By Indirect Liquid Heat Exchange Means Patents (Class 266/152)
  • Patent number: 8377371
    Abstract: A battery of stationary hearth furnaces, and method for using, for producing metallic iron nodules having a furnace having a stationary hearth, an inlet and an outlet; a heating chamber beneath the stationary hearth having heated fluids circulated thereto and heating reducible material on the stationary hearth; passageways circulating fluids, through ports from the furnace housing above the reducible material to the heating chamber beneath; burners and air inlets in the furnace and optionally in at least one passageway and a heating chamber for drying and heating the reducible material, driving off and burning volatile material, and forming metallic iron nodules; a loading device for loading reducible material and optionally hearth material onto the stationary hearth through the inlet; and a discharging device capable of discharging metallic iron nodules and optionally related material from the stationary hearth through the outlet.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 19, 2013
    Assignee: Nu-Iron Technology, LLC
    Inventor: Narayan Govindaswami
  • Patent number: 5997607
    Abstract: A condensation chamber and method for condensing a metal connate from a metal rich gaseous mixture. The condensation chamber includes top and sidewall surfaces that together define a central bore. A gas supply is received in the bore, and as the gas begins to cool, a metal connate condensate forms on the surfaces of the condensation chamber. A moveable surface is received in the bore for removing the connate from the surfaces adjacent the bore. To facilitate removal of the connate, the surfaces adjacent the bore are heated to ensure that the connate remains substantially in the liquid state while in the condensation chamber. The moveable surface helps direct the connate into a cooling chamber supported by the condensation chamber. In the cooling chamber, the connate is cooled to a plastic state. The cooled connate may be formed into pellets and stored for later use.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: December 7, 1999
    Inventors: Stephen M. Birken, Karl Birken
  • Patent number: 4940213
    Abstract: An exhaust processing apparatus comprises a cracking furnace for cracking and solidifying exhaust discharged from a reactor for forming crystals on a semiconductor substrate, a first collecting device for collecting relatively large components solidified in the cracking furnace, a second collecting device for collecting relatively small solidified components passed through the first collecting device, and a chemical or a physical adsorbing member for chemically or physically adsorbing the exhaust passed through the first and second collecting devices.The apparatus may be provided with bypass piping for bypassing a particular section of the apparatus, a shutoff member for opening and closing the bypass piping and a control device for controlling the shutoff member.
    Type: Grant
    Filed: July 22, 1988
    Date of Patent: July 10, 1990
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshimitsu Ohmine, Takaaki Honda, Keiiti Akagawa
  • Patent number: 4540162
    Abstract: A metal-refining process and a corresponding system characterized by being adapted to minimize the health hazard by appropriate purification of the gases or vapor products resulting from acid action on a metal compound. This metal refining features the use of vacuum at a downstream point to regulate the admixing of air with the vapor products in the effluent and to draw activating air in the mixture of acid and metal compound at the upstream point. This refining system includes gas outlet manifolds constructed and arranged to enhance the purification of the vapor products by comminuting the vapor products into small bubbles upwardly through a water tank. Each manifold consists of a casing having a plurality of small gas outlet apertures each communicating with a small tube which extends within the casing and has a bevelled end for self-cleaning of the tube. These tubes prevent clogging of the apertures by solid particles in the gas flowing through the casing.
    Type: Grant
    Filed: February 24, 1983
    Date of Patent: September 10, 1985
    Inventor: Armand Gozlan
  • Patent number: 4502871
    Abstract: Disclosed is a wax condenser for separating wax from an entrainer gas (or sweep gas) which is introduced into a sintering furnace and then pumped out in order to remove the wax from the furnace. The condenser includes a hot chamber and a cold chamber. Wax is removed by the condenser in three ways. After the entrainer gas enters the hot chamber of the condenser from the sintering furnace, it will pass through a heated filter. The heated filter will capture a large percentage of the wax present in the entrainer gas. The entrainer gas passes from the heated filter through a flow-restricting aperture which is located in a barrier separating the hot chamber from the cold chamber. This flow restricting aperture causes a pressure drop across the barrier. When the entrainer gas passes through the aperture, an expansion of the entrainer gas takes place due to the drop in pressure associated with the passing of the entrainer gas through the flow restricting aperture.
    Type: Grant
    Filed: February 1, 1983
    Date of Patent: March 5, 1985
    Assignee: GCA Corporation
    Inventors: Ingar F. Andersen, Timothy W. Lutts, Eddie W. Lam