Multiple Quantum Well Structure (epo) Patents (Class 257/E33.008)
  • Publication number: 20120248407
    Abstract: A Group III nitride semiconductor light-emitting device includes a light-emitting layer having a multiple quantum structure including an AlxGa1-xN (0<x<1) layer as a barrier layer. When the light-emitting layer is divided into three blocks including first, second and third blocks in the thickness direction from the n-type-layer-side cladding layer to the p-type-layer-side cladding layer, the number of barrier layers are the same in the first and third blocks, and the Al composition ratio of each light-emitting layer is set to satisfy a relation x+z=2y and z<x where an average Al composition ratio of the barrier layers in the first block is represented as x, an average Al composition ratio of the barrier layers in the second block is represented as y, and an average Al composition ratio of the barrier layers in the third block is represented as z.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: Toyoda Gosei Co., Ltd.
    Inventors: Yusuke TOYODA, Koji Okuno, Kazuki Nishijima
  • Publication number: 20120248410
    Abstract: An electron transporting surfactant is added to a raw material solution such that the electron transporting surfactant is coordinated on the surfaces of quantum dots, and after the dispersion solvent is evaporated by vacuum drying, the immersion in a solvent containing a hole transporting surfactant prepares a quantum dot dispersed solution with a portion of the electron transporting surfactant replaced with the hole transporting surfactant. The quantum dot dispersed solution is applied onto a substrate to prepare a hole transport layer and a quantum dot layer at the same time, and thereby to achieve a thin film which has a two-layer structure.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Koji Murayama
  • Publication number: 20120250351
    Abstract: A light emitting diode package, a method of fabricating the same, and a display apparatus having the same are provided. The light emitting diode package includes a light emitting diode, a quantum dot layer, a band pass filter, disposed in a housing. The light emitting diode emits light of a first color. The quantum dot layer includes a plurality of quantum dots disposed on the light emitting diode to absorb a portion of the light emitted by the diode, and then emit light of a second color. The band pass filter is disposed on the quantum dot layer and has a first pass band corresponding to the light emitted from the diode and a second pass band corresponding to the light emitted from the quantum dots.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 4, 2012
    Inventors: Myeong-Ju Shin, Jaewoo Jung, YoungSic Kim, Seung Hwan Baek, Yeongbae Lee
  • Publication number: 20120248405
    Abstract: A semiconductor light-emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, a light-emitting layer, an electrode, an insulating layer, and an adhesive layer is provided. The light-emitting layer is disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer. The electrode is disposed on the first conductive type semiconductor layer. The insulating layer covers a part of the first conductive type semiconductor layer and the electrode. The adhesive layer is disposed between the electrode and the insulating layer so as to bond the electrode and the insulating layer.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: HUGA OPTOTECH INC.
    Inventors: Der-Wei Tu, Wei-Chih Wen, Tai-Chun Wang, Po-Hung Lai, Chih-Ping Hsu
  • Publication number: 20120248408
    Abstract: A light-emitting device and a method of manufacturing the same are provided. The light-emitting device includes a compound semiconductor structure having a first N-type compound semiconductor layer, an active layer, and a P-type compound semiconductor layer, a P-type electrode layer that is disposed on the P-type compound semiconductor layer and electrically connects with the P-type compound semiconductor layer, a plurality of insulation walls disposed at two sides of the compound semiconductor structure and the P-type electrode layer, a plurality of N-type electrode layers penetrating the plurality of insulation walls, and a conductive substrate on which a plurality of N-type electrode connecting layers respectively corresponding to a plurality of N-type electrode layers are separated from a P-type electrode connecting layer corresponding to the P-type electrode layer.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Inventors: Ho-sun PAEK, Hak-hwan Kim, Sung-kyong Oh
  • Patent number: 8279904
    Abstract: A semiconductor light-emitting device including an active layer is provided. The light-emitting device includes an active layer between an n-type semiconductor layer and a p-type semiconductor layer. The active layer includes a quantum well layer formed of Inx1Ga(1?x1)N, where 0<x1?1, barrier layers formed of Inx2Ga(1?x2)N, where 0?x2<1, on opposite surfaces of the quantum well layer, and a diffusion preventing layer formed between the quantum well layer and at least one of the barrier layers. Due to the diffusion preventing layer between the quantum well layer and the barrier layers in the active layer, the light emission efficiency increases.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: October 2, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tan Sakong, Joong-kon Son, Ho-sun Paek, Sung-nam Lee
  • Publication number: 20120244654
    Abstract: A GaN edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, N-side and P-side waveguiding layers, and N-type and P-type cladding layers. The GaN substrate defines a 20 21 crystal growth plane and a glide plane. The N-side and P-side waveguiding layers comprise a GaInN/GaN or GaInN/GaInN superlattice (SL) waveguiding layers. The SL layers of the N-side and P-side SL waveguiding layers have layer thicknesses between approximately 1 nm and 5 nm that are optimized for waveguide planarity. In another embodiments, planarization is enhanced by ensuring that the N-side and P-side GaN-based waveguiding layers are grown at a growth rate that exceeds approximately 0.09 nm/s, regardless of whether the N-side and P-side GaN-based waveguiding layers are provided as a GaInN/GaN SL, GaInN/GaInN SL or as bulk layers. In further embodiments, planarization is enhanced by selecting optimal SL layer thicknesses and growth rates.
    Type: Application
    Filed: June 11, 2012
    Publication date: September 27, 2012
    Inventor: Rajaram Bhat
  • Publication number: 20120241719
    Abstract: A light emitting diode (LED) is provided. The LED includes a carrying substrate, a semiconductor composite layer and an electrode. The semiconductor composite layer is disposed on the carrying substrate, and an upper surface of the semiconductor composite layer includes a patterned surface and a flat surface. The electrode is disposed on the flat surface. A method for manufacturing the light emitting diode is provided as well.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 27, 2012
    Applicant: WALSIN LIHWA CORPORATION
    Inventors: Wei-Chi Lee, Shiue-Lung Chen, Jang-Ho Chen
  • Publication number: 20120241718
    Abstract: A vertical light emitting diodes (LEDs) with new construction for reducing the current crowding effect and increasing the light extraction efficiency (LEE) of the LEDs is provided. By providing at least one current blocking portion corresponded to an electrode, the current flows from the electrode may be diffused or distributed more laterally instead of straight downward directly under the electrode and the current crowding effect could be reduced thereby. By providing at least one current blocking portion covered by a mirror layer to form an omni-directional reflective (ODR) structure, the internal light of the LEDs may be reflected by the ODR structure and the LEE could be increased thereby.
    Type: Application
    Filed: February 16, 2012
    Publication date: September 27, 2012
    Applicant: WALSIN LIHWA CORPORATION
    Inventors: Shiue-Lung Chen, Wei-Chi Lee, Chang-Ho Chen
  • Publication number: 20120241785
    Abstract: Various embodiments of light emitting devices, assemblies, and methods of manufacturing are described herein. In one embodiment, a method for manufacturing a lighting emitting device includes forming a light emitting structure, and depositing a barrier material, a mirror material, and a bonding material on the light emitting structure in series. The bonding material contains nickel (Ni). The method also includes placing the light emitting structure onto a silicon substrate with the bonding material in contact with the silicon substrate and annealing the light emitting structure and the silicon substrate. As a result, a nickel silicide (NiSi) material is formed at an interface between the silicon substrate and the bonding material to mechanically couple the light emitting structure to the silicon substrate.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Michael J. Bernhardt
  • Publication number: 20120241721
    Abstract: Disclosed is a semiconductor light emitting element (1) which includes: plural n-side columnar conductor portions (183), each of which is provided by penetrating a p-type semiconductor layer (160) and a light emitting layer (150), and is electrically connected to an n-type semiconductor layer (140); an n-side layer-like conductor portion (184), which is disposed on the rear surface side of the p-type semiconductor layer (160) to face the surface of the light emitting layer (150) when viewed from the light emitting layer (150), and is electrically connected to the n-side columnar conductor portions (183); plural p-side columnar conductor portions (173), each of which is electrically connected to the p-type semiconductor layer (160); and a p-side layer-like conductor portion (174), which is disposed on the rear surface side of the p-type semiconductor layer (160) to face the light emitting layer (150) when viewed from the light emitting layer (150), and is electrically connected to the p-side columnar conductor
    Type: Application
    Filed: December 2, 2010
    Publication date: September 27, 2012
    Inventors: Takashi Hodota, Takehiko Okabe
  • Publication number: 20120241720
    Abstract: A Group III nitride semiconductor light-emitting device, includes a groove having a depth extending from the top surface of a p-type layer to an n-type layer is provided in a region overlapping (in plan view) with the wiring portion of an n-electrode or the wiring portion of a p-electrode. An insulating film is provided so as to continuously cover the side surfaces and bottom surface of the groove, the p-type layer, and an ITO electrode. The insulating film incorporates therein reflective films in regions directly below the n-electrode and the p-electrode (on the side of a sapphire substrate). The reflective films in regions directly below the wiring portion of the n-electrode and the wiring portion of the p-electrode are located at a level lower than that of a light-emitting layer. The n-electrode and the p-electrode are covered with an additional insulating film.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Applicant: Toyota Gosei Co., Ltd.
    Inventors: Shingo TOTANI, Masashi DEGUCHI, Naoki NAKAJO
  • Patent number: 8274069
    Abstract: There is provided a nitride semiconductor light emitting device. A nitride semiconductor light emitting device according to an aspect of the invention may include: an n-type nitride semiconductor layer provided on a substrate; an active layer provided on the n-type nitride semiconductor layer, and including quantum barrier layers and quantum well layers; and a p-type nitride semiconductor layer provided on the active layer, wherein each of the quantum barrier layers includes a plurality of InxGa(1-x)N layers (0<x<1) and at least one AlyGa(1-y)N layer (0?y<1), and the AlyGa(1-y)N layer is stacked between the InxGa(1-x)N layers.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun Jae Chung, Cheol Soo Sone, Sung Hwan Jang, Rak Jun Choi, Soo Min Lee
  • Publication number: 20120235117
    Abstract: Disclosed is a light emitting element, which emits light with small power consumption and high luminance. The light emitting element has: a IV semiconductor substrate; two or more core multi-shell nanowires disposed on the IV semiconductor substrate; a first electrode connected to the IV semiconductor substrate; and a second electrode, which covers the side surfaces of the core multi-shell nanowires, and which is connected to the side surfaces of the core multi-shell nanowires. Each of the core multi-shell nanowires has: a center nanowire composed of a first conductivity type III-V compound semiconductor; a first barrier layer composed of the first conductivity type III-V compound semiconductor; a quantum well layer composed of a III-V compound semiconductor; a second barrier layer composed of a second conductivity type III-V compound semiconductor; and a capping layer composed of a second conductivity type III-V compound semiconductor.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 20, 2012
    Applicant: National University Corporation Hokkaido University
    Inventors: Takashi Fukui, Katsuhiro Tomioka
  • Publication number: 20120235114
    Abstract: A light emitting chip includes a substrate, a first reflective layer formed on the substrate, a lighting structure formed on the first reflective layer, and a first electrode formed between the first reflective layer and the substrate. The lighting structure includes a first semiconductor layer, an active layer and a second semiconductor layer. A receiving groove is defined in the lighting structure and extends from the first reflective layer to the first semiconductor layer. The receiving groove has a second reflective layer formed on an interior sidewall thereof. The first electrode includes a base and a connecting section extending upwardly from the base. The connecting section is surrounded by the second reflective layer and electrically connects with the first semiconductor layer. The first and second reflective layers each are electrically insulating.
    Type: Application
    Filed: September 19, 2011
    Publication date: September 20, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: JIAN-SHIHN TSANG
  • Publication number: 20120236307
    Abstract: There is provided a photoconductive element capable of increasing an output and detection sensitivity by increasing resistivity as the entire element. The photoconductive element is a photoconductive element capable of generating or detecting an electromagnetic wave when light is emitted thereto. The photoconductive element includes a photoconductive layer having a semiconductor layer whose resistivity changes when light is emitted to thereby generate or detect an electromagnetic wave; and a plurality of electrodes provided in contact with the semiconductor layer. The resistivity of the semiconductor layer changes in a thickness direction of intersecting a surface of the semiconductor layer contacting the electrodes. Assuming that the semiconductor layer includes a first region and a second region which is farther away from the electrodes in the thickness direction than the first region, the resistivity in the first region is greater than the resistivity in the second region.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Ryota Sekiguchi
  • Publication number: 20120235115
    Abstract: Methods, semiconductor material stacks and equipment for manufacture of light emitting diodes (LEDs) with improve crystal quality. A growth stopper is deposited between nuclei for a group III-V material, such as GaN, to form a nano mask. The group III-V material is laterally overgrown from a region of the nuclei not covered by the nano mask to form a continuous material layer with reduced dislocation density in preparation for subsequent growth of n-type and p-type layers of the LED. The lateral overgrowth from the nuclei may further recover the surface morphology of the buffer layer despite the presence of the nano mask. Presence of the growth stopper may further result in void formation on a substrate side of an LED stack to improve light extraction efficiency.
    Type: Application
    Filed: January 20, 2012
    Publication date: September 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sang Won Kang, Jie Su, Tuoh-Bin NG, David Bour, Wei-Yung Hsu
  • Publication number: 20120235116
    Abstract: One embodiment of a quantum well structure comprises an active region including active layers that comprise quantum wells and barrier layers wherein some or all of the active layers are p type doped. P type doping some or all of the active layers improves the quantum efficiency of III-V compound semiconductor light emitting diodes by locating the position of the P-N junction in the active region of the device thereby enabling the dominant radiative recombination to occur within the active region. In one embodiment, the quantum well structure is fabricated in a cluster tool having a hydride vapor phase epitaxial (HVPE) deposition chamber with a eutectic source alloy. In one embodiment, the indium gallium nitride (InGaN) layer and the magnesium doped gallium nitride (Mg—GaN) or magnesium doped aluminum gallium nitride (Mg—AlGaN) layer are grown in separate chambers by a cluster tool to avoid indium and magnesium cross contamination.
    Type: Application
    Filed: July 30, 2010
    Publication date: September 20, 2012
    Inventors: Jie Su, Olga Kryliouk, Yuriy Melnik, Hidehiro Kojiri, Lu Chen, Tetsuya Ishikawa
  • Publication number: 20120231569
    Abstract: An optoelectronic component with three-dimension quantum well structure and a method for producing the same are provided, wherein the optoelectronic component comprises a substrate, a first semiconductor layer, a transition layer, and a quantum well structure. The first semiconductor layer is disposed on the substrate. The transition layer is grown on the first semiconductor layer, contains a first nitride compound semiconductor material, and has at least a texture, wherein the texture has at least a first protrusion with at least an inclined facet, at least a first trench with at least an inclined facet and at least a shoulder facet connected between the inclined facets. The quantum well structure is grown on the texture and shaped by the protrusion, the trench and the shoulder facet.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Applicant: HERMES-EPITEK CORP.
    Inventors: BENSON CHAO, CHUNG-HUA FU, SHIH-CHIEH JANG
  • Publication number: 20120228581
    Abstract: The semiconductor light emitting device according to an embodiment includes an N-type nitride semiconductor layer, a nitride semiconductor active layer disposed on the N-type nitride semiconductor layer, and a P-type nitride semiconductor layer disposed on the active layer. The P-type nitride semiconductor layer includes an aluminum gallium nitride layer. The indium concentration in the aluminum gallium nitride layer is between 1E18 atoms/cm3 and 1E20 atoms/cm3 inclusive. The carbon concentration is equal to or less than 6E17 atoms/cm3. Where the magnesium concentration is denoted by X and the acceptor concentration is denoted by Y, Y>{(?5.35e19)2?(X?2.70e19)2}1/2?4.63e19 holds.
    Type: Application
    Filed: August 23, 2011
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Jongil HWANG, Hung Hung, Yasushi Hattori, Rei Hashimoto, Shinji Saito, Masaki Tohyama, Shinya Nunoue
  • Publication number: 20120231568
    Abstract: (a) On a growth substrate, a void-containing layer that is made of a group III nitride compound semiconductor and contains voids is formed. (b) On the void-containing layer, an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids is formed. (c) On the n-type layer, an active layer made of a group III nitride compound semiconductor is formed. (d) On the active layer, a p-type layer made of a p-type group III nitride compound semiconductor is formed. (e) A support substrate is bonded above the p-type layer. (f) The growth substrate is peeled off at the boundary where the voids are produced. In the above step (a) or (b), the supply of at least part of the materials that form the layer is decreased, while heating, before the voids are closed.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang
  • Publication number: 20120228582
    Abstract: Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Inventors: Zhenqiang Ma, Weidong Zhou
  • Patent number: 8263990
    Abstract: A compound semiconductor light-emitting element includes: a substrate; a first electrode provided on one face of the substrate; a plurality of nanoscale columnar crystalline structures in which an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer are stacked in order on the other face of the substrate; a second electrode connected to top portions of the plurality of columnar crystalline structures; and a foundation layer, provided on the side of the other face, in a first region being a partial region of the substrate; wherein a level difference is provided, on the other face, between the first region and a second region being at least part of a remaining region of the substrate excluding the first region.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 11, 2012
    Assignee: Panasonic Corporation
    Inventor: Robert David Armitage
  • Patent number: 8263422
    Abstract: An improved method of creating LEDs is disclosed. Rather than using a dielectric coating to separate the bond pads from the top surface of the LED, this region of the LED is implanted with ions to increase its resistivity to minimize current flow therethrough. In another embodiment, a plurality of LEDs are produced on a single substrate by implanting ions in the regions between the LEDs and then etching a trench, where the trench is narrower than the implanted regions and positioned within these regions. This results in a trench where both sides have current confinement capabilities to reduce leakage.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: September 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: San Yu, Chi-Chun Chen
  • Patent number: 8258497
    Abstract: A method for manufacturing an electronic-photonic device. Epitaxially depositing an n-doped III-V composite semiconductor alloy buffer layer on a crystalline surface of a substrate at a first temperature. Forming an active layer on the n-doped III-V epitaxial composite semiconductor alloy buffer layer at a second temperature, the active layer including a plurality of spheroid-shaped quantum dots. Depositing a p-doped III-V composite semiconductor alloy capping layer on the active layer at a third temperature. The second temperature is less than the first temperature and the third temperature. The active layer has a photoluminescence intensity emission peak in the telecommunication C-band.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 4, 2012
    Assignee: Alcatel Lucent
    Inventors: Nick Sauer, Nils Weimann, Liming Zhang
  • Publication number: 20120217470
    Abstract: Disclosed is a nitride-based light emitting device having an inverse p-n structure in which a p-type nitride layer is first formed on a growth substrate. The light emitting device includes a growth substrate, a powder type seed layer for nitride growth formed on the growth substrate, a p-type nitride layer formed on the seed layer for nitride growth, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The p-type nitride layer is first formed on the growth layer and the n-type ZnO layer having a relatively low growth temperature is then formed thereon instead of an n-type nitride layer, thereby providing excellent crystallinity and high brightness. A method of manufacturing the same is also disclosed.
    Type: Application
    Filed: July 24, 2011
    Publication date: August 30, 2012
    Applicants: Semimaterials Co., Ltd.
    Inventors: Joo Jin, Kun Park
  • Publication number: 20120217469
    Abstract: A semiconductor light emitting device is disclosed, which comprises: a substrate having a first surface and a second surface; a first semiconductor conductive layer is disposed on the first surface of the substrate; an insert layer is disposed on the first semiconductor conductive layer; an active layer is disposed on the insert layer; a second semiconductor conductive layer is disposed on the active layer; a first electrode is disposed on the second semiconductor conductive layer; and a second electrode is disposed on the second surface of the substrate, in which the electric of the second electrode is opposite to that of the first electrode.
    Type: Application
    Filed: June 29, 2011
    Publication date: August 30, 2012
    Applicant: National Chiao Tung University
    Inventors: Chao-Hsun Wang, Zhen-Yu Ll, Hao-Chung Kuo
  • Publication number: 20120217473
    Abstract: An improved light emitting heterostructure is provided. The heterostructure includes an active region having a set of barrier layers and a set of quantum wells, each of which is adjoined by a barrier layer. The quantum wells have a delta doped p-type sub-layer located therein, which results in a change of the band structure of the quantum well. The change can reduce the effects of polarization in the quantum wells, which can provide improved light emission from the active region.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Inventors: Michael Shur, Remigijus Gaska
  • Publication number: 20120217471
    Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part. The n-type semiconductor layer includes a nitride semiconductor. The p-type semiconductor layer includes a nitride semiconductor. The light emitting part is provided between the n-type and the p-type semiconductor layers and includes an n-side barrier layer and a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, and a first AlGaN layer. The first barrier layer is provided between the n-side barrier layer and the p-type semiconductor layer. The first well layer contacts the n-side barrier layer between the n-side and the first barrier layer. The first AlGaN layer is provided between the first well layer and the first barrier layer. A peak wavelength ?p of light emitted from the light emitting part is longer than 515 nanometers.
    Type: Application
    Filed: August 19, 2011
    Publication date: August 30, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomonari SHIODA, Hisashi YOSHIDA, Naoharu SUGIYAMA, Shinya NUNOUE
  • Publication number: 20120217472
    Abstract: A III-Nitride semiconductor LED provides broadband light emission, across all or most of the visible light wavelength spectrum, and a method for producing same. The LED includes a polarization field management template that has a three-dimensional patterned surface. The surface may be patterned with an array of hemispherical cavities, which may be formed by growing the template around a temporary template layer of spherical or other crystals. The method involves growing a quantum well layer on the patterned surface. The topographical variations in the patterned surface of the template cause corresponding topographical variations in the quantum well layer. These variations in spatial orientation of portions of the quantum well layer cause the polarization field of the quantum well layer to vary across the surface of the LED, which leads to energy transition shifting that provides “white” light emission across a broad wavelength spectrum.
    Type: Application
    Filed: December 8, 2011
    Publication date: August 30, 2012
    Applicant: Lehigh University
    Inventors: Nelson Tansu, Xiaohang Li, Hongping Zhao, Guangyu Liu, James Foster Gilchrist, Pisist Kumnorkaew
  • Publication number: 20120211725
    Abstract: A nitride-based semiconductor device of the present invention includes: a nitride-based semiconductor multilayer structure 20 which includes a p-type semiconductor region with a surface 12 being inclined from the m-plane by an angle of not less than 1° and not more than 5°; and an electrode 30 provided on the p-type semiconductor region. The p-type semiconductor region is formed by an AlxInyGazN (where x+y+z=1, x?0, y?0, and z?0) layer 26. The electrode 30 includes a Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with the surface 12 of the p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Application
    Filed: March 15, 2011
    Publication date: August 23, 2012
    Applicant: Panasonic Corporation
    Inventors: Toshiya Yokogawa, Mitsuaki Oya, Atsushi Yamada, Akihiro Isozaki
  • Publication number: 20120211724
    Abstract: According to an embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer provided between the n-type semiconductor layer and the p-type semiconductor layer. The light emitting layer includes at least one quantum well, and the quantum well adjacent to the p-type semiconductor layer includes a first barrier layer and a second barrier layer, the first barrier layer nearer to the p-type semiconductor layer being doped with p-type impurity.
    Type: Application
    Filed: January 19, 2012
    Publication date: August 23, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takuo KIKUCHI, Hidehiko Yabuhara
  • Patent number: 8247792
    Abstract: A light emitting diode (LED) having a modulation doped layer. The LED comprises an n-type contact layer, a p-type contact layer and an active region of a multiple quantum well structure having an InGaN well layer. The n-type contact layer comprises a first modulation doped layer and a second modulation doped layer, each having InGaN layers doped with a high concentration of n-type impurity and low concentration of n-type impurity InGaN layers alternately laminated. The InGaN layers of the first modulation doped layer have the same composition, and the InGaN layers of the second modulation doped layer have the same composition. The second modulation doped layer is interposed between the first modulation doped layer and the active region, and an n-electrode is in contact with the first modulation doped layer. Accordingly, an increase in process time is prevented and strains induced in a multiple quantum well structure are reduced.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: August 21, 2012
    Assignee: Seoul Opto Device Co., Ltd.
    Inventor: Hwa Mok Kim
  • Patent number: 8247790
    Abstract: A light emitting device (LED) may include a first semiconductor layer; an active layer formed on the first semiconductor layer and configured to generate first light having a first wavelength; a second semiconductor layer, formed on the active layer; and a plurality of semiconductor nano-structures arranged apart from each other and formed on the second semiconductor layer. The nano-structures may be configured to at least partially absorb the first light and emit second light having a second wavelength different from the first wavelength.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: August 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Taek Kim
  • Publication number: 20120205623
    Abstract: A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (11 02) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James Stephen Speck, Shuji Nakamura, Umesh K. Mishra
  • Publication number: 20120205617
    Abstract: A light emitting device includes a silicon substrate having a (100) upper surface. The (100) upper surface has a recess, the recess being defined in part by (111) surfaces of the silicon substrate. The light emitting device includes a GaN crystal structure over one of the (111) surfaces which has a non-polar plane and a first surface along the non-polar plane. Light emission layers over the first surface have at least one quantum well comprising GaN.
    Type: Application
    Filed: June 8, 2011
    Publication date: August 16, 2012
    Applicant: SiPhoton Inc.
    Inventors: Shaoher X. Pan, Jay Chen, Justin Payne, Michael Heuken
  • Publication number: 20120205618
    Abstract: The present invention provides a Group III nitride semiconductor light-emitting device exhibiting improved emission performance and high electrostatic breakdown voltage. The Group III nitride semiconductor light-emitting device has a layered structure in which an n-type contact layer, an ESD layer, an n-type cladding layer, a light-emitting layer, a p-type cladding layer, and a p-type contact layer are deposited on a sapphire substrate. The ESD layer has a pit. The n-type cladding layer and the light-emitting layer are formed without burying the pit. The pit has a diameter of 110 nm to 150 nm at an interface between the n-type cladding layer and the light-emitting layer. The barrier layer of the light-emitting layer is formed of AlGaN having an Al composition ratio of 3% to 7%.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 16, 2012
    Applicant: Toyoda Gosei Co., Ltd.
    Inventor: Ryo NAKAMURA
  • Publication number: 20120205622
    Abstract: A semiconductor light emitting device includes a plurality of first conductive type semiconductor layers; a plurality of second conductive type semiconductor layers; an active layer between the first and second conductive type semiconductor layers, wherein the active layer includes a plurality of quantum barrier layers and a plurality of quantum well layers; a first electrode connected to the first conductive type semiconductor layers; and a second electrode connected to the second conductive type semiconductor layers, wherein the first conductive type semiconductor layers includes a first and second AlGaN based layers, and the plurality of quantum well layers of the active layer include an InAlGaN layer.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Inventor: Kyung Jun KIM
  • Publication number: 20120205619
    Abstract: A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 16, 2012
    Inventors: Remigijus Gaska, Jinwei Yang, Michael Shur
  • Publication number: 20120205620
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20120205616
    Abstract: A method for reducing dislocations or other defects in a light emitting device, such as light emitting diode (LED), by in-situ introducing nanoparticles into at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device. A light emitting device is provided, and nanoparticles are dispensed in-situ in at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device.
    Type: Application
    Filed: February 15, 2011
    Publication date: August 16, 2012
    Applicant: INVENLUX CORPORATION
    Inventors: Jianping Zhang, Hongmei Wang, Chunhui Yan
  • Patent number: 8242538
    Abstract: A semiconductor device and method are being disclosed. The semiconductor device discloses an InAs layer, a plurality of group III-V ternary layers supported by the InAs layer, and a plurality of group III-V quarternary layers supported by the InAs layer, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer. The method discloses providing an InAs layer, growing a plurality of group III-V ternary layers, and growing a plurality of group III-V quarternary layers, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer and are supported by the InAs layer.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Peter Deelman, Ken Elliott, David Chow
  • Patent number: 8242480
    Abstract: A light emitting device is provided that includes at least one first semiconductor material layers and at least one second semiconductor material layers. At least one near-direct band gap material layers are positioned between the at least one first semiconductor layers and the at least one second semiconductor material layers. The at least one first semiconductor layers and the at least one second material layers have a larger band gap than the at least one near-direct band gap material layers. The at least one near-direct band gap material layers have an energy difference between the direct and indirect band gaps of less than 0.5 eV.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 14, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Lionel C. Kimerling, Jifeng Liu, Jurgen Michel
  • Patent number: 8242523
    Abstract: Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: August 14, 2012
    Assignee: National Tsing Hua University
    Inventors: Shang-Jr Gwo, Hon-Way Lin, Yu-Jung Lu
  • Publication number: 20120199811
    Abstract: Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kotaro Zaima, Toru Gotoda, Toshiyuki Oka, Shinya Nunoue
  • Publication number: 20120199810
    Abstract: Disclosed are a growth substrate and a light emitting device. The light emitting device includes a silicon substrate, a first buffer layer disposed on the silicon substrate and having an exposing portions of the silicon substrate, a second buffer layer covering the first buffer layer and the exposed portions of the silicon substrate, wherein the second buffer layer is formed of a material causing a eutectic reaction with the silicon substrate, a third buffer layer disposed on the second buffer layer, and a light emitting structure disposed on the third buffer layer, and the second buffer layer includes voids.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 9, 2012
    Inventor: Jeong Sik LEE
  • Publication number: 20120201263
    Abstract: Semiconductor laser array devices capable of emitting mid- to long-wavelength infrared (i.e., 4-12 ?m) radiation are provided. The devices include a quantum cascade laser (QCL) structure comprising one or more active cores; an optical confinement structure; a cladding structure; and a plurality of laterally-spaced trench regions extending transversely through the optical confinement and cladding structures, and partially into the QCL structure. The trench regions, each of which comprises a lower trench layer comprising a semi-insulating material and an upper trench layer comprising a material having a refractive index that is higher than that of the semi-insulating material, define a plurality of laterally-spaced interelement regions separated by element regions in the laser array device.
    Type: Application
    Filed: December 16, 2009
    Publication date: August 9, 2012
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Dan Botez, Luke J. Mawst
  • Publication number: 20120201264
    Abstract: An emitting device including an active region having quantum wells alternating with barriers of varying compositions is provided. The barriers can be composed of a group III-nitride based material, in which a molar fraction of one or more of the group III elements in two barriers adjacent to a single quantum well differ by at least one percent. Two barriers adjacent to a single quantum well can have barrier heights differing by at least one percent.
    Type: Application
    Filed: December 8, 2011
    Publication date: August 9, 2012
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20120194103
    Abstract: Solid state lighting (SSL) devices (e.g., devices with light emitting diodes) with reduced dimensions (e.g., thicknesses) and methods of manufacturing are disclosed herein. In one embodiment, an SSL device includes an SSL structure having a first region and a second region laterally spaced apart from the first region and an insulating material between and electrically isolating the first and second regions. The SSL device also includes a conductive material between the first and second regions and adjacent the insulating material to electrically couple the first and second regions in series.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 2, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Vladimir Odnoblyudov
  • Publication number: 20120193605
    Abstract: Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Jennifer Gillies, David Socha, Michael Locascio