Comprising Bulk Heterojunction (epo) Patents (Class 257/E51.014)
  • Patent number: 8685780
    Abstract: The present invention provides a method for an organic thin film solar cell and an organic thin film solar cell manufactured by the same, which can reduce manufacturing cost by simplifying manufacturing process, ensure long-lasting durability and stability, and improve energy conversion efficiency of the solar cell.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Hyundai Motor Company
    Inventors: Won Jung Kim, Yong Jun Jang, Yong Gu Kim, Ki Chun Lee, Sang Hak Kim, Mi Yeon Song
  • Patent number: 8614437
    Abstract: A process for producing high performance organic thin film transistors in which the molecules in the organic thin film are highly ordered and oriented to maximize the mobility of current charge carriers. The uniform monolayer surface over various substrate materials so formed, result in a more reproducible and readily manufacturable process for higher performance organic field effect transistors that can be used to create large area circuits using a range of materials.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Laura Louise Kosbar, Debra Jane Mascaro
  • Patent number: 8614438
    Abstract: An organic photoelectric conversion device having: a first electrode; a second electrode opposing to the first electrode; and an organic material-containing photoelectric conversion layer provided between the first electrode and the second electrode, wherein an electron spin number of the photoelectric conversion layer is not more than 1.0×1015/cm3.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 24, 2013
    Assignee: Fujifilm Corporation
    Inventors: Tetsuro Mitsui, Takashi Komiyama, Takuro Sugiyama
  • Patent number: 8614440
    Abstract: A photoactive layer in organic photodiodes includes organic photoactive dyes, including squaraines with donor-substituted aromatic substituents as the electron donor component, used as an alternative to polymer hold conductors for bulk heterojunctions typically found in the organic active layer of organic photodiodes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: December 24, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Maria Sramek, Oliver Hayden
  • Publication number: 20120313142
    Abstract: According to an aspect of the invention, an imaging device includes a plurality of photoelectric conversion elements and a read-out portion. The photoelectric conversion elements are arranged above a substrate. The read-out portion reads out signal corresponding to charges which are generated from each of the photoelectric conversion elements. Each of the photoelectric conversion elements includes a first electrode that collects the charge, a second electrode that is disposed opposite to the first electrode, a photoelectric conversion layer that generates the charges and disposed between the first electrode and the second electrode, and an electron blocking layer that is disposed between the first electrode and the photoelectric conversion layer. Distance between the first electrodes of adjacent photoelectric conversion elements is 250 nm or smaller. Each of the electron blocking layers has a change in surface potential of ?1 to 3 eV from a first face to a second face.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 13, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Hideyuki Suzuki, Kiyohiko Tsutsumi
  • Patent number: 8242493
    Abstract: An organic photosensitive optoelectronic device includes an anode, a cathode, and a donor-acceptor heterojunction between the anode and the cathode, the heterojunction including a donor-like material and an acceptor-like material, wherein at least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound, wherein the subporphyrin or subporphyrazine compound includes boron.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 14, 2012
    Assignees: The Trustees of Princeton University, The Regents of the University of Michigan, The University of Southern California
    Inventors: Barry Rand, Stephen R. Forrest, Kristin L. Mutolo, Elizabeth Mayo, Mark E. Thompson
  • Patent number: 8232616
    Abstract: A solid state imaging device includes an array of pixels, each of the pixels includes: a pixel electrode; an organic layer; a counter electrode; a sealing layer; a color filter; and a readout circuit as defined herein, the photoelectric layer contains an organic p type semiconductor and an organic n type semiconductor, an ionization potential of the charge blocking layer and an electron affinity of the organic n type semiconductor in the photoelectric layer have a difference of at least 1 eV, and the solid-state imaging device further includes a transparent partition wall between adjacent color filters of adjacent pixels of the array of pixels, the partition wall being made from a transparent material having a lower refractive index than a material forming the color filters.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 31, 2012
    Assignee: Fujifilm Corporation
    Inventors: Yoshiki Maehara, Takashi Goto, Hideyuki Suzuki, Daigo Sawaki
  • Publication number: 20120181527
    Abstract: A photoactive layer in organic photodiodes includes organic photoactive dyes, including squaraines with donor-substituted aromatic substituents as the electron donor component, used as an alternative to polymer hold conductors for bulk heterojunctions typically found in the organic active layer of organic photodiodes.
    Type: Application
    Filed: September 28, 2010
    Publication date: July 19, 2012
    Inventors: Maria Sramek, Oliver Hayden
  • Patent number: 8125021
    Abstract: A non-volatile memory device includes a first oxide layer, a second oxide layer and a buffer layer formed on a lower electrode. An upper electrode is formed on the buffer layer. In one example, the lower electrode is composed of at least one of Pt, Ru, Ir, IrOx and an alloy thereof, the second oxide layer is a transition metal oxide, the buffer layer is composed of a p-type oxide and the upper electrode is composed of a material selected from Ni, Co, Cr, W, Cu or an alloy thereof.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choong-Rae Cho, Eun-Hong Lee, El Mostafa Bourim, Chang-Wook Moon
  • Patent number: 8115232
    Abstract: The present invention provides of a three-dimensional bicontinuous heterostructure, a method of producing same, and the application of this structure towards the realization of photodetecting and photovoltaic devices working in the visible and the near-infrared. The three-dimensional bicontinuous heterostructure includes two interpenetrating layers which are spatially continuous, they are include only protrusions or peninsulas, and no islands. The method of producing the three-dimensional bicontinuous heterostructure relies on forming an essentially planar continuous bottom layer of a first material; forming a layer of this first material on top of the bottom layer which is textured to produce protrusions for subsequent interpenetration with a second material, coating this second material onto this structure; and forming a final coating with the second material that ensures that only the second material is contacted by subsequent layer.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: February 14, 2012
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Sargent, Steve McDonald, Shiguo Zhang, Larissa Levina, Gerasimos Konstantatos, Paul Cyr
  • Publication number: 20110259412
    Abstract: The present invention provides a method for an organic thin film solar cell and an organic thin film solar cell manufactured by the same, which can reduce manufacturing cost by simplifying manufacturing process, ensure long-lasting durability and stability, and improve energy conversion efficiency of the solar cell.
    Type: Application
    Filed: August 9, 2010
    Publication date: October 27, 2011
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Won Jung Kim, Yong Jun Jang, Yong Gu Kim, Ki Chun Lee, Sang Hak Kim, Mi Yeon Song
  • Patent number: 7973307
    Abstract: An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 5, 2011
    Assignees: The Trustees of Princeton University, The Regents of the University of Michigan, The University of Southern California
    Inventors: Barry Rand, Stephen R. Forrest, Kristin L. Mutolo, Elizabeth Mayo, Mark E. Thompson
  • Patent number: 7955889
    Abstract: An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: June 7, 2011
    Assignee: The Trustees of Princeton University
    Inventors: Fan Yang, Stephen R. Forrest
  • Publication number: 20100065829
    Abstract: A photovoltaic device includes a photoactive region disposed between and electrically connected to two electrodes where the photoactive region includes photoactive polymer-wrapped carbon nanotubes that create excitons upon absorption of light in the range of about 400 nm to 1400 nm.
    Type: Application
    Filed: January 9, 2009
    Publication date: March 18, 2010
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Michael S. Arnold, Jeramy D. Zimmerman
  • Patent number: 7679107
    Abstract: The present invention provides an involatile memory device that is capable of data writing and erasing at a time other than during manufacturing, and a semiconductor device having the memory device. Also, the present invention provides a compact-sized and inexpensive involatile memory device and a semiconductor device having the memory device. A memory device of the present invention includes a first conductive layer and a second conductive layer of which at least one has a light transmitting property, and an organic compound layer that is in contact with the first conductive layer or the second conductive layer. The organic compound layer includes conductive particles that are dispersed within the layer, and the organic compound included in the organic compound layer has a site that can photoisomerize.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mikio Yukawa
  • Publication number: 20090267060
    Abstract: A photoactive device includes a photoactive region disposed between and electrically connected to two electrodes where the photoactive region includes a first organic photoactive layer comprising a first donor material and a second organic photoactive layer comprising a first acceptor material. The first donor material contains photoactive polymer-wrapped carbon nanotubes and the photoactive region includes one or more additional organic photoactive material layers disposed between the first donor material layer and the acceptor material layer. The photoactive region creates excitons upon absorption of light in the range of about 400 nm to 1450 nm.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 29, 2009
    Applicant: The Regents of the Univerisity of Michigan
    Inventors: Stephen R. Forrest, Michael S. Arnold, Jeramy D. Zimmerman, Richard Lunt
  • Publication number: 20090235988
    Abstract: Solar cells having active layers that include poly(3-alkylthiophene) nanowires.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 24, 2009
    Applicant: WASHINGTON, UNIVERSITY OF
    Inventors: Samson A. Jenekhe, Hao Xin, Felix Sunjoo Kim
  • Patent number: 7572653
    Abstract: Disclosed herein is a method of fabricating a light emitting diode. The method comprises preparing a substrate, forming a lower semiconductor layer, an active layer and an upper semiconductor layer on the substrate, forming a photoresist pattern over the upper semiconductor layer such that a sidewall of the photoresist pattern is inclined to an upper surface of the substrate, and sequentially etching the upper semiconductor layer, active layer and lower semiconductor layer using the photoresist pattern as an etching mask. With this structure, since the light emitting diode permits light generated in the active layer to be easily emitted to an outside through the sidewalls of the semiconductor layers, it has improved light emitting efficiency.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 11, 2009
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jong Hwan Kim, Yeo Jin Yoon, Jae Ho Lee
  • Publication number: 20090173372
    Abstract: The present invention provides organic optoelectronic devices including organic photovoltaic devices. In an embodiment, the present invention provides an organic optoelectronic device comprising a fiber core, a radiation transmissive first electrode surrounding the fiber core, at least one photosensitive organic layer surrounding the first electrode and electrically connected to the first electrode, and a second electrode surrounding the organic layer and electrically connected to the organic layer.
    Type: Application
    Filed: May 1, 2006
    Publication date: July 9, 2009
    Inventors: David Loren Carroll, Jiwen Liu, Manoj A.G. Namboothiry
  • Publication number: 20090146136
    Abstract: Provided are a highly integrated organic memory device and a method of fabricating the same. The device includes an insulating substrate, a lower electrode disposed on the insulating substrate, an electron channel layer disposed on the lower electrode, and an upper electrode disposed on the electron channel layer. A bulk heterojunction formed of an electron-donor/electron-acceptor polymer is used as the electron channel layer having electrical bistability. Thus, a highly integrated organic memory device can be formed by a simple fabrication process.
    Type: Application
    Filed: August 20, 2008
    Publication date: June 11, 2009
    Applicant: Electronics and Telecommunication Research Institute
    Inventors: Sung Yool CHOI, Sung Soo Bae, Hey Jin Myoung
  • Patent number: 7419846
    Abstract: A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: September 2, 2008
    Assignee: The Trustees of Princeton University
    Inventors: Max Shtein, Fan Yang, Stephen R. Forrest
  • Patent number: 7375386
    Abstract: The invention relates to a heterobipolar transistor, comprising an emitter which includes a first semiconductor layer (8) made of a first semiconductor material and a second semiconductor layer (9) made of a second semiconductor material, a band gap value of the first semiconductor material being smaller than a band gap value of the second semiconductor material. A semiconductor intermediate layer (10) made of an intermediate layer semiconductor material is disposed between the first semiconductor layer (9) and the second semiconductor layer (8) and a band gap value of the intermediate layer semiconductor material is greater than the band gap value of the first semiconductor material and smaller than the band gap value or the second semiconductor material. A potential barrier forms at the interface between two semiconductor materials having different band gap values and a stream of electrons must tunnel through it.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: May 20, 2008
    Assignee: MergeOptics GmbH
    Inventor: Axel Hülsmann
  • Patent number: 7326653
    Abstract: A method for preparing an organic electronic or optoelectronic device is described. The method comprises depositing a layer of fluorinated polymer on a substrate, patterning the layer of fluorinated polymer to form a relief pattern and depositing from solution a layer of organic semiconductive or conductive material on the substrate. The fluorinated polymer may be a fluorinated photoresist and may be treated by exposure to ultraviolet light and ozone prior to the deposition of the layer of organic semiconductive or conductive material. The method has particular application in the preparation of organic light emitting devices by ink-jet printing.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: February 5, 2008
    Assignee: Cambridge Display Technology Limited
    Inventors: Alec Gunner, Martin Cacheiro