Including Vitrifying Or Sintering (e.g., Fusing, Firing, Burning, Etc.) Patents (Class 264/428)
  • Patent number: 10090102
    Abstract: The present invention provides a method for producing a rare earth sintered magnet and a molding device therefor that can stably mold molded bodies with less variation in unit weight. The method includes: 1) preparing a slurry that includes an alloy powder containing a rare earth element, and a dispersion medium; 2) disposing an upper punch and a lower punch in respective through holes provided in a die, thereby preparing a plurality of cavities; 3) applying a magnetic field in each of the cavities by an electromagnet in a direction substantially parallel to a direction in which at least one of the upper punch and the lower punch is movable, and then supplying the slurry into the plurality of cavities; 4) producing a molded body of the alloy powder in each of the cavities by press molding in the magnetic field; and 5) sintering the molded body.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: October 2, 2018
    Assignee: HITACHI METALS, LTD.
    Inventors: Takashi Tsukada, Takuya Nansaka, Satoru Kikuchi
  • Patent number: 8936815
    Abstract: The therapeutic device is an acupuncture device which is usable for treating chronic, but non-contagious diseases. The device is in the form of a solid chip or tablet having a unique composition, which can be placed on the body of a patient's acupuncture meridian points for the treatment. The treatment with this device is safe, more effective, non-invasive and easy to use over other alternative treatments because it does not involve the use of needles, medication, electricity and radiation.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: January 20, 2015
    Inventors: Zhilong Xu, Mengjun Yang, Ping Li
  • Publication number: 20140225024
    Abstract: The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.
    Type: Application
    Filed: January 9, 2013
    Publication date: August 14, 2014
    Applicants: LG Electronics Inc., INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Jongryoul Kim, Jinbae Kim, Namseok Kang, Sanggeun Cho
  • Patent number: 8663493
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Publication number: 20140054491
    Abstract: A ferrite powder according to the present invention includes a laminar structure exhibiting a state where W-type ferrite phases are laminated in an easy direction of magnetization, the W-type ferrite phases including a compound expressed by AM2Fe16O27, where A, M, Fe, and O represent a first metal element (Sr, Ba, Ca, Pb, etc), a second metal element (Fe, Zn, Cu, Co, Mn, Ni, etc), iron, and oxygen, respectively. This ferrite particle is obtained through: a shape forming step that shapes a mixed powder in a magnetic field to obtain a compact, the mixed powder including for example an M-type ferrite particle including a compound expressed by AFe12O19 and a spinel-type ferrite particle (S-type ferrite particle) including a compound expressed by MFe2O4; a calcination step that calcines the compact to obtain a calcined substance; and a milling step that mills the calcined substance.
    Type: Application
    Filed: March 27, 2012
    Publication date: February 27, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Yuji Kaneko, Seishi Utsuno
  • Publication number: 20130292882
    Abstract: Upon producing a transparent polycrystalline material, a suspension liquid (or slurry 1) is prepared, the suspension liquid being made by dispersing a raw-material powder in a solution, the raw-material powder including optically anisotropic single-crystalline particles to which a rare-earth element is added. A formed body is obtained from the suspension liquid by means of carrying out slip casting in a space with a magnetic field applied. On this occasion, while doing a temperature control so that the single-crystalline particles demonstrate predetermined magnetic anisotropy, one of static magnetic fields and rotary magnetic fields is selected in compliance with a direction of an axis of easy magnetization in the single-crystalline particles, and is then applied to them. A transparent polycrystalline material is obtained by sintering the formed body, the transparent polycrystalline material having a polycrystalline structure whose crystal orientation is controlled.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 7, 2013
    Inventors: Takunori TAIRA, Jun AKIYAMA, Shigeo ASAI, Kunihiko HARA
  • Publication number: 20130056672
    Abstract: A part is manufactured by introducing magnetic particles into a matrix material, and orienting the particles by coupling them with an electromagnetic field. The matrix material is solidified in patterned layers while the particles remain oriented by the field.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Scott Robert Johnston, Jonathan Blake Vance, James William Fonda, Brett Ian Lyons
  • Patent number: 8298469
    Abstract: A method for manufacturing sintered magnet poles is described. The mold is filled with a vitrifiable base material powder and closed with a plate. A magnetic field aligns the powder and a plate pressed onto the powder establishes a compact that holds the alignment in place. The compact is sintered to form a sintered magnet pole. The mold forms a protective cover of the sintered magnet pole and the plate forms a base plate of a magnet pole piece. Furthermore, a magnet pole piece is provided which has a magnet pole and a base plate which is fixed to a protective cover so that the base plate and the protective cover surround the magnet pole. The base plate and/or the protective cover of the magnet pole piece has at least one element that provides a geometrical locking of the magnet pole to the base plate and/or the protective cover.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: October 30, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Erik Groendahl, Henrik Stiesdal
  • Patent number: 8153047
    Abstract: A method for manufacturing sintered magnet poles is described. A vitrifiable base material powder is filled into a mold, the mold is closed with a plate, the mold with the powder is placed in a magnetic field for aligning the powder, the plate is pressed such onto the powder as to establish a compact that holds the alignment in place, and the compact is sintered so as to form a sintered magnet pole. The mold ultimately forms a protective cover of the sintered magnet pole and the plate ultimately forms a base plate of a magnet pole piece. Furthermore, a magnet pole piece is provided which has a magnet pole and a base plate which is fixed to a protective cover so that the base plate and the protective cover surround the magnet pole. The base plate and/or the protective cover of the magnet pole piece has at least one element that provides a geometrical locking of the magnet pole to the base plate and/or the protective cover.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: April 10, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Erik Groendahl, Henrik Stiesdal
  • Patent number: 8092777
    Abstract: A process for producing an anisotropic magnetic material includes: preparing a feebly magnetic material capable of transforming into a magnetic material by a prescribed reaction, orienting the feebly magnetic material by imparting an external field to the feebly magnetic material, and transforming the oriented feebly magnetic material to a magnetic substance by the prescribed reaction.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: January 10, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, National Institute for Materials Science
    Inventors: Naoki Nakamura, Tetsuo Uchikoshi, Yoshio Sakka
  • Publication number: 20100243946
    Abstract: A method to make a high resistivity permanent magnetic material comprising a non-conductive phase and a permanent magnetic phase microstructure, is disclosed. The method comprises the steps of, (a) disposing at least one layer comprising a non-conductive powder and at least one layer comprising a permanent magnetic powder adjacent to each other to obtain a multilayer, (b) compressing the multilayer, and (c) sintering the multilayer. A method to make a high resistivity soft magnetic material comprising a microstructure comprising a bulk metallic glass phase and a soft magnetic crystalline metal phase, is also disclosed.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Francis Johnson, Ayman Mohamed Fawzi El-Refaie, Lembit Salasoo, Venkat Subramaniam Venkataramani, Thomas Robert Raber
  • Publication number: 20100047547
    Abstract: A method of manufacturing a magnetic sheet includes a slurry sheet forming step, a local magnetic field applying step, and a slurry curing step. In the slurry sheet forming step, slurry is formed by mixing flat soft magnetic metal powder in a binding material, and a slurry sheet is formed by shaping the slurry into a sheet. In the local magnetic field applying step, only the orientation of the flat soft magnetic metal powder, which exists in the partial area, of the entire flat soft magnetic metal powder mixed in the slurry sheet is unified in a predetermined direction by locally applying a magnetic field to a partial area of the expanded slurry sheet in a predetermined direction. In the slurry curing step, a magnetic sheet is formed by curing the slurry sheet after the local magnetic field applying step.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 25, 2010
    Inventor: Yuichi Shimizu
  • Publication number: 20090022992
    Abstract: A sintered ferrite magnet having an M-type ferrite structure and comprising Ca, an R element which is at least one rare earth element indispensably including La, Ba, Fe and Co as indispensable elements, which is represented by Ca1-x-yRxBayFe2n-zCoz, wherein (1-x-y), x, y, z and n are numbers representing the amounts of Ca, the R element, Ba and Co and a molar ratio, meeting 0.2?x?0.65, 0.001?y?0.2, 0.03?z?0.65, and 4?n?7.
    Type: Application
    Filed: March 10, 2006
    Publication date: January 22, 2009
    Applicant: HITACHI METALS, LTD.
    Inventors: Takashi Takami, Hiroshi Iwasaki, Naoki Mochi
  • Publication number: 20080292862
    Abstract: A method is disclosed for manufacturing an anisotropic material comprising providing a viscoplastic material having a yield stress, and a plurality of magnetic particles disposed therein, and then subjecting the viscoplastic material to a magnetic field for a time sufficient to at least partially align at least a portion of the magnetic particles to at least one of a predetermined position or orientation. Also disclosed is an article having anisotropic properties comprising a viscoplastic material, and a plurality of magnetic particles distributed therein and at least partially aligned to a predetermined orientation. An article having anisotropic properties, comprising a fixed viscoplastic material, and a plurality of magnetic particles distributed and at least partially anisotropically aligned in the fixed viscoplastic material is disclosed.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 27, 2008
    Inventors: Andrey V. Filippov, Charlotte Diane Milia
  • Patent number: 7169319
    Abstract: A ferrite magnet having a basic composition represented by the following general formula: (A1?xRx)O.n[(Fe1?yMy)2O3] by atomic ratio, wherein A is Sr and/or Ba, R is at least one of rare earth elements including Y, M is at least one element selected from the group consisting of Co, Mn, Ni and Zn, and x, y and n are numbers meeting the conditions of 0.01?x?0.4, [x/(2.6n)]?y?[x/(1.6n)], and 5?n?6, and substantially having a magnetoplumbite-type crystal structure, is obtained by uniformly mixing a compound of Sr and/or Ba with an iron compound; calcining the resultant uniform mixture; adding a compound of the R element and/or the M element to the resultant calcined powder at a pulverization step thereof; and sintering the resultant mixture. The compound of the R element and/or the M element may be added at a percentage of more than 0 atomic % and 80 atomic % or less, on an element basis, at a mixing step before calcination.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: January 30, 2007
    Assignee: Neomax Co., Ltd.
    Inventors: Takashi Takami, Yutaka Kubota, Yasunobu Ogata
  • Patent number: 7160496
    Abstract: Thermoplastic compositions containing metal materials and a method for preparing the same. The compositions are formed into particles having diameters suitable for a rotational thermoforming processing. The compositions are particularly applicable for use in slush molding processes where efficient heat transfer to the material is desired to form improved surface quality thermoplastic skin. A preferred method for preparing thermoplastic compositions containing metal material into a slush moldable powder comprises melt compounding the composition to form pellets, and further processing the pellets by cryogenic pulverization. A preferred method for forming micropellets uses an extruder having a gear pump to increase the melt pressure.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: January 9, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Sandip R. Patel, Kenneth Alan Gassman
  • Patent number: 6908568
    Abstract: An oxide magnetic material is prepared by wet molding in a magnetic field a slurry containing a particulate oxide magnetic material, water and a polyhydric alcohol having the formula: Cn(OH)nHn+2 wherein n is from 4 to 100 as a dispersant. By improving the orientation in a magnetic field upon wet molding using water, an oxide magnetic material having a high degree of orientation, typically an anisotropic ferrite magnet, is obtained at a high rate of productivity. The method is advantageous from the environmental and economical standpoints.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: June 21, 2005
    Assignee: TDK Corporation
    Inventors: Kiyoyuki Masuzawa, Hitoshi Taguchi
  • Patent number: 6844378
    Abstract: A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 18, 2005
    Assignee: Sandia Corporation
    Inventors: James E. Martin, Robert A. Anderson, Rodney L. Williamson
  • Patent number: 6824862
    Abstract: Fiber-reinforced ceramic composites contain bundles, tows or hanks of long fibers, wherein the long fiber bundles, tows or hanks are completely surrounded by a short fiber-reinforced matrix, with the long and short fibers having, independently of one another, a mean diameter of from 4 to 12 &mgr;m and the long fibers having a mean length of at least 50 mm and the short fibers having a mean length of not more than 40 mm, a process for producing them and their use for producing clutch disks or brake disks.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 30, 2004
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Georg Burkhart, Martin Christ, Ronald Huener, Andreas Kienzle, Peter Winkelmann, Rainer Zimmermann-Chopin
  • Patent number: 6811718
    Abstract: In the method for manufacturing ferrite type permanent magnets according to the formula M1-xRxFe12-yTyO19: a) a mixture of the raw materials PM, PF, PR and PT of elements M, Fe, R and T, respectively, is formed, Fe and M being the main raw materials and R and T being substitute raw materials; b) the mixture is roasted to form a clinker; c) wet grinding of said clinker is carried out; d) the particles are concentrated and compressed in an orientation magnetic field to form an anisotropic, easy to handle green compact of a predetermined shape; and e) the anisotropic green compact D is sintered to obtain a sintered element. The surface are GS and percentage of at least one of the substitute raw materials is selected according to the surface area and percentage of the iron raw material to obtain magnets with high squareness and overall performance index properties.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 2, 2004
    Assignee: Ugimag SA
    Inventors: Antoine Morel, Philippe Tenaud
  • Publication number: 20030230832
    Abstract: An oxide magnetic material is prepared by wet molding in a magnetic field a slurry containing a particulate oxide magnetic material, water and a polyhydric alcohol having the formula: Cn(OH)nHn+2 wherein n is from 4 to 100 as a dispersant. By improving the orientation in a magnetic field upon wet molding using water, an oxide magnetic material having a high degree of orientation, typically an anisotropic ferrite magnet, is obtained at a high rate of productivity. The method is advantageous from the environmental and economical standpoints.
    Type: Application
    Filed: June 17, 2002
    Publication date: December 18, 2003
    Applicant: TDK CORPORATION
    Inventors: Kiyoyuki Masuzawa, Hitoshi Taguchi
  • Publication number: 20020053757
    Abstract: Apparatus and systems for finishing molded articles, such as fragile starch-bound articles, having flashing or other extraneous mold material attached thereto. The containers are conveyed from the mold apparatus to the flash removal system, which preferably includes a first flashing removal subsystem that involves cutting and a second flashing removal subsystem that involves abrading. The first removal subsystem cuts or slices off all, or substantially all, of the flashing without damaging the molded article. The second removal subsystem sands or abrades any remaining nubs or protrusions not removed by the rough removal subsystem. The removed flashing is preferably recycled to a mold material feed stream in order to provide material inputs for producing new molded articles.
    Type: Application
    Filed: January 11, 2001
    Publication date: May 9, 2002
    Inventors: Per Just Andersen, Simon K. Hodson
  • Patent number: 6379579
    Abstract: Provided are a method for preparing an Ni—Cu—Zn ferrite powder having excellent sinterability at a lower temperature, and a method for producing a laminated chip inductor from the above ferrite powder. The method for preparing the ferrite powder is a method for the preparation of a soft magnetic ferrite powder composed of Fe, Ni, Cu and Zn as main components, and comprises the step of allowing an organic additive to be present in a slurry containing a calcined product of a starting powder and water, wherein the organic additive is an organic compound having a hydroxyl group and a carboxyl group or a neutralization salt or lactone thereof, or the organic additive is an organic compound having a hydroxymethylcarbonyl group, an organic compound having an enol type hydroxyl group dissociable as an acid or a salt thereof.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: April 30, 2002
    Assignee: TDK Corporation
    Inventor: Hiroshi Harada
  • Publication number: 20020005603
    Abstract: A process for producing a sintered magnet composed of ferrite particles with magnetoplumbite structure exhibiting a large magnetic flux density and a high coercive force, at a relatively low temperature for a short period of time by filling ferrite particles with magnetoplumbite structure produced by a wet-method, in a mold; and supplying an electric current to the ferrite particles with magnetoplumbite structure filled in the mold under a pressure.
    Type: Application
    Filed: May 7, 2001
    Publication date: January 17, 2002
    Inventors: Mitsuharu Tabuchi, Tomonari Takeuchi, Hiroyuki Kageyama, Tatsuya Nakamura, Yoji Okano
  • Patent number: 6291403
    Abstract: A high Tc superconducting ceramics material is produced by a method in which a mixture of chemicals in suitable amounts is compacted into a desired form. The compact mixture is then fired and, at the same time, a magnetic field is apilied to the compacted mixture in a predetermined direction. By virtue of the application of magnetic field during firing, the orderliness of molecular arrangement is enhanced and an elevated transition temperature Tc is obtained.
    Type: Grant
    Filed: March 23, 1988
    Date of Patent: September 18, 2001
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6264875
    Abstract: The present invention relates to a method for preparing multi-purpose magnetized and sintered ceramics, comprising the steps of adding water to a mixture of Maek-Ban Stone and soft sericite, stirring and maturing at a room temperature, sintering, and irradiating with a magnetic field. The ceramics obtained by the present invention produce various effects such as keeping food fresh, deodorization and purification.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: July 24, 2001
    Inventor: Sang-Yool Pyun
  • Patent number: 6063322
    Abstract: A method for producing shaped bodies from hard ferrites, includes (a) providing a powder of hard ferrite material having a fine particle size; (b) adding to the powder a plastifying and bonding agent which comprises (a) at least one of cyclododecane, cyclododecanol, and stearyl alcohol and (b) stearic acid to provide a mixture; (c) shaping the mixture into a blank; (d) heating at a temperature effective to remove the plastifying and bonding agent from the blank; and (e) subsequently heating the blank to a temperature effective to sinter the powder. The method is suitable for the production of magnets, in particular segmental magnets.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: May 16, 2000
    Assignee: Robert Bosch GmbH
    Inventors: Waldemar Draxler, Wilfried Aichele, Uwe Laukant, Horst Boeder
  • Patent number: 5951937
    Abstract: The method of the invention uses a molding slurry containing a particulate oxide magnetic material and water and having a dispersant added thereto. The dispersant is an organic compound having a hydroxyl group and a carboxyl group or a neutralized salt thereof or a lactone thereof, an organic compound having a hydroxymethylcarbonyl group, or an organic compound having an enol form hydroxyl group dissociable as an acid or a neutralized salt thereof. The organic compound has 3 to 20 carbon atoms, with the hydroxyl group being attached to at least 50% of carbon atoms other than the carbon atom forming a double bond with an oxygen atom. Citric acid or a neutralized salt thereof is also useful as the dispersant. The addition of the dispersant facilitates the wetting of the particulate oxide magnetic material with water and improves the dispersion of primary particles and a degree of orientation upon molding.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: September 14, 1999
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kiyoyuki Masuzawa, Yoshihiko Minachi, Kazumasa Iida
  • Patent number: 5898253
    Abstract: A soft magnetic structure substantially comprised of a plurality of magnetic field carrying particles molded and retained in a predetermined shape, bonded in that shape by an insulating binding agent, wherein said particles have grain alignment substantially parallel to a preferred direction, and wherein said preferred direction is parallel to a direct axis providing the structure with a high direct axis to quadrature axis reactance ratio.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: April 27, 1999
    Assignee: General Motors Corporation
    Inventors: Ahmed Mostafa El-Antably, Robert Walter Ward
  • Patent number: 5893206
    Abstract: A method for making micromagnets and magnets with a micro-polarization pattern on at least one surface thereof.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: April 13, 1999
    Assignee: Eastman Kodak Company
    Inventors: Edward P. Furlani, Syamal K. Ghosh, William J. Grande
  • Patent number: 5866028
    Abstract: It is an object of the present invention, in the W-type ferrite which is formulated as SrO.2(FeO).n(Fe.sub.2 O.sub.3), to provide the ferrite magnet and the manufacturing process thereof by which said W-type magnet maintains cost-performance characteristics recognized with the conventional M-type magnet and furthermore exhibits the maximum energy products more than 5 MGOe. In order to achieve the aforementioned object, carbon elements are admixed to raw powder which is a previously prepared mixture of SrCO.sub.3 and Fe.sub.2 O.sub.3 under a given condition such that n-value in the above formula is in a range between 7.2 and 7.7. After the calcining said mixture, CaO, SiO.sub.2 and C powders are furthermore mixed and pulverized to have an average particle size of less than 0.06 .mu.m, followed by forming into a green compact body under a magnetic field and sintering the formed product under a non-oxidizing atmosphere.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: February 2, 1999
    Assignee: Sumitomo Special Metals, Co., Ltd.
    Inventor: Sachio Toyota
  • Patent number: 5711912
    Abstract: A process for forming a ceramic coated element formed by first encapsulating the element within a sacrificial material and then encapsulating the element and the sacrificial material with an unsintered ceramic material. The resultant combination of materials and elements is then controllably heated to a temperature that burns the sacrificial material prior to the curing of the ceramic material so as to permit the permeation of the burned sacrificial material through the ceramic material. As the ceramic material is sintered it shrinks around the encapsulated element to form the ceramic coated element. In the preferred embodiment of the invention the coated element is a magnet or magnetizable material that is magnetized to a preferred axis of magnetization during the cooling phase of the process.
    Type: Grant
    Filed: June 16, 1996
    Date of Patent: January 27, 1998
    Assignee: Eastman Kodak Company
    Inventors: Dilip K. Chatterjee, Edward Paul Furlani, Syamal K. Ghosh
  • Patent number: 5660786
    Abstract: A segment is magnetized by arranging it between two dies of a magnetizable material, which are armatures of an electromagnet and which each contact said segment along one of the cylindrical surfaces. In accordance with the invention, use is made of a die which comprises an element of a magnetizable material which leaves the longitudinal end portions of the piece to be magnetized partly uncovered, said die optionally being supplemented with elements of a non-magnetic material. The segment may be use in small-power motors, for example for use in cars.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: August 26, 1997
    Assignee: U.S. Philips Corporation
    Inventor: Jean-Paul Ledran
  • Patent number: 5648039
    Abstract: A slurry containing ferrite magnet raw material particles and a non-aqueous solvent is compacted wet in a magnetic field, while said non-aqueous solvent is removed therefrom, to obtain a compact, and the compact is sintered to obtain an anisotropic ferrite magnet. In this case, a surface active agent is allowed to exist in the slurry during the wet compaction. Alternatively, in addition to or in place of this, the raw material particles are pulverized to apply strains thereto, thereby reducing the iHc values to preferably 3.5 kOe or less. This makes some considerable improvement in the degree of orientation of the compact, thus achieving much more improved magnet properties.
    Type: Grant
    Filed: June 8, 1993
    Date of Patent: July 15, 1997
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Fumihiko Hirata, Taku Takeishi, Teruo Mori
  • Patent number: 5464576
    Abstract: A method of manufacturing an inorganic bonding type rapidly solidified magnet, which is formed by energizing and sintering, after an instantaneous mutual attractive force has been applied intermittently in accordance with the electromagnetic force upon a thin piece shaped rapidly solidified magnet powder in a mold. A thin piece shaped inorganic glass having a thermal expansion ratio 9.times.10.sup.-6 /.degree. C. or less is used as the inorganic coupling agent. The magnet of the present invention having a ring shape, is effective to improve reliability as a rotor magnet in consideration of size, safety, mechanical strength, etc. of the present magnet formed in a ring shape. The electric resistance of the magnet is 10.sup.-3 through 10.sup.-1 .OMEGA.cm and is desirable as a rotor magnet of a PWM driving brushless electric motor.
    Type: Grant
    Filed: April 29, 1992
    Date of Patent: November 7, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Fumitoshi Yamashita, Masami Wada