Lateral And Longitudinal Vehicle Attitude Control (e.g., Combinations Of Antidive, Antipitch, Antiroll, Antisquat, Antisway, Antiyaw, Riding, Or Suspension Height) Patents (Class 280/5.507)
  • Patent number: 8701845
    Abstract: A suspension device (S) comprises: an actuator (A) including a motion conversion mechanism (T) for converting rotational motion of a screw nut (1) to linear motion of a threaded shaft (2), and a motor (M) connected to the screw nut (1); and a fluid pressure damper (D) connected to the threaded shaft (2), wherein the threaded shaft (2) is formed in a cylindrical shape, a connecting shaft (30) for connecting a rod (31) or a cylinder (32) of the fluid pressure damper (D) to the threaded shaft (2) is inserted into the threaded shaft (2), and the connecting shaft (30) is connected to an end, opposite to the fluid pressure damper, of the threaded shaft (2). Accordingly, the connection between the actuator and the hydraulic damper is facilitated.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 22, 2014
    Assignee: Kayaba Industry Co., Ltd.
    Inventor: Takuhiro Kondo
  • Patent number: 8666597
    Abstract: An electric power assisted steering system for a vehicle, comprising: a steering mechanism which operatively connects a steering wheel to road wheels of the vehicle, a torque sensor arranged to, in use, produce a torque signal indicative of the torque carried by a portion of the steering mechanism, an electric motor operatively connected to the steering mechanism, a signal processing unit arranged to, in use, produce from the torque signal a torque demand signal representative of a torque to be applied to the steering mechanism by the motor, the signal processing unit comprising a first calculating unit arranged to calculate an initial torque demand signal dependent on the torque signal, and a second calculating unit arranged to, in use, calculate a torque damping signal indicative of an amount the initial torque signal is to be damped in order to generate the torque demand signal, and a motor drive stage arranged to provide, in use, a drive current to the motor responsive to the torque demand signal, in whic
    Type: Grant
    Filed: November 23, 2006
    Date of Patent: March 4, 2014
    Assignees: TRW Limited, TRW Automotive
    Inventors: Angel Luis Andres Fernandez, Kevin McLaughlin
  • Patent number: 8641053
    Abstract: An actuator assembly for use in an active suspension includes a drive assembly having a first portion and a second portion configured to translate relative to each other. The first portion is coupled to a sprung mass and the second portion is coupled to an unsprung mass. The actuator assembly includes an air spring assembly disposed about the drive assembly having a first portion disposed in proximity to the sprung mass and a second portion disposed in proximity to the unsprung mass, the air spring assembly defining an air volume pressurized at an air pressure greater than atmospheric pressure. The actuator assembly includes a cooling assembly having a set of drive assembly channels disposed within the air volume and in thermal communication with the drive assembly and a pump disposed in fluid communication with the set of drive assembly channels.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 4, 2014
    Assignee: Bose Corporation
    Inventors: Christopher A. Pare, Lawrence D. Knox
  • Patent number: 8613452
    Abstract: An electromechanical actuator, especially for an anti-roll bar of a motor vehicle, that has two actuator elements, which can be rotated relative to each other about a common rotational axis, for which purpose an electric motor and a gearbox coupled therewith are provided. The electric motor is arranged in an actuator element for transmitting a torque, and an output shaft of the gearbox is coupled to the other actuator element. A mechanical overload coupling is provided in the torque-transmitting load path from the electric motor to the gearbox output shaft.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: December 24, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Ulrich Grau, Thorsten Meyerhoefer, Ralf Mayer
  • Patent number: 8587237
    Abstract: A control device configured with an external input estimator that reduces a vibration component of a rotational speed of the power transfer system at a rotational speed of the rotary electric machine and estimates transfer system input torque on the basis of the rotational speed of the rotary electric machine, and that estimates external input torque by subtracting at least output torque of the rotary electric machine from the transfer system input torque. A low-vibration speed calculator calculates a low-vibration rotational speed on the basis of the external input torque and vehicle required torque. A rotational speed controller calculates feedback command torque that matches the rotational speed of the rotary electric machine with the low-vibration rotational speed. A torque command value calculator calculates an output torque command value on the basis of the vehicle required torque and the feedback command torque.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yasuhiko Kobayashi, Jin Izawa
  • Patent number: 8585062
    Abstract: A tunable pneumatic suspension includes a piston and two opposed pneumatic chambers. The two champers apply opposed pneumatic pressures to opposite faces of the piston. The tunable pneumatic suspension also includes a pneumatic controller that independently controls the pressure in each of the chambers. The independent control of the two chambers allows the suspension to change the relative positions of the piston and the chambers by differing the pressures in each chamber, and allows the suspension to change its stiffness by increasing or decreasing the pressures in each of the chambers by equal amounts. If used in a vehicle, changing the relative positions of the piston and the chambers can change the ride height of the vehicle, and changing the stiffness of the suspension can change the stiffness of the vehicle's ride.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: November 19, 2013
    Assignee: Nucleus Scientific, Inc.
    Inventor: Ian W. Hunter
  • Patent number: 8583353
    Abstract: A traveling apparatus performs an inverted pendulum control to maintain an inverted state of a vehicle body and travels with a passenger thereon. The traveling apparatus includes a drive portion that drives the vehicle body; a riding detection portion that detects a start of riding on the vehicle body by the passenger; a command generation portion that generates a torque command value to perform the inverted pendulum control and a position control to move the vehicle body to a position that facilitates the riding, when the start of riding is detected by the riding detection portion; and a control portion that controls the drive portion based on the torque command value generated by the command generation portion.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yusuke Kosaka
  • Patent number: 8523192
    Abstract: A method and system for operating a motor vehicle is described. In one example, spring rates for suspension springs and damping rates for shock absorbers are adjusted in response to vertical acceleration, longitudinal angular acceleration, and lateral angular acceleration of a vehicle body in the absence of accelerometers. The system and method may improve vehicle driving dynamics and lower system cost as compared to other systems.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 3, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Yvonne Baeumchen, Michael Seemann, Marc Suermann, Markus Schommer, Uwe Hoffmann, Russ Lee Norton
  • Patent number: 8521362
    Abstract: Stabilizer control devices, methods, and programs obtain information indicating lateral acceleration operating on the vehicle and obtain information indicating a curve section existing in a traveling direction of the vehicle. The devices, methods, and programs control roll stiffness by a stabilizer mounted on the vehicle based on the obtained lateral acceleration information by setting a lateral acceleration threshold at a first value in the curve section and a second value in a section other than the curve section respectively, the first value being smaller than the second value. The devices, methods, and programs control the roll stiffness when the lateral acceleration is equal to or larger than the lateral acceleration.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 27, 2013
    Assignees: Aisin AW Co., Ltd., Aisin Seiki Kabushiki Kaisha
    Inventors: Takayuki Miyajima, Seiji Hidaka, Hirofumi Nitta
  • Patent number: 8508172
    Abstract: A method of actuating a robotic mechanism having a first leg member rotatably coupled to a first side of a chassis and a second leg member rotatably coupled to a second side of the chassis. The method comprises positioning the first leg member and the second leg member generally about 180 degrees with respect to each other and effecting movement of the chassis by rotating both the first leg member and the second leg member with respect to the chassis.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 13, 2013
    Assignee: Bossa Nova Concepts, LLC
    Inventor: Sarjoun Skaff
  • Patent number: 8473154
    Abstract: A vehicle control system, which is configured to obtain an index on the basis of a running condition of a vehicle and to change at least any one of a driving force control characteristic and a vehicle body support characteristic of a suspension mechanism in response to the index, is configured to acquire information associated with a friction coefficient of a road surface on which the vehicle runs, and to correct the at least any one of the driving force control characteristic and the vehicle body support characteristic, which is changed in response to the index, on the basis of the information associated with the friction coefficient of the road surface.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shin Noumura, Ken Koibuchi, Kaiji Itabashi, Keisuke Takeuchi, Toshio Tanahashi
  • Patent number: 8428807
    Abstract: Process for determining at least one state of motion of a vehicle body (10) of a vehicle (1), which has at least one wheel (2) spring-mounted on the vehicle body (10) via a wheel suspension (6), wherein an inward deflection (zrel) of the wheel (2) is measured by means of a path or angle sensor (21), an inward deflection velocity (?rel) of the wheel (2) is determined by differentiating the inward deflection (zrel) of the wheel (2) over time, a vertical acceleration ({umlaut over (z)}wheel) of the wheel (2) is measured by means of an acceleration sensor (22), a vertical velocity (?wheel) of the wheel (2) is determined by integrating the vertical acceleration ({umlaut over (z)}wheel) of the wheel (2) over time, and a vertical velocity (?body) of the vehicle body (10) is calculated by forming a difference of the vertical velocity (?wheel) of wheel (2) and the inward deflection velocity (?rel) of wheel (2).
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 23, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Andreas Gärtner, Eberhard Hees, Stefan Rappelt
  • Patent number: 8398091
    Abstract: A suspension system for a vehicle, including: an electromagnetic actuator configured to generate an actuator force and including a sprung-side unit supported by a sprung portion, an unsprung-side unit supported by an unsprung portion, a screw mechanism, and an electromagnetic motor; a connecting mechanism including a support spring for permitting one of the sprung-side and unsprung-side units to be floatingly supported as a floating unit by a unit-floatingly support portion that is one of the sprung and unsprung portions by which the floating unit is supported; and a controller including a sprung-vibration-damping control portion and a relative-vibration-damping control portion that is configured to execute a relative-vibration damping control for damping a vibration of the floating unit caused by the structure in which the floating unit is floatingly supported by the support spring.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: March 19, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kayaba Industry Co., Ltd.
    Inventors: Hirofumi Inoue, Takuhiro Kondo
  • Patent number: 8398092
    Abstract: A roll control system improves stability in turning by actively controlling roll stiffness in accordance with traveling conditions of a vehicle. The active roll control system for a vehicle suspension includes a stabilizer bar of which the middle straight portion is fixed to a sub-frame by a mount bush and both ends are connected with a lower control arm by a stabilizer link to suppress roll of the vehicle body, in which a roll control mechanism is disposed between a lower end connecting portion of the stabilizer link and the lower control arm to increase roll stiffness by increasing a lever ratio of the stabilizer bar, if needed.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: March 19, 2013
    Assignee: Hyundai Motor Company
    Inventors: Un Koo Lee, Sung Bae Jang
  • Patent number: 8392068
    Abstract: A vehicle behavior control device (S) determines, by using a vehicle velocity (V), a transmission function (K(s)) which is determined based on a specification of the vehicle, receives as an input a wheel turning speed (?) obtained by differentiating a wheel turning angle (?) of left and right front wheels (FW1, FW2) with respect to time, and outputs a target yaw moment (My). The device (S) also calculates, by using the determined target yaw moment (My), a left-wheel-side forward/backward force (FxCL) imparted to a left wheel side (left front wheel FW1 and left rear wheel RW1) of a vehicle (10) and a right-wheel-side forward/backward force (FxCR) imparted to a right wheel side (right front wheel FW2 and right rear wheel RW2) of the vehicle (10).
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Ippei Yamazaki
  • Patent number: 8388002
    Abstract: A suspension system includes a plurality of suspension members, each suspension member including a housing having an interior surface that bounds a chamber and a piston slidably disposed within the chamber. The piston seals against the interior surface of the housing so as to separate the chamber into a first compartment and a second compartment, the first compartment and second compartment being filled with a gas. A first gas lines extends in fluid communication between the first compartment of a first suspension member and the second compartment of a second suspension member. A second gas lines extends in fluid communication between the second compartment of a first suspension member and the first compartment of a second suspension member.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: March 5, 2013
    Inventor: Roy A. Turner
  • Patent number: 8382125
    Abstract: The present invention relates to all terrain vehicles having at least a pair of laterally spaced apart seating surfaces. More particularly, the present invention relates to trail compliant side-by-side all terrain vehicles.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: February 26, 2013
    Assignee: Polaris Industries Inc.
    Inventors: Richard Larry Sunsdahl, Aaron David Deckard, Marcus Johannes Tullemans, Richard E. Eck, Jason Carl Plugge, Alan A. Meyer, Laurie Jean Rengel, Geoffrey G. White, Thomas Samuel Parks McCoubrey, Brian Michael Safranski
  • Patent number: 8380395
    Abstract: A vehicle control apparatus including a road wheel speed detecting section, a vehicle body speed detecting section, a slip ratio calculating section configured to calculate slip ratios which are ratios of respective road wheel speeds with respect to vehicle body speed, an anti-skid brake control section configured to control wheel cylinder fluid pressures for respective wheel cylinders such that the slip ratios fall within a predetermined range, a wheel cylinder fluid pressure acquiring section, damping force variable shock absorbers which are disposed between the respective road wheels and the vehicle body and constructed to variably adjust respective damping force characteristics thereof, and a damping force variable shock absorber control section configured to set the damping force characteristics in accordance with the acquired wheel cylinder fluid pressures.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Satoshi Kashiwamura, Hiroyuki Shimizu
  • Patent number: 8380394
    Abstract: An automobile motion system for choreographed independent movement in three degrees of freedom of an automobile body with respect to the automobile wheels includes a central processing unit, a memory communicative with the central processing unit and an instruction set, the execution of which causes the central processing unit to output a programmed sequence of signals. At least one translator interconnects the automobile body with a front suspension assembly, and at least one translator interconnects the automobile body with a rear suspension assembly. Each translator is responsive to the programmed sequence of signals to independently move the automobile body with respect to the front suspension assembly and with respect to the rear suspension assembly in response to the programmed sequence of signals. The system can be adapted to any sized land vehicle, including oversized vehicles, standard vehicles, miniature vehicles, and toys.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 19, 2013
    Inventor: Gary Snodgrass
  • Patent number: 8342280
    Abstract: An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: January 1, 2013
    Inventors: Patrizio Turco, Michele Ieluzzi
  • Patent number: 8308170
    Abstract: The invention relates to an active suspension assembly and a vehicle equipped therewith. The assembly comprises a bearing arm, spring and adjusting mechanism. In use, the bearing arm supports the second vehicle mass, for instance a cabin or wheel and is pivotally connected to the first vehicle mass, for instance a chassis, around a pivot axis; the spring mechanism produces a spring force that exerts a counter moment on the bearing arm that can counterbalance any external moment acting on said bearing arm; and the adjustment mechanism is arranged to vary said counter moment by altering the direction of the spring force and/or move its point of application in a first direction. The adjustment mechanism is furthermore arranged to move the point of application of the spring force in a second direction, in which the counter moment is not or hardly affected, but by which the effective spring stiffness of the suspension assembly is affected.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 13, 2012
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Albertus Clemens Maria Van Der Knaap, Arjan Pieter Teerhuis, Raymond Bernardus Gerhardus Tinsel, Robert Marijn Anthony Frank Verschuren
  • Patent number: 8306696
    Abstract: A method and system for positioning a vehicle chassis in approximate alignment with a predetermined datum are provided. The vehicle includes a first longitudinal end adapted to be pivotally connected to a substantially fixed point and a second longitudinal end including at least one axle and an operatively associated two-corner fluid suspension system. According to the method, the fluid suspension system controls the alignment of the vehicle chassis to be aligned with an artificial horizon represented as the predetermined datum.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: November 6, 2012
    Assignee: Driveright Holdings, Ltd.
    Inventors: Gregory A. Holbrook, Joseph A. Bounds
  • Patent number: 8296010
    Abstract: A suspension control apparatus enabling a driver to obtain an excellent driving feeling. The suspension control apparatus controls an actuator disposed between a vehicle body and a wheel of a vehicle. The suspension control apparatus includes a lateral acceleration detector operable to detect a lateral acceleration, a lateral jerk detector operable to detect a lateral jerk, and a suspension controller operable to control the actuator to change a pitch of the vehicle based the detected lateral acceleration and lateral jerk.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 23, 2012
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ryusuke Hirao, Masaaki Uchiyama, Nobuyuki Ichimaru, Takahide Kobayashi
  • Patent number: 8296009
    Abstract: A suspension controller for controlling, based on a value detected by at least one sensor which is provided in a vehicle and which is configured to detect a detected portion, a suspension provided for a wheel of the vehicle which is located on a rear side of the detected portion and which is distant from the detected portion by a longitudinal distance in a longitudinal direction of the vehicle, such that the suspension works in accordance with a control command value that is prepared based on the value detected by the at least one sensor. The suspension controller includes a gain determiner configured to determine a gain, for controlling the suspension based on the determined gain. The gain determiner is configured to determine the gain such that the determined gain is smaller when a previewable time is shorter than a threshold length of time, than when the previewable time is not shorter than the threshold length of time.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hidenori Kajino
  • Patent number: 8261869
    Abstract: An agricultural vehicle having a hydraulic system, a cab for the vehicle operator includes a self-levelling cab suspension system having a plurality of suspension units each having a spring, a damper and an accumulator. The accumulator comprises a hydraulic working chamber which is separated by a movable wall from a gas filled chamber serving as a spring. The working chamber is also connected to a working chamber of the damper in a closed hydraulic circuit. In the invention, there is no need for a dedicated oil pump since a hydraulic actuator powered by the vehicle hydraulic system is provided for causing hydraulic fluid to flow in the closed hydraulic circuit between the working chamber of the accumulator and the damper, to vary the height of the cab without fluid from the vehicle hydraulic system entering or leaving the closed hydraulic circuit of the damper and accumulator.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: September 11, 2012
    Assignee: CNH America LLC
    Inventors: Patrizio Turco, Michele Ieluzzi
  • Patent number: 8249775
    Abstract: A vehicle includes: at least three wheels, of which at least two wheels are situated on either side of the center of gravity of the vehicle's longitudinal axis and wherein at least one of the wheels has a steering effect on the direction of the vehicle, a frame having a tilting frame section, rotatable in the longitudinal axis relative to the road surface, a steering element mounted so as to rotate relative to the tilting frame section, one or more tilting elements connected to the tilting frame section and the wheels for exerting a tilting movement between the tilting frame section and the road surface, a speed sensor, a steering sensor for determining the force/torque or size of the steering wheel movement for achieving a change in the direction of the steerable wheel or wheels.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 21, 2012
    Assignee: Brinks Westmaas B.V.
    Inventor: Christopher Ralph Van Den Brink
  • Patent number: 8219262
    Abstract: Disclosed is a pneumatic level control system equalizer of a motor vehicle equipped with a battery and a generator supplying the battery, as well as a compressor driven by an electric motor and associated with the level control system equalizer, the electric motor of the compressor being only supplied with electric current by the vehicle battery and/or generator in certain conditions. The power requirements of the level control system equalizer can be pre-evaluated for a change of level and/or a filling of the pressure tank to be performed.
    Type: Grant
    Filed: April 8, 2006
    Date of Patent: July 10, 2012
    Assignee: Continental Aktiengesellschaft
    Inventor: Alexander Stiller
  • Patent number: 8190327
    Abstract: The invention relates to a device for controlling the suspension of the body shell of a motor vehicle. The inventive device comprises a calculator (CSS) which can calculate a control value (ER) for an actuator (M) of a shock absorber (AM) of the suspension (S) as a function of at least one modal body shell speed calculated from a modal body shell acceleration. The invention is characterized by a sensor (CAP-DEB) for sensing wheel (A,B, C, D) travel in relation to the body shell, which is connected to a first means (CAL) for calculating the modal body shell acceleration from the travel measurement (DEB) provided by the sensor (CAP-DEB).
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: May 29, 2012
    Assignee: Peugeot Citroen Automobiles SA
    Inventor: Francois Poilbout
  • Patent number: 8167318
    Abstract: A hydraulic anti-roll system for a vehicle includes a first hydraulic actuator, a second hydraulic actuator, an anti-roll control module, and an anti-roll bypass valve. The first hydraulic actuator is adapted to be connected between the suspension and frame of the vehicle on one side and the second hydraulic actuator is adapted to be connected between the suspension and frame of the vehicle on its other side. The anti-roll control module is connected between the fluid lines of the first and second hydraulic actuators. The anti-roll control module stiffens the compression of the first hydraulic actuator relative to the expansion of the second hydraulic actuator, and stiffens the compression of the second hydraulic actuator relative to the expansion of the first hydraulic actuator. The anti-roll bypass valve is adapted to activate and deactivate the stiffening of the anti-roll control module.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 1, 2012
    Assignee: MSI Defense Solutions, LLC
    Inventors: Jeffrey S. Ryan, Todd J. Holbert, David J. Holden, Jeff L. Peterson, Seth D. Chavka
  • Patent number: 8165749
    Abstract: A control system for an adjustable damping force damper of a suspension apparatus of a vehicle, includes a lateral acceleration detecting unit detecting a lateral acceleration of the vehicle at a gravity point thereof, a yaw rate detecting unit detecting a yaw rate of the vehicle and a control unit controlling a damping force of the damper. The control unit calculates a first target damping force based on an output of the lateral acceleration detecting unit, calculates a second target damping force based on a lateral acceleration at an axel position which is estimated by an output of the yaw rate detecting unit, compares an absolute value of the first target damping force with that of the second target damping force and sets a target controlling value of the damping force in accordance with the first or second target damping force which has a larger absolute value.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 24, 2012
    Assignee: Honda Motor Co., Ltd
    Inventors: Masaki Izawa, Takafumi Kato
  • Patent number: 8165750
    Abstract: The objective of the present invention is to provide a vehicle motion control device capable of controlling the driving force distribution to the wheels with superior stability and response while effectively utilizing the tire grip.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 24, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Yuichiro Tsukasaki, Masaru Kogure
  • Patent number: 8145392
    Abstract: A system and method for controlling an automatic leveling of heavy equipment. The system, in which a lower frame having a traveling unit and an upper frame are combined together by a tilting unit, includes a sensor unit, provided in the equipment, for sensing twist angles of the lower frame and the upper frame against a reference horizontal surface and a traveling speed of the equipment. A control unit receives the twist angles and the traveling speed, sets a limit of an operation time for the automatic leveling in a standstill state of the equipment while calculating a corrected angle to which a twist angle of the upper frame is to be corrected, without setting the limit of the operation time for the automatic leveling, in a traveling state of the equipment, and generates a control signal for instructing an operation of a tilting unit in accordance with the corrected angle. A driving unit performs a tilting control through the tilting unit in accordance with the received control signal.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 27, 2012
    Assignee: Volvo Construction Equipment Holdings Sweden AB
    Inventors: Jin Seop Kim, Chang Soo Lee, In Woo Kim
  • Patent number: 8140221
    Abstract: A motor vehicle has a vehicle body and a chassis that has at least one wheel suspension device for two opposing wheel. An adjusting device is assigned to each of the wheels. The adjusting devices are coupled to one another by a stabilizer. At least two stabilizer bearings are provided for rotatable support of the stabilizer, and at least one coupling device is provided on the vehicle body for variable torque support of the stabilizer. Accordingly, a reliable level lifting function is provided, based on a sturdy configuration that is both space-saving and weight-saving. The coupling device for torque support of the stabilizer on the vehicle body may have a switchable blocking device and/or at least one spring mechanism.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: March 20, 2012
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Michael Becker, Matthias Dietz, Achim Schulz, Thorsten Koch, Thomas Hunn
  • Publication number: 20120056389
    Abstract: A vehicle has a frame, at least one front wheel connected to the frame, at least one front suspension assembly connecting the at least one front wheel to the frame, at least one rear wheel connected to the frame, and at least one rear suspension assembly connecting the at least one rear wheel to the frame. At least one of the at least one front and at least one rear suspension assemblies includes an air spring. A seat is connected to the frame. An engine is connected to the frame and is operatively connected to at least one of the wheels. An air compressor is connected to the frame and fluidly communicates with the at least one air spring for supplying air to the at least one air spring. A control unit is electrically connected to the air compressor for controlling an operation of the air compressor.
    Type: Application
    Filed: May 28, 2010
    Publication date: March 8, 2012
    Applicant: BOMBARDIER RECREATIONAL PRODUCTS INC.
    Inventors: Daniel Leclerc, Christian De Grammont
  • Patent number: 8123235
    Abstract: A vehicle hydraulic suspension system has front left (15), front right (16), rear left (18) and rear right (17) wheel ram. There is a mode decoupling device (100) with first (129), second (130), third (132) and fourth (131) balance chambers formed by a cylinder/piston rod assembly (124,125,126). The compression chamber (45) of the front left wheel ram (15) is in fluid communication with the first balance chamber (129), the compression chamber (46) of the front right wheel ram (16) is in fluid communication with the second balance chamber (130), the compression chamber (48) of the rear left wheel ram (18) is in fluid communication with the third balance chamber (132), and the compression chamber (47) of the rear right wheel ram (17) is in fluid communication with the fourth balance chamber (131). There are also front and rear resilient vehicle support means between vehicle body and the wheel assemblies.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: February 28, 2012
    Assignee: Kinetic Pty. Ltd.
    Inventors: Richard Monk, James Lind Taylor
  • Patent number: 8113521
    Abstract: An intelligent electronic air suspension system that automatically adjusts its air pressure includes a vehicle speed detector, a vehicle height detector, a level detector, a first pressure sensor, a control end, and four air struts on the vehicle suspension system. The data of the vehicle speed detector, the vehicle height detector, the level detector, and the first pressure sensor are integrated to obtain the dynamical condition of the moving vehicle and its position on the road. Such information is transmitted to the control end and displayed on the monitor end at the same time. According to needs, the user can set manual or automatic control to adjust the air struts so that passengers in the vehicle enjoy more comfort. The air struts can also be adjusted according to the driver's habits to have better controllability. Moreover, the vehicle height can be adjusted according to its load, ensuring the safety of both passengers and cargo.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 14, 2012
    Assignee: Pin Hsiu Rubber Co., Ltd.
    Inventors: Masa Lin, San-Shan Hung, Mong-Chi Yang
  • Patent number: 8108102
    Abstract: A sprung mass velocity estimating apparatus used in a four-wheeled vehicle to estimate a sprung mass velocity of a point of a vehicle body corresponding to each wheel of the vehicle, includes a state quantity detecting unit which detects a state quantity of the vehicle, a base value calculating unit which calculates a sprung mass velocity base value for each of the four vehicle body points based on a detection result of the state quantity detecting unit by using a prescribed oscillation model, and a sprung mass velocity calculating unit which calculates the sprung mass velocity for each vehicle body point by mutually adjusting the sprung mass velocity base values for the four vehicle body points such that the four vehicle body points are located on a common flat plane.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 31, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takashi Furuichi, Koji Yamazaki
  • Patent number: 8103451
    Abstract: A collision between a vehicle and an obstacle is estimated, and based on the estimation result, vehicle deceleration control is performed by a brake actuator to reduce the collision and vehicle wheel load is controlled by a suspension actuator.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: January 24, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Taisetsu Tanimichi, Tatsuya Yoshida, Mikio Ueyama, Shinya Ohtsuji, Isa Ismet Khumaedi, Takahide Kobayashi, Koji Fukui, Nobuyuki Ichimaru, Yoichi Kumemura, Shuichiro Kuroiwa, Masaaki Uchiyama, Tatsuya Gankai, Ryusuke Hirao
  • Patent number: 8090500
    Abstract: In a control device for controlling a variable damper of a vehicle suspension system, when a stroke speed of the damper is within a range including a zero stroke speed, the target damping force is determined as a force opposing a current movement of the damper without regards to the direction of the target damping force determined by a target damping force determining unit. Thereby, even when the wheels move vertically at short intervals, the control value is prevented from changing rapidly, and this allows a damping force of an appropriate level to be achieved in a stable manner at all times. Also, the target damping force when a stroke speed of the damper is within a range including a zero stroke speed may be selected to be a relatively high value or low value so that a desired vehicle behavior may be achieved.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: January 3, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Shigenobu Sekiya
  • Patent number: 8075002
    Abstract: A suspension system for a wheeled vehicle includes hydraulic actuators associated with each of the vehicle's wheels, a hydraulic pump, a hydraulic accumulator, a compressible hydraulic fluid, and a hydraulic manifold including control valves that open and close to control the hydraulic fluid flow and pressure to each of the hydraulic actuators. The control valves are regulated by a control system including a processor running an algorithm that receives data from switches and sensors providing information regarding the vehicle's state and mode of intended use or storage.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 13, 2011
    Assignee: AM General LLC
    Inventors: Ralf Pionke, John George Bocik
  • Publication number: 20110266760
    Abstract: A vibration-damping controlling apparatus of a vehicle for suppressing vibration including a component in a pitch direction or in a bounce direction occurring in the vehicle by an input from a road surface to wheels of the vehicle by controlling driving force of the vehicle is provided with a setting means that sets a vibration-damping control compensation amount by feedback control based on a wheel speed of the wheels of the vehicle and a driving force controlling means that controls driving force of a power source for travel of the vehicle so as to suppress amplitude of the vibration based on the vibration-damping control compensation amount and changes the vibration-damping control compensation amount based on a state of the vehicle, so that the vibration-damping controlling apparatus of the vehicle can execute appropriate vibration-damping control corresponding to the state of the vehicle.
    Type: Application
    Filed: October 31, 2008
    Publication date: November 3, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kaiji Itabashi
  • Patent number: 8050818
    Abstract: A roll stiffness control apparatus of a vehicle, which includes a controller that estimates a remaining capacity of front wheels to generate a lateral force and a remaining capacity of rear wheels to generate a lateral force, and that sets a roll stiffness distribution ratio between the front wheels and the rear wheels so as to reduce a difference between the remaining capacity of the front wheels to generate a lateral force and the remaining capacity of the rear wheels to generate a lateral force.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: November 1, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuichi Mizuta
  • Patent number: 8041480
    Abstract: A future yaw rate ?(t) is estimated according to a current yaw rate ?(t) and a steering angular velocity. As compared with directly detecting the yaw rate ?(t) from a vehicle body, calculating the yaw rate ?(t) from a steering operation can attain a yaw rate having a phase advanced by a time lag ?t, whereby the future yaw rate ?(t) can be estimated accurately.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: October 18, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Katsuhiko Iwazaki
  • Patent number: 8024086
    Abstract: For determination of a relative movement of a chassis and a body of a wheeled vehicle, which is movably joined to the chassis, three linear accelerations of the wheeled vehicle, which extend perpendicular to each other, respectively, as well as at least two rotational speeds of one respective rotational movement or a component of a rotational movement about a coordinate axis of the wheeled vehicle are measured (in measuring device 1), the at least two coordinate axes running perpendicular to each other, respectively. A momentary position of the relative movement is determined (in evaluation unit 9) using the three linear accelerations and the at least two rotational rates.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 20, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Jens Fiedler, Andreas Mayer, Thomas Schweiger, Martin Stratesteffen
  • Patent number: 8006988
    Abstract: A suspension system includes a plurality of suspension members, each suspension member including a housing having an interior surface that bounds a chamber and a piston slidably disposed within the chamber. The piston seals against the interior surface of the housing so as to separate the chamber into a first compartment and a second compartment, the first compartment and second compartment being filled with a gas. A first gas lines extends in fluid communication between the first compartment of a first suspension member and the second compartment of a second suspension member. A second gas lines extends in fluid communication between the second compartment of a first suspension member and the first compartment of a second suspension member.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 30, 2011
    Inventor: Roy A. Turner
  • Patent number: 8005596
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a pitch rate sensor (37) generating a pitch rate signal, a longitudinal acceleration sensor (36) generating a longitudinal acceleration signal, and a yaw rate sensor (28) generating a yaw rate signal. A safety system (44) and the sensors are coupled to a controller. From the sensors, the controller (26) determines an added mass and a position of the added mass, a pitch gradient and/or a pitch acceleration coefficient that takes into account the added mass and position. The controller controls a vehicle system in response to the added mass and the position of the added mass, the pitch gradient and/or pitch acceleration coefficient variables.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 23, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, Joe Meyers
  • Patent number: 7997588
    Abstract: There is provided with a cylinder apparatus comprising: a cylinder; a piston; a piston rod, one end of which is connected to the piston and the other end of which is extended outside; an external cylinder provided at an outer periphery of the cylinder so as to form a reservoir in which to seal the hydraulic liquid and gas therebetween; a base valve dividing the second chamber and the reservoir; a first check valve provided with the piston so as to allow flow of the hydraulic liquid only from the second chamber side to the first chamber side; a second check valve provided with the base valve so as to allow flow of the hydraulic liquid only from the reservoir side to the second chamber side; a flow passage connecting the first chamber with the reservoir; and an opening and closing valve opening and closing the flow passage.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 16, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Ohnuma, Takao Nakadate
  • Publication number: 20110187065
    Abstract: A multi-point hydraulic suspension system for a land vehicle has two or more individual hydraulic actuators. These two or more actuators are each operatively arranged between a suspended structure and a wheeled base of the land vehicle for relative positioning one another. A common supply of pressurized fluid has a given pressure and a selectively operable pump with an inlet and an outlet, for increasing the given pressure of the common supply of pressurized fluid. A fluid reservoir is in selective fluid communication with the inlet of the pump. Controllable valve means are interposed between each of the two or more actuators and the common supply of pressurized fluid for selectively bringing each of the two or more actuators into fluid communication with the common supply of pressurized fluid in response to a control unit for controlling the valve means and the pump.
    Type: Application
    Filed: August 12, 2009
    Publication date: August 4, 2011
    Inventors: Albertus Clemens Maria Van Der Knaap, Arjan Pieter Teerhuis
  • Patent number: 7983813
    Abstract: A method for actively suspending a real plant in a vehicle includes modifying a control signal on the basis of a difference between a property of the real plant, as indicated by the response of the real plant to the control signal, and a property of a nominal plant.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 19, 2011
    Assignee: Bose Corporation
    Inventors: Upendra V. Ummethala, James A. Parison, Thomas C. Schroeder, Daniel Francis Opila, Linda Ystueta, Roman Litovsky
  • Patent number: 7980335
    Abstract: An omni-directional wheel includes a hub rotatable about a wheel axis and a first row of angled rollers about the hub each rotatably supported by the hub. There is at least a second row of angled rollers about the hub each also rotatably supported by the hub. The rollers of the second row are axially offset along the wheel axis from the first row, and rotationally offset from the first row about the wheel axis, and not coaxial with the rollers of the first row.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 19, 2011
    Assignee: Foster-Miller, Inc.
    Inventor: Steven D. Potter