Shape Of Body (epo) Patents (Class 257/E31.038)
  • Patent number: 8120014
    Abstract: Nanoscaled, tunable detector devices for ultrasensitive detection of terahertz (THz) radiation based on the fabrication of one-dimensional (1D) plasma devices having clouds of strongly correlated and spatially confined electronic charge carriers are disclosed. These one-dimensional collective excitations (“plasmons”) are realized using coaxial semiconducting core-shell nanowires or by electrostatically confining a two dimensional charge to one dimension. By exploiting the properties of plasmons confined to reduced dimensions and under a selected device configuration, conventional limitations on carrier drift and transit times that dictate the speed and sensitivity of transistors can be circumvented, and detector sensitivity can be improved. 1D devices with sub-picosecond response times will be important for a range of applications in diverse areas such as remote sensing and imaging, molecular spectroscopy, biotechnology, and in a range of the spectrum that has been difficult to detect.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 21, 2012
    Assignee: Drexel University
    Inventors: Bahram Nabet, Jonathan E. Spanier
  • Patent number: 8106432
    Abstract: A pixel sensor cell having a semiconductor substrate having a surface; a photosensitive element formed in a substrate having a non-laterally disposed charge collection region entirely isolated from a physical boundary including the substrate surface. The photosensitive element comprises a trench having sidewalls formed in the substrate of a first conductivity type material; a first doped layer of a second conductivity type material formed adjacent to at least one of the sidewalls; and a second doped layer of the first conductivity type material formed between the first doped layer and the at least one trench sidewall and formed at a surface of the substrate, the second doped layer isolating the first doped layer from the at least one trench sidewall and the substrate surface.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Mark D. Jaffe, Dale J. Pearson, Dennis L. Rogers
  • Publication number: 20110309233
    Abstract: Methods, apparatuses, systems, and devices relating to fabricating one or more nanowires are disclosed. One method for fabricating a nanowire includes: selecting a particular wavelength of electromagnetic radiation for absorption for a nanowire; determining a diameter corresponding to the particular wavelength; and fabricating a nanowire having the determined diameter. According to another embodiment, one or more nanowires may be fabricated in an array, each having the same or different determined diameters. An image sensor and method of imaging using such an array are also disclosed.
    Type: Application
    Filed: December 13, 2010
    Publication date: December 22, 2011
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, ZENA TECHNOLOGIES, INC.
    Inventors: Kwanyong SEO, Paul Steinvurzel, Ethan Schonbrun, Munib Wober, Kenneth B. Crozier
  • Publication number: 20110272014
    Abstract: A photovoltaic structure of a photovoltaic cell and a method of fabricating a photovoltaic structure, employ a nanowire having a base connected to a stub and an electrical isolation layer surrounding the stub. The stub is a constituent of a substrate surface. The nanowire extends away from the substrate surface and is wider than the stub. The nanowire base overlies a part of the isolation layer that is adjacent to the stub. A semiconductor junction comprises the nanowire. The method includes forming the stub; growing the nanowire from the stub; and conformally coating the nanowire. A nanoparticle is applied to the substrate surface. The isolation layer is created on and embedded in the substrate surface using the nanoparticle as a mask. A portion of the substrate surface underlying the nanoparticle forms the stub. The nanoparticle catalyzes nanowire growth on the stub. The stub is narrower than the nanoparticle.
    Type: Application
    Filed: December 19, 2008
    Publication date: November 10, 2011
    Inventors: Sagi V. Mathai, Nobuhiko P. Kobayashi, Shih-Yuan Wang
  • Patent number: 8053788
    Abstract: A rod-shaped semiconductor device having a light-receiving or light-emitting function is equipped with a rod-shaped substrate made of p-type or n-type semiconductor crystal, a separate conductive layer which is formed on a part of the surface of the substrate excluding a band-shaped part parallel to the axis of the substrate and has a different conduction type from the conduction type of the substrate, a pn-junction formed with the substrate and separate conductive layer, a band-shaped first electrode which is formed on the surface of the band-shaped part on the substrate and ohmic-connected to the substrate, and a band-shaped second electrode which is formed on the opposite side of the first electrode across the shaft of said substrate and ohmic-connected to the separate conductive layer.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: November 8, 2011
    Assignee: Kyosemi Corporation
    Inventor: Josuke Nakata
  • Patent number: 8022390
    Abstract: A photodetector for detecting infrared light in a wavelength range of 3-25 ?m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and InxGa1-xSb with 0?x?0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: September 20, 2011
    Assignee: Sandia Corporation
    Inventors: Jin K. Kim, Malcolm S. Carroll
  • Patent number: 8003424
    Abstract: A CMOS image sensor includes a photosensitive device, a floating diffusion region, a transfer transistor, and a pocket photodiode formed in a semiconductor substrate of a first conductivity type. The floating diffusion region is of a second conductivity type. The transfer transistor has a channel region disposed between the photosensitive device and the floating diffusion region. The pocket photodiode is of the second conductivity type and is formed under a first portion of a bottom surface of the channel region such that a second portion of the bottom surface of the channel region abuts the semiconductor substrate.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Ho Lee, Yi-Tae Kim, Jung-Chak Ahn, Sae-Young Kim
  • Publication number: 20110193133
    Abstract: A highly sensitive and wide spectra-range mesa type photodetector having the impurity diffusion along the mesa-sidewall is provided with. A mesa-type hetero-bipolar phototransistor or photodiode having a photo-absorption layer 10 (41) formed by a first semiconductor layer of a first conductivity type, an anode layer 40 (or base layer 4) formed by a second semiconductor layer of a second conductivity type which has an opposite polarity with the first conductivity type, a wide band gap emitter 3 or window layer 42 formed by the third semiconductor layer on the anode layer, and the wide band gap buffer layer 11 of the first conductivity type which has a relatively wide band gap semiconductor as compared with the second semiconductor layer on the substrate 12, which also serves as the cathode layer. And the first semiconductor layer 10, the second semiconductor layer 4 and the wide band gap emitter 3 or window layer 42 is selectively etched to form the mesa structure 7.
    Type: Application
    Filed: October 6, 2009
    Publication date: August 11, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: Mutsuo Ogura
  • Publication number: 20110134298
    Abstract: A pixel is provided with a photodiode region which includes a photoelectric conversion portion for receiving light and generating electrons, and a charge storage portion for storing electric charge. The pixel is configured in such a manner that an electron exclusion region is provided in the photodiode region with the diameter of a circle having the maximum diameter among circles that can exist in the surface of a region through which electrons can pass in the photodiode region as the width of an electron passage region in the photodiode region, and the width of the electron passage region is smaller than when the electron exclusion region is not provided.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 9, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Chiaki Aoyama
  • Publication number: 20110126892
    Abstract: Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventors: Morgan C. PUTNAM, Michael D. Kelzenberg, Harry A. Atwater, Shannon W. Boettcher, Nathan S. Lewis, Joshua M. Spurgeon, Daniel B. Turner-Evans, Emily L. Warren
  • Publication number: 20110108098
    Abstract: The present disclosure enables high-volume cost effective production of three-dimensional thin film solar cell (3-D TFSC) substrates. First, the present disclosure discloses pyramid-like unit cell structure 16 and 50 which enable epitaxial growth through their open pyramidal structure. The present disclosure than gives four 3-D TFSC embodiments 70, 82, 100, and 110 which may combined as necessary. A basic 3-D TFSC having a substrate, emitter, oxidation on the emitter, front and back metal contacts allows simple processing. Other embodiments disclose a selective emitter, selective backside metal contact, and front-side SiN ARC layers. Several processing methods including process flows 150, 200, 250, 300, and 350 enable production of these 3-D TFSC. Further, the present disclosure enables higher throughput through the use of dual sided template 400. By processing the substrate in the template, the present disclosure increases yield and reduces processing steps.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 12, 2011
    Inventor: Pawan Kapur
  • Patent number: 7932115
    Abstract: A photodiode includes a photosensitive element formed in a silicon semiconductor layer on an insulation layer. The photosensitive element includes a low concentration diffusion layer, a P-type high concentration diffusion layer, and an N-type high concentration diffusion layer. A method of producing the photodiode includes the steps of: forming an insulation material layer on the silicon semiconductor layer after the P-type impurity and the N-type impurity are implanted into the low concentration diffusion layer, the P-type high concentration diffusion layer, and the N-type high concentration diffusion layer; forming an opening portion in the insulation material layer in an area for forming the low concentration diffusion layer; and etching the silicon semiconductor layer in the area for forming the low concentration diffusion layer so that a thickness of the silicon semiconductor layer is reduced to a specific level.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 26, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Noriyuki Miura
  • Publication number: 20110089515
    Abstract: A semiconductor light receiving device includes: a first semiconductor light receiving element that is provided on a semiconductor substrate and has a mesa structure having an upper electrode to be coupled to an electrode wiring of a mounting carrier and a lower electrode; a first mesa that is provided on the semiconductor substrate and has an upper electrode coupled electrically to a lower electrode of the first semiconductor light receiving element with a wiring provided on the semiconductor substrate; and a second mesa that is provided on the semiconductor substrate and has an upper electrode that has a same electrical potential as the upper electrode of the first semiconductor light receiving element when coupled to the electrode wiring on the mounting carrier.
    Type: Application
    Filed: September 29, 2010
    Publication date: April 21, 2011
    Applicant: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventor: Yuji Koyama
  • Patent number: 7910947
    Abstract: A solar battery module as a panel-shaped semiconductor module comprises multiple rod-shaped electric power generation semiconductor elements arranged in multiple rows and columns, a conductive connection mechanism connecting in series multiple semiconductor elements in each column and electrically connecting in parallel multiple semiconductor elements in each row, and a conductive inner metal case housing the multiple semiconductor elements and constituting the conductive connection mechanism, wherein each row of semiconductor elements is housed in each reflecting surface-forming groove of the inner metal case, the positive electrodes of the semiconductor electrodes are connected to the bottom plate and the negative electrodes are connected to finger leads, and the top is covered with a transparent cover member.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: March 22, 2011
    Assignee: Kyosemi Corporation
    Inventor: Josuke Nakata
  • Patent number: 7906778
    Abstract: Methods of making nanometer-scale semiconductor structures with controlled size are disclosed. Semiconductor structures that include one or more nanowires are also disclosed. The nanowires can include a passivation layer or have a hollow tube structure.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: March 15, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nobuhiko Kobayashi, Wei Wu, Duncan R Stewart, Shashank Sharma, Shih-Yuan Wang, R Stanley Williams
  • Publication number: 20110048518
    Abstract: Inorganic solar cells having a nano-patterned p-n or p-i-n junction to reduce electron and hole travel distance to the separation interface to be less than the magnitude of the drift length or diffusion length, and meanwhile to maintain adequate active material to absorb photons. Formation of the inorganic solar cells may include one or more nano-lithography steps.
    Type: Application
    Filed: August 17, 2010
    Publication date: March 3, 2011
    Applicants: MOLECULAR IMPRINTS, INC., BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Shuqiang Yang, Sidlgata V. Sreenivasan, Frank Y. Xu
  • Patent number: 7888766
    Abstract: A photodiode array 1 is provided with an n-type silicon substrate 3. A plurality of photodiodes 4 are formed in array on the opposites surface side to an incident surface of light L to be detected, in the n-type silicon substrate 3. A depression 6 with a predetermined depth more depressed than a region not corresponding to regions where the photodiodes 4 are formed is formed in regions corresponding to the regions where the photodiodes 4 are formed, on the incident surface side of the light L to be detected, in the n-type silicon substrate 3.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: February 15, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Katsumi Shibayama
  • Patent number: 7880255
    Abstract: A pixel cell having a photosensor within a silicon substrate; and an oxide layer provided over the photosensor, the oxide layer having a grated interface with said silicon substrate, and a method of fabricating the pixel cell having a grated interface.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: February 1, 2011
    Assignee: Micron Technology, Inc.
    Inventor: William J. Baggenstoss
  • Patent number: 7880201
    Abstract: The present invention is a method and an apparatus for optical modulation, for example for use in optical communications links. In one embodiment, an apparatus for optical modulation includes a first silicon layer having one or more trenches formed therein, a dielectric layer lining the first silicon layer, and a second silicon layer disposed on the dielectric layer and filling the trenches.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Yurii A. Vlasov, Fengnian Xia
  • Patent number: 7867791
    Abstract: The invention provides a technique to manufacture a highly reliable semiconductor device and a display device at high yield. As an exposure mask, an exposure mask provided with a diffraction grating pattern or an auxiliary pattern formed of a semi-transmissive film with a light intensity reducing function is used. With such an exposure mask, various light exposures can be more accurately controlled, which enables a resist to be processed into a more accurate shape. Therefore, when such a mask layer is used, the conductive film and the insulating film can be processed in the same step into different shapes in accordance with desired performances. As a result, thin film transistors with different characteristics, wires in different sizes and shapes, and the like can be manufactured without increasing the number of steps.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Masayuki Sakakura
  • Patent number: 7868408
    Abstract: A semiconductor photodetector device (PD1) comprises a multilayer structure (LS1) and a glass substrate (1) optically transparent to incident light. The multilayer structure includes an etching stop layer (2), an n-type high-concentration carrier layer (3), an n-type light-absorbing layer (5), and an n-type cap layer (7) which are laminated. A photodetecting region (9) is formed near a first main face (101) of the multilayer structure, whereas a first electrode (21) is provided on the first main face. A second electrode (27) and a third electrode (31) are provided on a second main face (102). A film (10) covering the photodetecting region and first electrode is formed on the first main face. A glass substrate (1) is secured to the front face (10a) of this film.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: January 11, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Akimasa Tanaka
  • Publication number: 20100300518
    Abstract: A method for the fabrication of a three-dimensional thin-film semiconductor substrate with selective through-holes is provided. A porous semiconductor layer is conformally formed on a semiconductor template comprising a plurality of three-dimensional inverted pyramidal surface features defined by top surface areas aligned along a (100) crystallographic orientation plane of the semiconductor template and a plurality of inverted pyramidal cavities defined by sidewalls aligned along the (111) crystallographic orientation plane of the semiconductor template. An epitaxial semiconductor layer is conformally formed on the porous semiconductor layer. The epitaxial semiconductor layer is released from the semiconductor template. Through-holes are selectively formed in the epitaxial semiconductor layer with openings between the front and back lateral surface planes of the epitaxial semiconductor layer to form a partially transparent three-dimensional thin-film semiconductor substrate.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 2, 2010
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20100276775
    Abstract: The semiconductor light receiving element 1 includes a semiconductor substrate 101, and a semiconductor layer having a photo-absorption layer 105 disposed on the top of the semiconductor substrate 101. The semiconductor layer of the semiconductor light receiving element 1 containing at least the photo-absorption layer 105 has a mesa structure, and a side wall of the mesa is provided with a protective film 113 covering the side wall. The protective film 113 is a silicon nitride film containing hydrogen, and a hydrogen concentration in one surface of the protective film 113 located at the side of the mesa side wall is lower than a hydrogen concentration in the other surface of the protective film 113 located at the side that is opposite to the side of the mesa side wall.
    Type: Application
    Filed: December 25, 2008
    Publication date: November 4, 2010
    Inventor: Emiko Fujii
  • Patent number: 7825494
    Abstract: An image sensor may include a dielectric, a metal interconnection, an align key, a first substrate, a photodiode, and a transparent electrode. The first substrate may include a pixel region, a peripheral circuitry region and a scribe lane. The dielectric may include a metal interconnection and an align key over the first substrate. The photodiode may be formed over the pixel region and the scribe lane. The transparent electrode may be formed over the photodiode. The align key may have a protrusion formed in a center thereof.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Ho Jun
  • Publication number: 20100264502
    Abstract: Gray tone lithography is used to form curved silicon topographies for semiconductor based solid-state imaging devices. The imagers are curved to a specific curvature and shaped directly for the specific application; such as curved focal planes. The curvature of the backside is independent from the front surface, which allows thinning of the detector using standard semiconductor processing.
    Type: Application
    Filed: October 19, 2009
    Publication date: October 21, 2010
    Applicant: US Gov't Represented by the Secretary of the Navy Office of Naval Research (ONR/NRL) code OOCCIP
    Inventors: Marc Christophersen, Bernard F. Phlips
  • Patent number: 7812355
    Abstract: An object of the present invention is to provide a method for manufacturing a semiconductor device having a semiconductor element capable of reducing a cost and improving a throughput with a minute structure, and further, a method for manufacturing a liquid crystal television and an EL television. According to one feature of the invention, a method for manufacturing a semiconductor device comprises the steps of: forming a light absorption layer over a substrate, forming a first region over the light absorption layer by using a solution, generating heat by irradiating the light absorption layer with laser light, and forming a first film pattern by heating the first region with the heat.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 12, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroko Shiroguchi, Yoshiaki Yamamoto
  • Patent number: 7803653
    Abstract: A method of manufacturing an image sensor includes forming a device isolation region in an active pixel sensor area of a semiconductor substrate and alignment keys in a scribe lane area of the semiconductor substrate, such that the depth of the alignment keys is equal to or shallower than the depth of the device isolation region. The method further includes forming a photoelectric converter in the active pixel sensor area, polishing a rear surface of the semiconductor substrate and using the alignment keys to form a microlens at a position corresponding to the photoelectric converter on the polished rear surface of the semiconductor substrate.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gil-sang Yoo, Byung-jun Park, Yun-ki Lee
  • Publication number: 20100133643
    Abstract: A method of manufacturing a pixel of an image sensor including a protruded photodiode capable of improving photosensitivity and reducing crosstalk between neighboring pixels and a pixel of an image sensor formed using the method are provided. The pixel of the semiconductor image sensor includes a protrudedly shaped photodiode on a surface of a semiconductor substrate. A surface area of the photodiode with respect to a surface area of the image sensor pixel increases to improve photosensitivity, and a microlens is not needed due to the improvement of the fill factor. In addition, the crosstalk of neighboring pixels can be removed.
    Type: Application
    Filed: June 14, 2006
    Publication date: June 3, 2010
    Applicants: SILICONFILE TECHNOLOGIES INC.
    Inventor: Cheol Soo Park
  • Patent number: 7714224
    Abstract: A photovoltaic power generation module that can make use of arcuate cells and a photovoltaic power generation system employing such a module are disclosed. The photovoltaic power generation module may include arcuate cells divided from a disk-shaped single crystal silicon photovoltaic power generation cell. The arcuate cells may have a circular arc with a central angle of 90°. The arcuate cells may have a grid-perpendicular to the chord and at least one busbar perpendicular to the grid. The arcuate cells may be arrayed in a lattice pattern, the arcuate cells having an area of 28 to 65 cm2 and 14 to 42 thereof being arrayed.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 11, 2010
    Assignees: Shin - ETSU Chemical Co., Ltd., Shin - ETSU Handotai Co., Ltd.
    Inventors: Takao Abe, Naoki Ishikawa
  • Publication number: 20100112748
    Abstract: A method for forming a nanostructure according to one embodiment includes creating a hole in an insulating layer positioned over an electrically conductive layer; and forming a nanocable in the hole such that the nanocable extends through the hole in the insulating layer and protrudes therefrom, the nanocable being in communication with the electrically conductive layer. Additional systems and methods are also presented.
    Type: Application
    Filed: July 24, 2009
    Publication date: May 6, 2010
    Inventors: Ruxandra Vidu, Brian Argo, John Argo, Pieter Stroeve, Saif Islam, Jie-Ren Ku, Michael Chen
  • Patent number: 7705464
    Abstract: The present disclosure relates generally to the manufacturing of semiconductor devices, and more particularly to an improved connection structure for semiconductor devices. A connection structure for a semiconductor device includes: a peanut-shaped opening comprising a narrow area and one or more wide areas, wherein the narrow area is between two of the one or more wide areas; and a conductive plug for filling at least partially the peanut-shaped opening.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhon Jhy Liaw, Sung-Chun Hsieh, Wesley Lin, Chii-Ming W Wu, Ren-Fen Tsui
  • Patent number: 7696595
    Abstract: With this semiconductor device, the distortion and cracking of a thinned portion of a semiconductor substrate are prevented to enable high precision focusing with respect to a photodetecting unit and uniformity and stability of high sensitivity of the photodetecting unit to be maintained. A semiconductor device 1 has a semiconductor substrate 10, a wiring substrate 20, conductive bumps 30, and a resin 32. A CCD 12 and a thinned portion 14 are formed on semiconductor substrate 10. Electrodes 16 of semiconductor substrate 10 are connected via conductive bumps 30 to electrodes 22 of wiring substrate 20. Insulating resin 32 fills a gap between outer edge 15 of thinned portion 14 and wiring substrate 20 to reinforce the bonding strengths of conductive bumps 30. This resin 32 is a resin sheet that has been formed in advance so as to surround a periphery of a gap between thinned portion 14 and wiring substrate 20 except for portions of the periphery.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 13, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hiroya Kobayashi, Masaharu Muramatsu
  • Patent number: 7679100
    Abstract: A housing for an electromagnetic radiation emitting optoelectronic component is specified. The housing comprises a housing base body provided with a recess in which at least one chip mounting surface is disposed. At least one outer surface of the housing base body, disposed on an emission side of the housing and adjoining the recess, is provided with a baffle layer suitable for screening an electromagnetic radiation. An electromagnetic radiation emitting component provided with such a housing and a method of making a corresponding housing or component are also specified.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: March 16, 2010
    Assignees: Osram Opto Semiconductors GmbH, Hella KGAA Hueck & Co.
    Inventors: Lukas Schwenkschuster, Martin Wüller, Joachim Reill, Moritz Engl
  • Patent number: 7659564
    Abstract: A pixel sensor cell having a semiconductor substrate having a surface; a photosensitive element formed in a substrate having a non-laterally disposed charge collection region entirely isolated from a physical boundary including the substrate surface. The photosensitive element comprises a trench having sidewalls formed in the substrate of a first conductivity type material; a first doped layer of a second conductivity type material formed adjacent to at least one of the sidewalls; and a second doped layer of the first conductivity type material formed between the first doped layer and the at least one trench sidewall and formed at a surface of the substrate, the second doped layer isolating the first doped layer from the at least one trench sidewall and the substrate surface.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Mark D. Jaffe, Dale J. Pearson, Dennis L. Rogers
  • Patent number: 7655965
    Abstract: A semiconductor light receiving device includes a plurality of photodiode units, each of which is configured to convert a received light into an electric signal; and a separating unit configured to electrically separates the plurality of photodiode units from each other. The impurity concentration of a surface portion of the separating unit is equal to or lower than a first concentration. The first concentration is a concentration at which the light receiving sensitivity of the separating unit to light is substantially equal to the light receiving sensitivity of each of the plurality of photodiode units of the light. A wavelength of the light is equal to or longer than that of blue-violet light.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 2, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Nobuyuki Nagashima
  • Publication number: 20090308450
    Abstract: Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 17, 2009
    Applicant: SOLAR IMPLANT TECHNOLOGIES INC.
    Inventors: Babak Adibi, Edward S. Murrer
  • Patent number: 7602035
    Abstract: A solar module 20 comprises first and second sheets 21 and 22, a plurality of rows (a plurality of groups) of spherical solar cells 11 incorporated in between these sheets 21 and 22 in a state in which the conduction direction is perpendicular to the surface of the sheets, a mechanism for the parallel connection of each group of spherical solar cells 11, a mechanism for the serial connection of each group of spherical solar cells 11 with the spherical solar cells 11 in adjacent groups, a positive electrode terminal 23, and a negative electrode terminal 24. A positive electrode is formed on the bottom and a negative electrode on top in the odd-numbered rows of spherical solar cells 11 from the left end, while a positive electrode is formed on top and a negative electrode on the bottom in the even-numbered rows of spherical solar cells 11.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: October 13, 2009
    Inventor: Josuke Nakata
  • Publication number: 20090211632
    Abstract: A photovoltaic device, comprises a first electrode, an electron donor layer in electrical contact with the first electrode, an electron acceptor layer in contact with the electron donor layer across an interface having a shape defined by a columnar structure grown by oblique angle deposition, and a second electrode in electrical contact with the electron acceptor layer.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 27, 2009
    Applicants: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Michael Julian Brett, Jillian M. Buriak, Michael D. Fleischauer, Nathan J. Gerein, Kenneth D. Harris, Sean A. McClure, David A. Rider
  • Publication number: 20090188552
    Abstract: Embodiments of the present invention relate to nanowire-based photovoltaic cells and to methods for fabricating the same. In one embodiment, a photovoltaic cell includes a first semiconductor layer doped with a first impurity and disposed on a portion of a first raised surface of a substrate and a second semiconductor layer doped with a second impurity and disposed on a second raised surface of the substrate. The first semiconductor layer has at least one negatively sloped surface, and the second semiconductor layer has at least one positively sloped surface neighboring the at least one negatively sloped surface of the first semiconductor layer. The photovoltaic cell includes at least one nanowire electronically coupled to the negatively sloped surface of the first semiconductor layer and electronically coupled to the positively sloped surface of the second semiconductor layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: July 30, 2009
    Inventors: Shih-Yuan Wang, Michael Tan, Nobuhiko Kobayashi, Denny Houng
  • Patent number: 7563636
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20090173959
    Abstract: A solar battery module as a panel-shaped semiconductor module comprises multiple rod-shaped electric power generation semiconductor elements arranged in multiple rows and columns, a conductive connection mechanism connecting in series multiple semiconductor elements in each column and electrically connecting in parallel multiple semiconductor elements in each row, and a conductive inner metal case housing the multiple semiconductor elements and constituting the conductive connection mechanism, wherein each row of semiconductor elements is housed in each reflecting surface-forming groove of the inner metal case, the positive electrodes of the semiconductor electrodes are connected to the bottom plate and the negative electrodes are connected to finger leads, and the top is covered with a transparent cover member.
    Type: Application
    Filed: July 4, 2006
    Publication date: July 9, 2009
    Applicant: KYOSEMI CORPORATION
    Inventor: Josuke Nakata
  • Publication number: 20090108285
    Abstract: A rod-shaped semiconductor device having a light-receiving or light-emitting function is equipped with a rod-shaped substrate made of p-type or n-type semiconductor crystal, a separate conductive layer which is formed on a part of the surface of the substrate excluding a band-shaped part parallel to the axis of the substrate and has a different conduction type from the conduction type of the substrate, a pn-junction formed with the substrate and separate conductive layer, a band-shaped first electrode which is formed on the surface of the band-shaped part on the substrate and ohmic-connected to the substrate, and a band-shaped second electrode which is formed on the opposite side of the first electrode across the shaft of said substrate and ohmic-connected to the separate conductive layer.
    Type: Application
    Filed: June 14, 2006
    Publication date: April 30, 2009
    Inventor: Josuke Nakata
  • Patent number: 7491561
    Abstract: A novel pixel sensor structure formed on a substrate of a first conductivity type includes a photosensitive device of a second conductivity type and a surface pinning layer of the first conductivity type. A trench isolation structure is formed adjacent to the photosensitive device pinning layer. The trench isolation structure includes a dopant region comprising material of the first conductivity type selectively formed along a sidewall of the isolation structure that is adapted to electrically couple the surface pinning layer to the underlying substrate. The corresponding method for forming the dopant region selectively formed along the sidewall of the isolation structure comprises an out-diffusion process whereby dopant materials present in a doped material layer formed along selected portions in the trench are driven into the underlying substrate during an anneal.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Mark D. Jaffe, Robert K. Leidy
  • Publication number: 20080277753
    Abstract: The present invention is directed toward a detector structure, detector arrays, and a method of detecting incident radiation. The present invention comprises a photodiode array and method of manufacturing a photodiode array that provides for reduced radiation damage susceptibility, decreased affects of crosstalk, reduced dark current (current leakage) and increased flexibility in application.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 13, 2008
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Publication number: 20080217587
    Abstract: Photovoltaic materials and methods of photovoltaic cell fabrication provide a photovoltaic cell in the form of a fiber. These fibers may be formed into a flexible fabric or textile.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 11, 2008
    Inventors: RUSSELL GAUDIANA, LIAN LI, KETHINNI G. CHITTIBABU, ROBERT D. ECKERT, ALAN MONTELLO, EDMUND MONTELLO, PAUL WORMSER
  • Publication number: 20080179700
    Abstract: A lateral photodiode, with improved response speed, includes a semiconductor substrate having active regions, and a p-type region and an n-type region arranged parallel to the surface of the substrate. The active regions are an n-layer and a p-layer respectively, and stacked in the thickness direction of the substrate to form a p-n junction. In addition, a barrier layer, for preventing movement of carriers from the substrate toward the active region, is provided on the side of the active regions toward the substrate.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Applicants: FUJIFILM Corporation, Massachusetts Institute of Technology
    Inventors: Yukiya Miyachi, Wojciech P. Giziewicz, Jurgen Michel, Lionel C. Kimerling
  • Patent number: 7372123
    Abstract: A semiconductor light-receiving module includes a semiconductor light-receiving element and an incident light direction device. The semiconductor light-receiving element includes a substrate, at least a light absorbing layer and an upper cladding layer formed sequentially on the substrate, a light incident facet formed at least at one facet of the substrate and the light absorbing layer, and electrodes which output an electric signal generated by absorption of the light entering from the light incident facet in the light absorbing layer. The incident light direction device directs to irradiate the light obliquely to the light incident facet of the semiconductor light-receiving element, and to cause at least part of the light to irradiate the light absorbing layer at the light incident facet.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: May 13, 2008
    Assignee: Anritsu Corporation
    Inventors: Kenji Kawano, Hiroaki Yoshidaya, Jun Hiraoka, Eiji Kawazura, Satoshi Matsumoto
  • Patent number: 7317236
    Abstract: A semiconductor light-receiving module includes a semiconductor light-receiving element and an incident light direction device. The semiconductor light-receiving element includes a substrate, at least a light absorbing layer and an upper cladding layer formed sequentially on the substrate, a light incident facet formed at least at one facet of the substrate and the light absorbing layer, and electrodes which output an electric signal generated by absorption of the light entering from the light incident facet in the light absorbing layer. The incident light direction device directs to irradiate the light obliquely to the light incident facet of the semiconductor light-receiving element, and to cause at least part of the light to irradiate the light absorbing layer at the light incident facet.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: January 8, 2008
    Assignee: Anritsu Corporation
    Inventors: Kenji Kawano, Hiroaki Yoshidaya, Jun Hiraoka, Yuichi Sasaki
  • Patent number: 7279764
    Abstract: An imager with pixels having a resonant-cavity photodiode. The resonant cavity photodiode increases absorption of light having long wavelengths. A trench is formed for the photodiode and reflective film is grown on the bottom of the trench. The reflective film reflects light that is not initially absorbed back to the active region of the photodiode.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli