Including Surface Treatment Of Porous Body Patents (Class 264/48)
  • Publication number: 20130084429
    Abstract: The invention relates to an improved method of cold forming a shaped foam article from a foam having a vertical compressive balance equal to or greater than 0.4 and one or more pressing surface and articles thereof. The improvement comprises the use of a stamping press to form the shaped foam article. Preferably, the stamping press is operated by mechanical or hydraulic means. The shaped foam article may be shaped on one or more surfaces.
    Type: Application
    Filed: June 21, 2011
    Publication date: April 4, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Matthew D. Mittag, Myron J. Maurer, Casey R. Fiting, Alain Sagnard
  • Patent number: 8397932
    Abstract: This invention provides a plastic container characterized in that an expanded layer comprising expanded cells having a flat shape with an average major axis of not more than 400 ?m and an average aspect ratio (L/t) of not less than 6 as viewed in cross section of the container wall along the maximum stretch direction, which are oriented in the stretch direction and are distributed so as to be superimposed on top of each other in the thickness-wise direction, is formed within the container wall. In this container, expanded cells having a flat shape are distributed so as to orient in a given direction and, thus, has light shielding properties and has a pearl-like appearance, that is, has a very high commercial value. Further, since any colorant is not contained, the suitability for recycling is excellent.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: March 19, 2013
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Kentarou Ichikawa, Nobuhisa Koiso
  • Patent number: 8388878
    Abstract: Provided is a method of producing a microporous sheet material of a polymeric matrix of polyolefin, with finely divided and substantially water-insoluble filler distributed throughout the matrix, and a network of interconnecting pores communicating throughout the microporous material. The method includes: (a) forming a mixture of polyolefin, filler and a processing plasticizer composition; (b) extruding the mixture to form a continuous sheet; and (c) contacting the continuous sheet with a non-flammable extraction fluid composition to extract the processing plasticizer composition from the continuous sheet. The extraction fluid has a boiling point of 75° C. or less, and is essentially free of trichloroethylene. The microporous sheet material has Tensile Strength equal to or greater than 800 kPa. A microporous sheet material also is provided.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 5, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Luciano M. Parrinello, James L. Boyer, Jun Deng, Yi J. Warburton
  • Patent number: 8383024
    Abstract: A method for fabricating a porous structure from a first material. The method comprises the acts of mixing the first material with a second material to form a mixture, the first material having a melting point which is lower than the second material, heating the mixture under pressure to a temperature between a melting point of the first material and a melting point of the second material, cooling the molten mixture until it hardens and removing the second material from the first material. The method may also include a subsequent annealing step. There is also described a material suitable for implant, illustratively vertebral or spinal implants, comprising a rigid biocompatible polymer such as PEEK comprising a plurality of interconnected pores. The polymer illustratively has a porosity of between 50% and 85% by volume and in a particular embodiment is able to withstand pressures of up to 20 MPa. The porous PEEK material may also have a minimum thickness in any dimension of one (1) inch.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: February 26, 2013
    Assignee: PPD Meditech
    Inventors: Daniel Morrissette, Patrick Croteau
  • Patent number: 8353410
    Abstract: A composite membrane includes a filtration membrane and a layer on a surface of the filtration membrane. The layer includes a polymer including a polyhedral oligomeric silsesquioxane (POSS) derivative with a hydrophilic moiety attached to at least one vertex thereof. A method for making a composite membrane includes applying to a surface of a filtration membrane a photopolymerizable composition including a POSS compound, a hydrophilic comonomer, and a photoinitiator. The composition is cured to form a hydrophilic layer on the filtration membrane.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, Young-Hye Na, Ratnam Sooriyakumaran
  • Publication number: 20130011451
    Abstract: The invention relates to a composition comprised of a prepolymer, at least one additive, and non-denatured collagen fibers and a method of making the same. The composition of the instant invention is for use as a footbed to augment the shock absorption already provided to the human body via a shoe and the collagenous, fatty pad of the human foot.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: DIVERSIFIED GLOGAL TECHNOLOGIES, LLC
    Inventor: Wayne CELIA
  • Patent number: 8343413
    Abstract: An object of the invention is to provide a method for manufacturing a molded foam which is lightweight and excellent in strength. According to the invention, a method for manufacturing a molded foam from a foamed parison includes: an extruding step of extruding a resin blend containing a foaming agent and a thermoplastic resin to form a foamed parison; an attaching step of closely attaching facing portions of an inner wall surface of the foamed parison to each other to form a foamed parison laminated body; a mold clamping step of sealing and mold clamping the foamed parison laminated body by clamping the foamed parison laminated body by split mold blocks; and a sucking step of sucking air between the split mold blocks to reduce a pressure between the split mold blocks, after the attaching step and the mold clamping step.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: January 1, 2013
    Assignee: Kyoraku Co. Ltd.
    Inventors: Masaaki Onodera, Teruo Tamada, Tatsuya Fukuda, Yu Igarashi, Yoshinori Ohno
  • Publication number: 20120308800
    Abstract: A process for producing a foamed blow-molded article, including melting and mixing a branched polycarbonate resin having a specific polystyrene equivalent weight average molecular weight, a specific weight average absolute molecular weight and a relatively high terminal hydroxyl group content, a linear polycarbonate resin having specific polystyrene equivalent weight average molecular weight, a specific weight average absolute molecular weight and a relatively low terminal hydroxyl group content and a branching agent to obtain a polycarbonate resin “A”, mixing the polycarbonate resin “A” with a blowing agent to obtain a foamable molten resin composition, extruding the foamable molten resin composition to obtain a foamed parison, and blow-molding the foamed parison.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Inventors: Tomoo TOKIWA, Masahiro Gomibuchi
  • Publication number: 20120285882
    Abstract: The present disclosure relates to a membrane comprising a porous polymer body with a plurality of channels extending through the polymer body, a method of producing the same and a water treatment system comprising the membrane.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Inventors: May May TEOH, Na PENG, Tai-Shung CHUNG
  • Publication number: 20120261321
    Abstract: Example embodiments relate to a separation membrane including at least one polymer including a structural unit represented by the following Chemical Formula 1, Chemical Formula 1 may be as described in the detailed description. Example embodiments also relate to a forward osmosis device including the separation membrane, methods of preparing the polymer of the separation membrane, and methods of manufacturing the separation membrane.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung Im Han, Sung Soo Han, Hyo Kang
  • Patent number: 8277719
    Abstract: A process for the preparation of thermoplastic auxetic foams comprising the steps of: a) taking conventional thermoplastic foam; b) subjecting said foam to at least one process cycle wherein the foam is biaxially compressed and heated; c) optionally subjecting the foam to at least one process cycle wherein the biaxial compression is removed and the foam mechanically agitated prior to reapplying biaxial compression and heating; d) cooling said foam to a temperature below the softening temperature of said foam; and e) removing said compression and heat.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: October 2, 2012
    Assignee: Auxetic Technologies Ltd.
    Inventors: Andrew Alderson, Kim Lesley Alderson, Philip John Davies, Gillian Mary Smart
  • Publication number: 20120237734
    Abstract: The invention relates to an improved method of cold forming a double-sided shaped foam article wherein the improvement is using a double-sided foam blank cut from a foam plank having a vertical compressive balance equal to or greater than 0.4 to produce the double-sided shaped foam article. The double-sided foam blank has a first pressing surface and a second pressing surface wherein the difference in compressive strength between the first and second pressing surfaces is equal to or less than 200 percent, most preferably, the compressive strength of the first pressing surface is the same as the compressive strength of the second pressing surface.
    Type: Application
    Filed: October 26, 2010
    Publication date: September 20, 2012
    Inventors: Myron J. Maurer, Matthew D. Mittag, Alain Michel Andre Sagnard
  • Patent number: 8257624
    Abstract: A method for making a porous material, includes melt-blending two or more non-miscible polymers to obtain a co-continuous melt, solidifying the melt to obtain a solid mass consisting of two co-continuous polymer phases, and selectively extracting one of the co-continuous phases thereby creating within the solid mass an essentially continuous pore network having an internal surface. The method further includes replicating the internal surface of the pore network within the solid mass by coating the internal surface with successive layers of materials, and selectively extracting the solid mass without extracting the layers of materials, to thereby yield the product porous material, formed of the layers of materials. The material has a void fraction higher than about 75%, and mainly having essentially fully interconnected sheath-like non-spherical pores and essentially non-fibrous walls.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: September 4, 2012
    Inventors: Basil D. Favis, Pierre Sarazin, Xavier Roy
  • Patent number: 8241539
    Abstract: The present invention provides a method of patterning, the method comprising the steps of: (a) providing a porous film; and (b) adding at least one structure to the porous film. The present invention also provides a patterned film prepared according to the method of the invention. The present invention also provides a method of preparing a porous film, and a porous film prepared according to the method of the invention.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: August 14, 2012
    Assignee: National University of Singapore
    Inventors: Yong Zhang, Meihua Lu
  • Patent number: 8221661
    Abstract: The invention relates to the building material industry and to the use of labor saving tools of industrial continuous and batch brick kilns. Said invention makes it possible to develop a process for producing large-sized clay ceramic products consisting in carrying out rapid and high-quality baking and to accelerate a construction process. The inventive method for producing a clay house or another clay construction consists in forming, during construction, through and blind voids in a wall and a ceiling in such a way that they are closed with a noncombustible material from outside, in covering window and door apertures in the ready clay construction with a noncombustible material, and in baking the construction to a ceramic state in such a way that hot gas penetrates into the voids and that the body of the product is uniformly heated. During baking the construction is used in the form of a furnace (combustion chamber).
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: July 17, 2012
    Inventor: Konstantin Igorevich Mechkovsky
  • Publication number: 20120156568
    Abstract: A porous polymer battery separator is provided that includes variable porosity along its length. Such battery separators can increase the uniformity of the current density within electrochemical battery cells that may normally experience higher current density and higher temperatures near their terminal ends than they do near their opposite ends. By disposing a variable porosity separator between the electrodes of an electrochemical cell such that its terminal end has a lower porosity than its opposite end, the transport of ions, such as lithium ions, through the separator can be more restricted in normally high current regions and less restricted in normally low current regions, thereby increasing the overall uniformity of current density within the battery cell. Variable porosity battery separators may be produced by a dry-stretching process or by a wet process.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hamid G. Kia, Xiaosong Huang, Mark W. Verbrugge
  • Patent number: 8196756
    Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 12, 2012
    Assignee: NanOasis
    Inventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
  • Patent number: 8196754
    Abstract: Water permeable membranes and methods of forming water permeable membranes are provided. The water permeable membranes are comprised of a cross-linked polyamide containing at least one bifunctional additive that is hydrophilic and reactive. Additionally, in accordance with other embodiments of this invention, methods of forming water permeable membranes comprised of a cross-linked polyamide containing at least one bifunctional additive that is hydrophilic and reactive are provided. Specifically, the water permeable membranes may comprise a membrane formed from a cross-linked aromatic or aromatic/aliphatic polyamide interfacially polymerized on a porous support. The presence of the at least one hydrophilic and reactive additive improves the flux and salt retention properties of the membrane in comparison to a membrane formed without the at least one hydrophilic and reactive additive.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: June 12, 2012
    Assignee: The Ohio States University Research Foundation
    Inventor: W. S. Winston Ho
  • Publication number: 20120125850
    Abstract: A porous hollow fiber membrane that is suitable for treatment of liquid containing an inorganic substance and/or an organic substance, is obtained at a low cost performance, and has high water permeability performance, fretting resistance, and drying resistance. A deformed porous hollow fiber membrane according to the present invention is composed of a thermoplastic resin and includes a continuous asperity provided on the periphery in the longitudinal direction of the membrane, in which the periphery of the hollow fiber membrane in the circumferential direction includes continuous projected and depressed parts.
    Type: Application
    Filed: August 13, 2010
    Publication date: May 24, 2012
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Hirokazu Fujimura, Masatoshi Hashino, Noboru Kubota, Hideto Matsuyama
  • Publication number: 20120125835
    Abstract: The invention relates to a process for the production of membranes based on ethylene/chlorotrifluoroethylene polymers having a melting temperature not exceeding 200° C. The process relies on the diffusion induced phase separation of the ethylene/chlorotrifluoroethylene polymer from a solution and comprises the steps of providing a solution comprising an ethylene/chlorotrifluoroethylene polymer having a melting temperature not exceeding 200° C. in a solvent; casting the polymer solution into a film; immersing the film in a non-solvent bath to precipitate the polymer. Membranes made of compositions comprising an ethylene/chlorotrifluoroethylene polymer having a melting temperature not exceeding 200° C. and at least one second polymer are also disclosed.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 24, 2012
    Applicant: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.
    Inventors: Julio A Abusleme, Ivan Pagin, Anna Maria Bertasa
  • Publication number: 20120116539
    Abstract: Methods of producing a custom-fitted prosthetic socket device for a residual limb include covering the distal end thereof with a liner, positioning the covered end within a socket cup to maintain a spaced relationship between the exterior of the liner and the interior of the socket cup, introducing an expandable, hardenable filler material into the socket cup, expanding the material to fill the volume between the liner and the socket cup, hardening the material, and removing the socket cup, hardened filler material, and liner, from the residual limb. Some methods include a filler material that hardens into a flexible solid foam cushioning layer which may optionally form a bond between the socket cup and the liner, embedding the liner in the cushioning layer. Some methods include selecting a socket cup from a plurality of sized socket cups, and/or providing the plurality of sized socket cups.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Inventors: Peter Armstrong, Wayne Armstrong
  • Publication number: 20120114897
    Abstract: A structure includes a skin and a foam member. The foam member has a molded contour, the mold contour being configured to provide tooled surface for the skin. When the skin is a composite skin, the foam member provides support for the skin so that the skin can be cured under heat and pressure. A method of making the foam member for a foam stiffened structure includes creating a mold having an interior cavity which resembles a desired shape the foam member. A subsequent step involves introducing a foam mixture into the mold. Next, the foam mixture is allowed to polymerize so as to expand and distribute within the cavity of the mold. The method further includes selectively controlling a density of the foam member in the mold. The foam member is at least partially cured. The foam member is assembled with a skin to produce the foam stiffened structure.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 10, 2012
    Inventors: Ramesh Thiagarajan, Suvankar Mishra, Mark Chris, William Evans, III, Mike Mikel
  • Patent number: 8173021
    Abstract: The present invention relates to methods for the preparation of functionalized sulfated cellulose membranes. In particular, the present invention relates to the preparation of sulfated cellulose membranes under specific reaction conditions allowing to provide a sulfated cellulose membrane useful for pseudo-affinity purification. In another aspect, the present invention relates to the sulfated cellulose membrane itself as well as its use for isolation of proteinaceous compositions. Finally, the present invention provides a method for isolating whole virus, virus proteins or heparin binding molecules comprising the step of affinity purification using the sulfated cellulose membrane according to the present invention.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 8, 2012
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Michael Wolff, Udo Reichl, Lars Opitz
  • Publication number: 20120101174
    Abstract: The invention relates to an improved method of cold forming a shaped foam article having a shape with a high degree of draft with improved surface aesthetics, specifically reduced surface cracking and articles made therefrom. The improvement is using a mold with a reduced-slip cavity surface, preferably a textured cavity surface.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 26, 2012
    Inventors: Matthew D. Mittag, Myron J. Maurer, Casey R. Fiting, Chad V. Schuette, Samar R. Teli, Alain M. Sagnard
  • Publication number: 20120088854
    Abstract: The present invention provides pre-expanded polypropylene resin beads comprising (A) a glycerin monoester of a C6 to C24 fatty acid and/or a polyglycerin monoester of a C6 to C24 fatty acid and (B) a glycerin diester of a C6 to C24 fatty acid(s) and/or a polyglycerin diester of a C6 to C24 fatty acid(s), in such a manner that a weight ratio [=(A)/(B)] between (A) and (B) in the polypropylene resin particles is 1.3 or more but 10 or less, and a total content [=(A)+(B)] is 0.3 parts by weight or more but 5 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. The resin particles can be excellently used in in-mold foaming, without requiring washing with a chemical like nitric acid or methaphosphate soda, and can provide a polypropylene resin in-mold foamed product with good antistatic properties.
    Type: Application
    Filed: June 17, 2010
    Publication date: April 12, 2012
    Applicant: KANEKA CORPORATION
    Inventor: Taro Kiguchi
  • Patent number: 8147735
    Abstract: A polyamide membrane comprising reaction product of an anhydrous solution comprising an anhydrous solvent, at least one polyfunctional secondary amine and a pre-polymer deposition catalyst; and an anhydrous, organic solvent solution comprising a polyfunctional aromatic amine-reactive reactant comprising one ring. A composite semipermeable membrane comprising the polyamide membrane on a porous support. A method of making a composite semipermeable membrane by coating a porous support with an anhydrous solution comprising an anhydrous solvent, a polyfunctional secondary amine and a pre-polymer deposition catalyst, to form an activated pre-polymer layer on the porous support and contacting the activated pre-polymer layer with an anhydrous, organic solvent solution comprising a polyfunctional amine-reactive reactant to interfacially condense the amine-reactive reactant with the polyfunctional secondary amine, thereby forming a cross-linked, interfacial polyamide layer on the porous support.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 3, 2012
    Assignee: Eltron Research & Development, Inc.
    Inventor: Wayne E. Buschmann
  • Publication number: 20120070748
    Abstract: The invention relates to microporous membranes having high meltdown temperature, high air permeability, and high puncture strength. The invention also relates to the production of such membranes and the use of such membranes as battery separator film.
    Type: Application
    Filed: June 8, 2010
    Publication date: March 22, 2012
    Applicant: TORAY TONEN SPECIALTY SEPARATOR GODO KAISHA
    Inventors: Takeshi Ishihara, Satoshi Miyaoka, Koichi Kono, Patrick Brant
  • Patent number: 8137562
    Abstract: The invention concerns a composite support comprising a base support for the treatment of a biological fluid, in which: “the base support is essentially-constituted by a first polymer carrying anionic or anionizable groups;” at least a part of the surface of the base support is coated with a second polymer ionically bonded to the first polymer, the second polymer carrying the cationic or cationizable groups which are capable of forming an ionic bond with the anionic or anionizable groups of the first polymer; in which the second polymer is in the colloidal form and in mixture with a polyacid during application to the support, allowing the composite membrane to adsorb at least one entity containing anionic or anionizable groups by bonding with cationic or cationizable groups of the second polymer.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: March 20, 2012
    Assignee: Gambro Lundia AB
    Inventor: Michel Thomas
  • Patent number: 8132676
    Abstract: Hydrophilic membrane particularly suited for blotting applications, preferably Western blotting. A pre-wet hydrophobic membrane substrate, preferably made of PVDF, is contacted with a monomer solution and subjected to a UV-initiated free radical polymerization step to render the substrate permanently hydrophilic. The resulting membrane exhibits low background fluorescence, high protein binding, excellent retention of protein sample spot morphology, and extended dynamic range (high signal-to-noise ratio, enhanced sample detectability). The membrane demonstrates comparable or higher performance in Western blotting applications than conventional nitrocellulose Western blotting membranes, particularly for protein detection at low sample concentrations, and is directly water-wettable, eliminating the need for an alcohol pre-wet step prior to use.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: March 13, 2012
    Assignee: EMD Millipore Corporation
    Inventors: Antoni Peters, Philip Goddard, John Charkoudian, Neil Soice, Dave Brewster, Anja Dedeo
  • Publication number: 20120056346
    Abstract: The invention relates to an improved method of extracting a shaped foam article from a mold cavity after being formed, specifically by imparting a vacuum sufficient enough to hold the shaped foam article to one side of the mold, preferably the core half of the mold, when the mold opens.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 8, 2012
    Inventors: Myron J. Maurer, Matthew D. Mittag, Saman R. Teli, Casey R. Fiting
  • Publication number: 20120052581
    Abstract: Surfaces of thermoplastic articles are rendered microporous by contacting the surface with a composition that includes a solvent. The article has a birefringence of 0.0001 or greater and the composition has a solvent strength configured to swell but not dissolve the polymer.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Inventors: Michael Edward DeRosa, Hongwei Hanna Rao
  • Publication number: 20120035285
    Abstract: The present invention relates to a method for producing a polyolefin porous film, the method including the steps of: (a) melt-kneading a solution containing a polyolefin having a weight average molecular weight of 500,000 or more and a solvent to obtain a kneaded product; (b) extruding and cooling the kneaded product to obtain a gel-like molded product; (c) drawing the gel-like molded product to obtain a drawn sheet; (d) removing the solvent from the drawn sheet, followed by drying to obtain a film in which fine pores are formed; (e) conducting heat treatment, while fixing the film in both directions of a MD and a TD thereof and drawing the film at a draw ratio of exceeding 0% to less than 0.1% in at least one direction of the MD and the TD thereof; and (f) conducting heat treatment while decreasing a width of the film in at least one direction of the MD and the TD of the film.
    Type: Application
    Filed: March 30, 2011
    Publication date: February 9, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Shunsuke NOUMI, Kouji TADOKORO, Yoshihiko KONDOU, Masatoshi KAWAMURA
  • Publication number: 20120012521
    Abstract: A hollow-fiber porous membrane of vinylidene fluoride resin, satisfying: a ratio Pmax/Pm of at most 2.0 between a maximum pore size Pmax and an average pore size Pm, and a Pm of 0.13 ?m-0.25 ?m, according to the half-dry/bubble point method (ASTM F316 and ASTM E1294); a coefficient of variation in outer surface pore size of at most 70%, and a porosity of 75-90%. The hollow-fiber porous membrane has a moderate average pore size, has a pore size distribution which is uniform as a whole and also on the outer surface, and has a high porosity, so that it shows not only a good pure water permeability but also retains a good water permeability even in continuous filtration of cloudy water.
    Type: Application
    Filed: December 24, 2009
    Publication date: January 19, 2012
    Inventors: Takeo Takahashi, Yasuhiro Tada, Yasushi Ebihara
  • Patent number: 8092918
    Abstract: The invention provides novel polymer matrices and methods for preparing polymer matrices, as well as methods for purifying caustic feed streams using membranes that comprise polysulfonamide matrices.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 10, 2012
    Assignee: GE Osmonics, Inc.
    Inventors: Christopher J. Kurth, Isaac K. Iverson, Philip M. Rolchigo, Steven D. Kloos, Leonard T. Hodgins
  • Patent number: 8092581
    Abstract: A gas separation membrane has: a polymeric microporous membrane which has a polyolefin as a main component, and which is manufactured by wet phase separation process, and has a porosity of 20 to 80%, an average pore diameter of 1 to 100 nm and a piercing strength at 100° C. of 2 to 50 N; and a gas-separating thin film, which is provided on at least one surface, and/or the interior of the polymeric microporous membrane, and which comprises a fluorine-containing gas-separating resin as a main component, and has an average thickness of 0.01 ?m to less than 0.4 ?m. The gas separation membrane having an oxygen-nitrogen separation factor not smaller than 1.4.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 10, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Sho Sugiyama, Takuya Hasegawa, Takahiko Kondo, Hidetoshi Masugi, Takashi Nozaki
  • Publication number: 20110313072
    Abstract: The present invention is a method to manufacture one or more shaped foam article. Specifically, the present invention is a method of extruding a thermoplastic polymer with a blowing agent to form a foam polymer plank having a density gradient. Preferably, shaped articles are prepared from the surface of the foam plank having the lowest density. The article is shaped by a mold comprising one or a plurality of cavities wherein the periphery of each cavity is defined by a trimming rib, said mold concurrently shapes the foam article and trims the resulting shaped foam article from the surrounding continuous unshaped foam plank. Preferably, the foam has a vertical compressive balance (Rv) equal to or greater than 0.4 and more preferably, the foam has a cell gas pressure less than 1 atmosphere and/or an open cell content of equal to or less than 20 percent.
    Type: Application
    Filed: January 29, 2010
    Publication date: December 22, 2011
    Inventors: Myron J. Maurer, Casey R. Fiting, Matthew D. Mittag, Alain M. Sagnard
  • Patent number: 8075904
    Abstract: Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: December 13, 2011
    Assignees: California Institute of Technology, The Regents of University of California, Board of Trustees of Michigan State University
    Inventors: Jeff S. Sakamoto, Mark Henry Tuszynski, Thomas Gros, Christina Chan, Sumit Mehrotra
  • Publication number: 20110300339
    Abstract: A method of forming a high aspect ratio adhesive structure, the method comprising fabricating a porous template comprising at least a first tier and a second tier; introducing a softened polymer into the template; and separating the polymer from the template.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 8, 2011
    Inventors: Yoke Yee Audrey Ho, Isabel Rodriguez Fernandez
  • Patent number: 8057890
    Abstract: The surface of an aluminum alloy shaped product is covered with ultrafine recesses by being dipped in an eroding aqueous solution, or has formed thereon a metal oxide layer covered with the openings of ultrafine pores by anodizing. On the resin side, there is prepared a polyamide resin compounded with an impact resistance modifier, a mixture of an aliphatic polyamide and an aromatic polyamide, or a mixture of aromatic polyamides. The aluminum alloy shaped product is inserted into an injection mold, and a polyamide-type resin composition is injected onto the surface of the aluminum alloy shaped product, to manufacture an integrated composite.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 15, 2011
    Assignee: Taisei Plas Co., Ltd.
    Inventors: Makoto Iwahashi, Michiyuki Nakase, Masanori Naritomi, Naoki Andoh
  • Patent number: 8048348
    Abstract: Filtration devices may include a shape-memory material having a compressed run-in position or shape and an original expanded position or shape. The shape-memory material may include an open cell porous rigid polyurethane foam material held in the compressed run-in position at the temperature below glass transition temperature (Tg). The foam material in its compressed run-in position may be covered with a fluid-dissolvable polymeric film and/or a layer of fluid-degradable plastic. Once filtration devices are in place in downhole and are contacted by the fluid for a given amount of time at temperature, the devices may expand and totally conform to the borehole to prevent the production of undesirable solids from the formation.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 1, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Ping Duan, Paul McElfresh
  • Publication number: 20110254186
    Abstract: A method for improving the dimensional stability of PTFE membranes by the application of elevated temperature and elevated pressure to a PTFE membrane. The process reduces and/or eliminates the relaxation stress normally associated with PTFE membranes made using previously existing methods.
    Type: Application
    Filed: October 18, 2010
    Publication date: October 20, 2011
    Applicant: Donaldson Company, Inc.
    Inventors: Richard Brandimarte, Kirit Patel
  • Publication number: 20110248214
    Abstract: The present invention describes a composition and a method for producing mesoporous silica materials with a chiral organization. In the method, a polymerizable inorganic monomer is reacted in the presence of nanocrystalline cellulose (NCC) to give a material of inorganic solid with cellulose nanocrystallites embedded in a chiral nematic organization. The NCC can be removed to give a stable porous structure that retains the chiral organization of the NCC template. The new materials may be obtained as iridescent free-standing films with high surface area. Through control of the reaction conditions, the colour of the films can be varied across the entire visible spectrum. These are the first materials to combine mesoporosity with long-range chiral ordering that leads to photonic properties.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 13, 2011
    Applicants: FPINNOVATIONS, UNIVERSITY OF BRITISH COLUMBIA
    Inventors: Mark John MACLACHLAN, Kevin Eric SHOPSOWITZ, Hao QI, Wadood Yasser HAMAD
  • Publication number: 20110250432
    Abstract: An open-pore formed body based on inorganic, partially open-pore light granulates is based on at least one material from the group of alkali silicates, alkali-alkali earth silicates, aluminosilicates, borosilicates, and variants in the three material system CaO—SiO2—Al2O3 in combination with additional metal oxides such as TiO2 FeO3 Mn2O3. It has a bulk density of 0.10 to 0.60 kg/dm3 measured according to DIN EN 1097-3, wherein the light granulate is provided with a hydrophobised surface and is bound with an organic binding agent to form the formed body.
    Type: Application
    Filed: December 3, 2009
    Publication date: October 13, 2011
    Applicant: Dennert Poraver GmbH
    Inventor: Hans-Peter Kohlstadt
  • Patent number: 8034301
    Abstract: A test paper includes a porous membrane capable of separating an object that should be filtered out of a sample by filtration, the porous membrane carrying a reagent capable of reacting with a specified component of the sample to result in coloring. The porous membrane includes a first layer having a surface on which the sample is supplied and a second layer having a surface at which sample percolation and measuring are effected, the first layer composed of large pore portions, the surface of the first layer consisting of a smooth surface having open pore portions, the second layer composed of minute pore portions the surface of the second layer consisting of a surface having open pore portions. The porous membrane has a thickness of 50 to 200 ?m and a porosity of 60 to 95%.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: October 11, 2011
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Ken Tatebe, Katsuyuki Ooba
  • Patent number: 8017050
    Abstract: The present invention includes methods and compositions for liquid separation and water purification. The present invention includes a purification membrane having a polymer matrix purification membrane that has been treated with dopamine to form a polydopamine coated membrane with a high water flux and a high hydrophilicity.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 13, 2011
    Assignee: Board of Regents The University of Texas System
    Inventors: Benny D. Freeman, Ho Bum Park, Bryan D. McCloskey
  • Publication number: 20110215497
    Abstract: A method of manufacturing a foam product comprising molding 10 the foam product by injecting liquid material into a mold cavity; de-molding 11 the foam product by removing the foam product from the mold cavity; post-curing 20 the foam product, after de-molding 11 and prior to crushing 40 the foam product, to reduce set damage and form a superficial layer thereon by applying auxiliary heat; and crushing 40 the foam product to obtain a predetermined reduction in thickness of the foam product by mechanically compressing the foam product. The method further comprising cooling 30 the foam product, after post-curing 20 and prior to crushing 40 the foam product, by removing the auxiliary heat applied to the foam product.
    Type: Application
    Filed: September 22, 2009
    Publication date: September 8, 2011
    Inventors: James T. McEvoy, Ryoko Yamasaki, Patricia McClarren, Antoine A. Kmeid
  • Patent number: 8011517
    Abstract: A composite membrane includes a filtration membrane with a surface; and a layer on the surface of the filtration membrane. The layer includes a polymer including a poly(ethylene glycol) moiety cross-linked with an ammonium salt or a precursor of an ammonium salt.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, James Lupton Hedrick, Young-Hye Na, Alshakim Nelson, Ratnam Sooriyakumaran
  • Patent number: 7998313
    Abstract: Inflated fibers of regenerated cellulose and other regenerated structures are formed from ionic liquid/cellulose dope. Fibers so produced may be incorporated into absorbent sheet with other papermaking fibers to provide softness, bulk and absorbency.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: August 16, 2011
    Assignee: Georgia-Pacific Consumer Products LP
    Inventor: Bruce J. Kokko
  • Patent number: 7998380
    Abstract: A method of fabricating a highly porous structure is provided. The method includes the step of compounding a biodegradable polymer, a water-soluble polymer and a porogen to form a composite blend. A foaming agent is dissolved into the composite blend and the composite blend is injected into a mold so as to form the structure. Thereafter, the structure is removed from the mold and leached in a fluid.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Lih-Sheng Turng, Adam J. Kramschuster
  • Patent number: 7993738
    Abstract: Modified porous materials are disclosed having interconnected, complexly shaped three-dimensional surfaces. The modification is accomplished by crosslinking the three-dimensional surfaces or by incorporating, in situ, an inorganic material onto or into three-dimensional surfaces. The porous materials are macro structures including at least one of nano-features, micro-features, and combinations thereof. The modifying accomplishes changing surface properties of the porous materials, changing the three-dimensional surfaces, and/or rendering the porous materials substantially stable in a predetermined environment.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 9, 2011
    Assignee: The Regents of the University of Michigan
    Inventors: Peter X. Ma, Xiaohua Liu