell includes: preparing an ink composition including at least one metal precursor including at least one chalcogen element and a solvent; applying the ink composition as a precursor phase on a substrate using a solution process; and photo-sintering the ink composition applied on the substrate as a precursor phase.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jung Ah LIM, Yong-Won SONG, Jae-Min HONG, Hong Thomas HAHN, Hak-Sung KIM
  • Publication number: 20130029454
    Abstract: A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Neil Johnson, David Scott Albin, Scott Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman
  • Publication number: 20130019937
    Abstract: Photovoltaic cells, methods of fabricating photovoltaic cells, and methods of using photovoltaic cells to capture light energy are provided. A photovoltaic cell can include an electron transporting layer, a photoactive layer, and a hole transporting layer. The electron transporting layer can be ultraviolet ozone treated. The photovoltaic cell can have an inverted configuration.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 24, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Franky So, John R. Reynolds, Song Chen, Cephas Small
  • Publication number: 20120258567
    Abstract: The present invention provides a method to form Group IBIIIAVIA solar cell absorber layers on continuous flexible substrates. In a preferred aspect, the method forms a Group IBIIIAVIA absorber layer for manufacturing photovoltaic cells by providing a workpiece having a precursor layer formed over a substrate, the precursor layer including copper, indium, gallium, selenium and a dopant of a Group IA material; heating the precursor layer to a first temperature; reacting the precursor layer at the first temperature for a first predetermined time to transform the precursor layer to a partially formed absorber structure; cooling down the partially formed absorber structure to a second temperature, wherein both the first temperature and the second temperature are above 400° C.; and reacting the partially formed absorber structure at the second temperature for a second predetermined time, which is longer than the first predetermined time, to form a Group IBIIIAVIA absorber layer.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 11, 2012
    Applicant: SoloPower, Inc.
    Inventors: Serdar AKSU, Mustafa PINARBASI
  • Publication number: 20120238054
    Abstract: The present invention relates to screen-printable quaternary chalcogenide compositions. The present invention also provides a process for creating an essentially pure crystalline layer of the quaternary chacogenide on a substrate. Such coated substrates contain p-type to semiconductors and are useful as the absorber layer in a solar cell.
    Type: Application
    Filed: November 23, 2010
    Publication date: September 20, 2012
    Inventors: Alex Sergey Ionkin, Brian M. Fish, Ross Getty
  • Publication number: 20120187394
    Abstract: A light energy reuse type display device, light-emitting device, and lighting device with low power consumption, which efficiently convert light emitted from a light source (including light emission from a light-emitting element) into electric power, are provided. A photoelectric conversion element interposed between a pair of substrates functions as a color filter (a colored layer); thus, light emitted from a light source (including light emission from a light-emitting element) is efficiently converted into electric power, and a light energy reuse type display device, light-emitting device, and lighting device with low power consumption can be provided.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 26, 2012
    Inventors: Kaoru HATANO, Satoshi SEO, Yoshiaki OIKAWA
  • Publication number: 20120122268
    Abstract: A method of fabrication of thin films for photovoltaic or electronic applications is provided. The method includes fabricating a nanocrystal precursor layer and selenizing the nanocrystal precursor layer in a selenium containing atmosphere. The nanocrystal precursor layer includes one of CuInS2, CuIn(Sy,Se1?y)2, CuGaS2, CuGa(Sy,Se1?y)2, Cu(InxGa1?x)S2, and Cu(InxGa1?x)(Sy,Se1?y)2 nanoparticles and combinations thereof, wherein 0?x?1 and 1?y?0.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 17, 2012
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Rakesh Agrawal, Hugh Hillhouse, Qijie Guo
  • Publication number: 20120098032
    Abstract: The present invention provides a non-vacuum method of depositing a photovoltaic absorber layer based on electrophoretic deposition of a mixture of nanoparticles with a controlled atomic ratio between the elements. The nanoparticles are first dispersed in a liquid medium to form a colloidal suspension and then electrophoretically deposited onto a substrate to form a thin film photovoltaic absorber layer. The absorber layer may be subjected to optional post-deposition treatments for photovoltaic absorption.
    Type: Application
    Filed: August 5, 2011
    Publication date: April 26, 2012
    Inventors: Wei GUO, Yu Jin, Bing Liu, Yong Che, Kevin V. Hagedorn
  • Publication number: 20120073640
    Abstract: A method for bandgap shift and phase transformation for titania structures. The method can include providing a flexible substrate, depositing a titania film onto the substrate, and exposing the titania film to one or more pulses of infrared energy of sufficient energy density and for a sufficient time to crystallize the titania film to predominantly anatase crystalline phase. The flexible substrate can be formed from a polymeric material, and the method can achieve a bandgap shift from greater than 3.0 eV to approximately 2.4 eV. The method can also include forming a crystalline titania layer over a substrate and annealing the crystalline titania layer by applying pulsed thermal energy sufficient to modify the phase constitution of the crystalline titania layer. The source of pulsed thermal energy can include an infrared flashlamp or laser, and the resulting titania structure can be used with photovoltaic and photoelectrolysis systems.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Claus Daniel, Constantinos Tsouris, Nickolay V. Lavrik, Panagiotis G. Datskos, Ronald D. Ott, Viviane Schwartz, Adrian S. Sabau
  • Publication number: 20120067407
    Abstract: Processes for making a solar cell by depositing various layers of components on a substrate and converting the components into a thin film photovoltaic absorber material. Processes of this disclosure can be used to control the stoichiometry of metal atoms in making a solar cell for targeting a particular concentration and providing a gradient of metal atom concentration. A selenium layer can be used in annealing a thin film photovoltaic absorber material.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 22, 2012
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, David Padowitz, Paul R. Markoff Johnson, Wayne A. Chomitz
  • Patent number: 8134140
    Abstract: A microelectronic programmable structure suitable for storing information and array including the structure and methods of forming and programming the structure are disclosed. The programmable structure generally includes an ion conductor and a plurality of electrodes. Electrical properties of the structure may be altered by applying energy to the structure, and thus information may be stored using the structure.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 13, 2012
    Assignee: Axon Technologies Corporation
    Inventor: Michael N. Kozicki
  • Publication number: 20110309477
    Abstract: The present invention relates to devices, particularly photovoltaic devices, incorporating Group IIB/VA semiconductors such phosphides, arsenides, and/or antimonides of one or more of Zn and/or Cd. In particular, the present invention relates to methodologies, resultant products, and precursors thereof in which electronic performance of the semiconductor material is improved by causing the Group IIB/VA semiconductor material to react with at least one metal-containing species (hereinafter co-reactive species) that is sufficiently co-reactive with at least one Group VA species incorporated into the Group IIB/VA semiconductor as a lattice substituent (recognizing that the same and/or another Group VA species also optionally may be incorporated into the Group IIB/VA semiconductor in other ways, e.g., as a dopant or the like).
    Type: Application
    Filed: June 15, 2011
    Publication date: December 22, 2011
    Inventors: Gregory M. Kimball, Marty W. DeGroot, Nathan S. Lewis, Harry A. Atwater
  • Publication number: 20110227091
    Abstract: A solid-state imaging device is provided with a pixel region in which a plurality of pixels including photoelectric conversion films are arrayed and pixel isolation portions are interposed between the plurality of pixels, wherein the photoelectric conversion film is a chalcopyrite-structure compound semiconductor composed of a copper-aluminum-gallium-indium-sulfur-selenium based mixed crystal or a copper-aluminum-gallium-indium-zinc-sulfur-selenium based mixed crystal and is disposed on a silicon substrate in such a way as to lattice-match the silicon substrate concerned, and the pixel isolation portion is formed from a compound semiconductor subjected to doping concentration control or composition control in such a way as to become a potential barrier between the photoelectric conversion films disposed in accordance with the plurality of pixels.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 22, 2011
    Applicant: SONY CORPORATION
    Inventor: Atsushi Toda
  • Publication number: 20110220889
    Abstract: An object is to achieve low-power consumption by reducing the off-state current of a transistor in a photosensor. A semiconductor device including a photosensor having a photodiode, a first transistor, and a second transistor; and a read control circuit including a read control transistor, in which the photodiode has a function of supplying charge based on incident light to a gate of the first transistor; the first transistor has a function of storing charge supplied to its gate and converting the charge stored into an output signal; the second transistor has a function of controlling reading of the output signal; the read control transistor functions as a resistor converting the output signal into a voltage signal; and semiconductor layers of the first transistor, the second transistor, and the read control transistor are formed using an oxide semiconductor.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 15, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA, Hikaru TAMURA, Munehiro KOZUMA
  • Publication number: 20110198484
    Abstract: A transistor a gate of which, one of a source and a drain of which, and the other are electrically connected to a selection signal line, an output signal line, and a reference signal line, respectively and a photodiode one of an anode and a cathode of which and the other are electrically connected to a reset signal line and a back gate of the transistor, respectively are included. The photodiode is forward biased to initialize the back-gate potential of the transistor, the back-gate potential is changed by current of the inversely-biased photodiode flowing in an inverse direction in accordance with the light intensity, and the transistor is turned on to change the potential of the output signal line, so that a signal in accordance with the intensity is obtained.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yoshiyuki KUROKAWA
  • Publication number: 20110198483
    Abstract: A semiconductor device including photosensor capable of imaging with high resolution is disclosed. The semiconductor device includes the photosensor having a photodiode, a first transistor, and a second transistor. The photodiode generates an electric signal in accordance with the intensity of light. The first transistor stores charge in a gate thereof and converts the stored charge into an output signal. The second transistor transfers the electric signal generated by the photodiode to the gate of the first transistor and holds the charge stored in the gate of the first transistor. The first transistor has a back gate and the threshold voltage thereof is changed by changing the potential of the back gate.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yoshiyuki KUROKAWA
  • Publication number: 20110155226
    Abstract: As an n-type buffer layer, a material including TiO2 as a base material with addition of one or plurality of ZrO2, HfO2, GeO2, BaTiO3, SrTiO3, CaTiO3, MgTiO3, K(Ta, Nb)O3, and Na(Ta, Nb)O3 for band gap control, a material including BaTiO3 as a base material with addition of one or plurality of SrTiO3, CaTiO3, and MgTiO3 for band gap control, or a material comprising K(Ta, Nb)O3 as a base material with addition of Na(Ta, Nb)O3 for band gap control is used.
    Type: Application
    Filed: August 13, 2010
    Publication date: June 30, 2011
    Inventors: Toshiaki KUSUNOKI, Masakazu Sagawa, Masaaki Komatsu
  • Publication number: 20110155238
    Abstract: A pyridine type metal complex having a partial structure represented by the formula (I) or (I?): wherein, M is a transition metal atom; Ds, which may be the same or different, respectively represent specific conjugated chains; Rs, which may be the same or different, respectively represent a halogen atom, a hydrogen atom, or an alkyl group having 1 to 20 carbon atoms, an alkenyl or alkynyl group having 2 to 10 carbon atoms, an aryl or heteroaryl group having 6 to 10 carbon atoms or an arylalkyl or heteroarylalkyl group having 7 to 13 carbon atoms which may have a substituent group.
    Type: Application
    Filed: April 23, 2009
    Publication date: June 30, 2011
    Inventors: Xiuliang Shen, Ashraful Islam, Ryoichi Komiya, Liyuan Han
  • Patent number: 7927908
    Abstract: The method is designed for manufacturing a bolometric detector equipped with a membrane suspended above a substrate by means of heat-insulating arms fixed to the substrate by anchoring points. The membrane has a heat-sensitive thin layer with a base comprising at least a semiconducting iron oxide. The method comprises at least a step of localized reduction and/or oxidation of the thin layer of semiconducting iron oxide to modify the degree of oxidation of the iron atom of a part of the thin layer of semiconducting iron oxide.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: April 19, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Louis Ouvrier-Buffet, Christophe Dubarry, Laurent Puech
  • Patent number: 7893419
    Abstract: A phase change material may be processed to reduce its microcrystalline grain size and may also be processed to increase the crystallization or set programming speed of the material. For example, material doped with nitrogen to reduce grain size may be doped with titanium to reduce crystallization time.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: February 22, 2011
    Assignee: Intel Corporation
    Inventors: Stephen J. Hudgens, Tyler Lowrey
  • Publication number: 20110030798
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. In particular, this invention relates to molecular precursor compounds and precursor materials for preparing photovoltaic layers including CAIGAS.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Publication number: 20110030796
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions for semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is a combination of Cu and Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Publication number: 20110030797
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 7834380
    Abstract: A field effect transistor includes a first semiconductor layer made of a multilayer of a plurality of semiconductor films and a second semiconductor layer formed on the first semiconductor layer. A source electrode and a drain electrode are formed on the second semiconductor layer to be spaced from each other. An opening having an insulating film on its inner wall is formed in a portion of the second semiconductor layer sandwiched between the source electrode and the drain electrode so as to expose the first semiconductor layer therein. A gate electrode is formed in the opening to be in contact with the insulating film and the first semiconductor layer on the bottom of the opening.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 16, 2010
    Assignee: Panasonic Corporation
    Inventors: Tetsuzo Ueda, Hidetoshi Ishida, Tsuyoshi Tanaka
  • Publication number: 20100283048
    Abstract: Provided is a complementary metal oxide semiconductor (CMOS) image sensor having a structure capable of increasing areas of photodiodes in unit pixels and expanding light receiving areas of the photodiodes. In the CMOS image sensor, transfer transistors may be formed on the photodiode, and reset transistors, source follower transistors, and selection transistors may be formed on a layer on which the transfer transistors are not formed. In such a CMOS image sensor, the areas of the photodiodes may be increased in unit pixels so that a size of the unit pixels may be reduced and sensitivity of the pixel may be improved.
    Type: Application
    Filed: December 4, 2009
    Publication date: November 11, 2010
    Inventors: Sung-ho Park, I-hun Song, Wook Lee, Sang-wook Kim, Sun-il Kim, Jae-chul Park
  • Publication number: 20100265978
    Abstract: The present invention is directed to photonic devices which emit or absorb light with a wavelength shorter than that GaN photonic devices can emit or absorb. The devices according to the present invention are formed using molybdenum oxide of a high purity as a light emitting region or a light absorbing region. New inexpensive photonic devices which emit light with a wavelength from blue to deep ultraviolet rays are realized. The devices according to the present invention can be formed at a temperature relating low such as 700° C.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 21, 2010
    Inventor: Takashi KATODA
  • Publication number: 20100193018
    Abstract: This disclosure describes devices and methods in which photovoltaic cells are configured such that an active layer of a photovoltaic cell is protected against an environmental condition by another active cell layer that is more robust against the environmental condition. In one aspect, the disclosure describes a multi-junction photovoltaic device that includes (a) an upper photovoltaic cell portion that has a first plurality of active layers of films, at least a subset of which form an upper photovoltaic sub-cell and (b) a lower photovoltaic cell portion disposed below the upper photovoltaic cell portion that has a second plurality of layers of films, at least a subset of which form a lower photovoltaic sub-cell. The first plurality of active layers, of the upper cell portion, include at least two layers of films having different degrees of robustness from each other against environmental conditions, such as exposure to water or oxygen.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Rebekah Kristine-Ligman Feist, Buford I. Lemon
  • Publication number: 20100184245
    Abstract: The method is designed for manufacturing a bolometric detector equipped with a membrane suspended above a substrate by means of heat-insulating arms fixed to the substrate by anchoring points. The membrane has a heat-sensitive thin layer with a base comprising at least a semiconducting iron oxide. The method comprises at least a step of localized reduction and/or oxidation of the thin layer of semiconducting iron oxide to modify the degree of oxidation of the iron atom of a part of the thin layer of semiconducting iron oxide.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 22, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Jean-Louis OUVRIER-BUFFET, Christophe DUBARRY, Laurent PUECH
  • Publication number: 20100181486
    Abstract: A micro-bolometer type infrared (IR) sensing device is provided. The IR sensing device includes an absorbed heat discharging part; a sensing structure part formed as bean structure, spaced apart from the absorbed heat discharging part, supported at least at one end on the absorbed heat discharging part, and discharging heat absorbed in the sensing structure part by being elastically deformed and thus touching the absorbed heat discharging part. The sensing structure part includes: a sensing part with variation in secondary attribute (for example, in electrical resistance property) according to heat; and a light-absorbing part formed into one unit with the sensing part in a manner to surround the sensing part as seen in section view, and converting energy of incident photons into heat. The sensing structure part discharges heat absorbed therein by being elastically deformed and thus touching the absorbed heat discharge part spaced apart downward from the sensing structure part.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicants: HanVision Co., Ltd., Lumiense Photonics Inc.
    Inventor: Robert Hannebauer