For Hall-effect Devices (epo) Patents (Class 257/E43.007)
  • Patent number: 10319687
    Abstract: A soluble sensor is provided. The soluble sensor includes a soluble handle substrate and a layer of semiconductor material that is disposed on the soluble handle substrate. The layer of semiconductor material includes a plurality of semiconductor devices interconnected to perform a sensing function.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 11, 2019
    Assignee: Honeywell International Inc.
    Inventor: Steven Tin
  • Patent number: 8987703
    Abstract: An apparatus includes a substrate, a sequence of crystalline semiconductor layers on a planar surface of the substrate, and first and second sets of electrodes over the sequence. The sequence has a 2D quantum well therein. The first set of electrodes border opposite sides of a lateral region of the sequence and are controllable to vary a width of a non-depleted portion of the quantum well along the top surface. The second set of electrodes border channels between the lateral region and first and second adjacent lateral areas of the sequence and are controllable to vary widths of non-depleted segments of the quantum well in the channels. The electrodes are such that straight lines connecting the lateral areas via the channels either pass between one of the electrodes and the substrate or are misaligned to an effective [1 1 0] lattice direction of the sequence.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Alcatel Lucent
    Inventor: Robert L. Willett
  • Patent number: 8766384
    Abstract: A method of forming a magnetic tunnel junction device is disclosed that includes forming a trench in a substrate, the trench including a plurality of sidewalls and a bottom wall. The method includes depositing a first conductive material within the trench proximate to one of the sidewalls and depositing a second conductive material within the trench. The method further includes depositing a material to form a magnetic tunnel junction (MTJ) structure within the trench. The MTJ structure includes a fixed magnetic layer having a magnetic field with a fixed magnetic orientation, a tunnel junction layer, and a free magnetic layer having a magnetic field with a configurable magnetic orientation. The method further includes selectively removing a portion of the MTJ structure to create an opening in the MTJ structure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 1, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Patent number: 8736003
    Abstract: A Hall effect transducer in a semiconductor wafer comprises a first layer of semiconducting material, a second layer of semiconducting material, and a contact structure configured to provide a path for electrical current to pass through the second layer. The second layer has higher electron hole mobility than the first layer, and is epitaxially grown atop the first layer.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 27, 2014
    Assignee: Allegro Microsystems, LLC
    Inventors: David Erie, Noel Hoilien, Steven Kosier
  • Patent number: 8680592
    Abstract: A method of forming a magnetic tunnel junction device is disclosed that includes forming a trench in a substrate, the trench including a first sidewall, a second sidewall, a third sidewall, a fourth sidewall, and a bottom wall. The method includes depositing a first conductive material within the trench proximate to the first sidewall and depositing a second conductive material within the trench. The method further includes depositing a magnetic tunnel junction (MTJ) structure within the trench. The MTJ structure includes a fixed magnetic layer having a magnetic field with a fixed magnetic orientation, a tunnel junction layer, and a free magnetic layer having a magnetic field with a configurable magnetic orientation. The method further includes selectively removing a portion of the MTJ structure that is adjacent to the fourth sidewall to create an opening such that the MTJ structure is substantially u-shaped.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: March 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Publication number: 20130307609
    Abstract: Embodiments of the present invention provide a Hall effect device that includes a Hall effect region of a first semiconductive type, at least three contacts and a lateral conductive structure. The Hall effect region is formed in or on top of a substrate, wherein the substrate includes an isolation arrangement to isolate the Hall effect region in a lateral direction and in a depth direction from the substrate or other electronic devices in the substrate. The at least three contacts are arranged at a top of the Hall effect region to supply the Hall effect device with electric energy and to provide a Hall effect signal indicative of the magnetic field, wherein the Hall effect signal is generated in a portion of the Hall effect region defined by the at least three contacts. The lateral conductive structure is located between the Hall effect region and the isolation arrangement.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 8564083
    Abstract: The invention relates to a vertical Hall sensor integrated in a semiconductor chip and a method for the production thereof. The vertical Hall sensor has an electrically conductive well of a first conductivity type, which is embedded in an electrically conductive region of a second conductivity type. The electrical contacts are arranged along a straight line on a planar surface of the electrically conductive well. The electrically conductive well is generated by means of high-energy ion implantation and subsequent heating, so that it has a doping profile which either has a maximum which is located at a depth T1 from the planar surface of the electrically conductive well, or is essentially constant up to a depth T2.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 22, 2013
    Assignees: Melexis Technologies NV, X-Fab Semiconductor Foundries AG
    Inventors: Christian Schott, Peter Hofmann
  • Patent number: 8466526
    Abstract: A Hall sensor has a P-type semiconductor substrate and a Hall sensing portion having a square shape and an N-type conductivity disposed on a surface of the semiconductor substrate. The Hall sensor includes Hall voltage output terminals having the same shape with each other, and control current input terminals having the same shape with each other. The Hall voltage output terminals are disposed at respective ones of four vertices of the Hall sensing portion. The control current input terminals include pairs of control current input terminals disposed at respective ones of the four vertices of the Hall sensing portion and arranged on both sides of respective ones of the Hall voltage output terminals in spaced apart relation from the Hall voltage output terminals so as to prevent electrical connection between the control current input terminals and the Hall voltage output terminals.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 18, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Takaaki Hioka, Toshihiko Omi
  • Patent number: 8426936
    Abstract: Through a main surface (10) of a semiconductor substrate (1) of a first type of conductivity, a doped well of a second type of conductivity is implanted to form a sensor region (3) extending perpendicularly to the main surface. The sensor region can be confined laterally by trenches (5) comprising an electrically insulating trench filling (6). The bottom of the sensor region is insulated by a pn-junction (20). Contacts (4) are applied to the main surface and provided for the application of an operation voltage and the measurement of a Hall voltage.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 23, 2013
    Assignee: austriamicrosystems AG
    Inventors: Rainer Minixhofer, Sara Carniello, Volker Peters
  • Publication number: 20120241887
    Abstract: The invention relates to a vertical Hall sensor integrated in a semiconductor chip and a method for the production thereof. The vertical Hall sensor has an electrically conductive well of a first conductivity type, which is embedded in an electrically conductive region of a second conductivity type. The electrical contacts are arranged along a straight line on a planar surface of the electrically conductive well. The electrically conductive well is generated by means of high-energy ion implantation and subsequent heating, so that it has a doping profile which either has a maximum which is located at a depth T1 from the planar surface of the electrically conductive well, or is essentially constant up to a depth T2.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 27, 2012
    Applicants: X-FAB SEMICONDUCTOR FOUNDRIES AG, MELEXIS TECHNOLOGIES NV
    Inventors: Christian Schott, Peter Hofmann
  • Publication number: 20120119735
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 17, 2012
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20110204460
    Abstract: An integrated circuit and a method of making the integrated circuit provide a Hall effect element having a germanium Hall plate. The germanium Hall plate provides an increased electron mobility compared with silicon, and therefore, a more sensitive Hall effect element.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 25, 2011
    Applicant: Allegro Microsystems, Inc.
    Inventors: Harianto Wong, William P. Taylor, Ravi Vig
  • Publication number: 20110147865
    Abstract: A Hall effect transducer in a semiconductor wafer comprises a first layer of semiconducting material, a second layer of semiconducting material, and a contact structure configured to provide a path for electrical current to pass through the second layer. The second layer has higher electron hole mobility than the first layer, and is epitaxially grown atop the first layer.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: POLAR SEMICONDUCTOR, INC.
    Inventors: David Erie, Noel Hoilien, Steven Kosier
  • Patent number: 7960714
    Abstract: An apparatus includes a substrate with a planar surface, a multilayer of semiconductor layers located on the planar surface, a plurality of electrodes located over the multilayer, and a dielectric layer located between the electrodes and the multilayer. The multilayer includes a 2D quantum well. A first set of the electrodes is located to substantially surround a lateral area of the 2D quantum well. A second set of the electrodes is controllable to vary a lateral width of a non-depleted channel between the substantially surrounded lateral area of the 2D quantum well and another area of the 2D quantum well. A third set of the electrodes is controllable to vary an area of a non-depleted portion of the lateral area.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: June 14, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Kirk William Baldwin, Loren N. Pfeiffer, Kenneth William West, Robert L Willett
  • Patent number: 7948042
    Abstract: A multi-level lithography processes for the fabrication of suspended structures are presented. The process is based on the differential exposure and developing conditions of several a plurality of resist layers, without harsher processes, such as etching of sacrificial layers or the use of hardmasks. These manufacturing processes are readily suited for use with systems that are chemically and/or mechanically sensitive, such as graphene. Graphene p-n-p junctions with suspended top gates formed through these processes exhibit high mobility and control of local doping density and type. This fabrication technique may be further extended to fabricate other types of suspended structures, such as local current carrying wires for inducing local magnetic fields, a point contact for local injection of current, and moving parts in microelectromechanical devices.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: May 24, 2011
    Assignee: The Regents of the University of California
    Inventors: Chun Ning Lau, Gang Liu, Jairo Velasco, Jr.
  • Patent number: 7936029
    Abstract: A Hall effect element includes a Hall plate with an outer perimeter. The outer perimeter includes four corner regions, each tangential to two sides of a square outer boundary associated with the Hall plate, and each extending along two sides of the square outer boundary by a corner extent. The outer perimeter also includes four indented regions. Each one of the four indented regions deviates inward toward a center of the Hall plate. The Hall plate further includes a square core region centered with and smaller than the square outer boundary. A portion of each one of the four indented regions is tangential to a respective side of the square core region. Each side of the square core region has a length greater than twice the corner extent and less than a length of each side of the square outer boundary.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 3, 2011
    Assignee: Allegro Microsystems, Inc.
    Inventor: Yigong Wang
  • Publication number: 20100252900
    Abstract: Through a main surface (10) of a semiconductor substrate (1) of a first type of conductivity, a doped well of a second type of conductivity is implanted to form a sensor region (3) extending perpendicularly to the main surface. The sensor region can be confined laterally by trenches (5) comprising an electrically insulating trench filling (6). The bottom of the sensor region is insulated by a pn-junction (20). Contacts (4) are applied to the main surface and provided for the application of an operation voltage and the measurement of a Hall voltage.
    Type: Application
    Filed: March 24, 2010
    Publication date: October 7, 2010
    Applicant: austriamicrosystems AG
    Inventors: Rainer MINIXHOFER, Sara Carniello, Volker Peters
  • Patent number: 7782050
    Abstract: A semiconductor device including a Hall effect sensor and related method. The Hall effect device includes a substrate having a first conductivity type and an epitaxial layer having a second conductivity type defining a Hall effect portion. A conductive buried layer having the second conductivity type is situated between the epitaxial layer and the substrate. First and second output terminals and first and second voltage terminals are provided, with the second voltage terminal being coupled to the conductive buried layer.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: August 24, 2010
    Assignee: Infineon Technologies AG
    Inventors: Udo Ausserlechner, Mario Motz
  • Patent number: 7394092
    Abstract: A quantum computer can only function stably if it can execute gates with extreme accuracy. “Topological protection” is a road to such accuracies. Quasi-particle interferometry is a tool for constructing topologically protected gates. Assuming the corrections of the Moore-Read Model for ?=5/2's FQHE (Nucl. Phys. B 360, 362 (1991)) we show how to manipulate the collective state of two e/4-charge anti-dots in order to switch said collective state from one carrying trivial SU(2) charge, |1>, to one carrying a fermionic SU(2) charge |?>. This is a NOT gate on the {|1>, |?>} qubit and is effected by braiding of an electrically charged quasi particle a which carries an additional SU(2)-charge. Read-out is accomplished by ?-particle interferometry.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 1, 2008
    Assignee: Microsoft Corporation
    Inventors: Michael H. Freedman, Chetan V. Navak, Sankar Das Sarma
  • Publication number: 20080135959
    Abstract: The invention relates to a semiconductor component (100) comprising a semiconductor chip (10) configured as a wafer level package, a magnetic field sensor (11) being integrated into said semiconductor chip.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventors: Horst Theuss, Albert Auburger