With Pump Patents (Class 303/10)
  • Patent number: 8807480
    Abstract: A method of actuating undercarriage latching boxes and associated hatch latching boxes of an aircraft in an emergency mode, the latching boxes having at least one feed port and at least one unlatching member that is operable when the port is fed with fluid under pressure, the aircraft also being provided with a hydraulic braking circuit. The method includes connecting at least one tapping circuit to the braking circuit of the aircraft in association with an isolation valve that is kept, in a normal mode, in an isolation state and that can be controlled to be placed in an open state in which at least some of the feed ports of the latching boxes are fed by the tapping circuit connected to the braking circuit.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 19, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventor: David Frank
  • Publication number: 20140225426
    Abstract: A hydraulic system for a brake system of a machine includes a relay valve coupled to a brake cylinder, a pump, and a tank. The relay valve includes a first position to allow supply of fluid from the pump to the brake cylinder, and a second position to allow discharge of fluid from the brake cylinder to the tank. Further, the relay valve includes a third position to restrictively allow discharge of fluid from the brake cylinder to the tank via a flow limiting orifice. A pilot valve coupled to the relay valve and configured to modulate the relay valve between the first position, the second position and the third position.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: Caterpillar Inc.
    Inventor: Harold D. Dabbs
  • Patent number: 8801111
    Abstract: A vehicle air braking system having a source of fluid under pressure (1), an air dryer (A) downstream of the source (1), and an air consumer circuit (2) downstream of the air dryer (A), the system being operable to suspend the source (1) on demand to permit backflow of air under pressure from the air consumer circuit (2) through the air dryer (A) to a drain valve (B), the system including a regeneration valve (D), and a command valve (C) having an inlet connected to the air consumer circuit (2), and a supply outlet operably connected to the drain valve (B), wherein the regeneration valve (D) is operable to permit regeneration backflow in response to connection of the inlet and supply outlets of the command valve (C).
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 12, 2014
    Assignee: Wabco Automotive UK Limited
    Inventor: Ian Richard Joseph Bates
  • Publication number: 20140217809
    Abstract: The brake actuator includes a housing, a differential pressure control valve, pressure increase control valves, a reservoir, pressure decrease control valves, a pump, an intake system pipeline, and a check valve. The differential pressure control valve is provided in a main pipeline divided into first and second pipelines. The check valve is included in a communication path formed within the housing. The check valve includes a cylindrical pipe member with a hollow portion and an opening portion. A valve body is disposed on the outer circumference of the pipe member. A first path configuring a portion of the intake system pipeline is formed in the pipe member. In the communication path, a gap configuring a portion of the second pipeline is formed outside the pipe member. The check valve allows brake fluid to flow from the first pipeline to the second pipeline through the pipe member and the opening portion.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: DENSO CORPORATION
    Inventor: Fumitoshi Koyama
  • Patent number: 8789897
    Abstract: A method for dimensioning the admission pressure at a first, analogized, electromagnetically actuated hydraulic valve for sensitively regulating the pressure in a pressure circuit in which the admission pressure at the first valve can be set by the delivery capacity of an engine pump assembly which is connected to the first valve via a pump-outlet-side pressure line, in particular in a hydraulic motor vehicle brake system, wherein the admission pressure is set by electronically evaluating the tappet reaction of the first valve or of a further hydraulic valve which is also actuated electromagnetically and is connected to the pump-outlet-side pressure line. An electronically controlled motor vehicle brake pressure control device with which the above method can be carried out is also described.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: July 29, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Erhard Beck
  • Publication number: 20140203626
    Abstract: A brake system includes a hydraulic actuating unit, which can be actuated by way of a brake pedal, a travel simulator interacting with the hydraulic actuating unit, a pressure medium reservoir under atmospheric pressure assigned to the hydraulic actuating unit, a first electrically controllable pressure supply device, a second electrically controllable pressure supply device, an electronic control unit and an electronically controllable pressure modulation device for setting wheel-specific brake pressures. The brake system preferably operates in a “brake-by-wire” mode but can also operate in a fallback mode. The second electrically controllable pressure supply device can provide boost volume during braking in a fallback mode.
    Type: Application
    Filed: April 16, 2012
    Publication date: July 24, 2014
    Inventors: Harald Biller, Hans-Jörg Feigel, Stefan A. Drumm, Steffen Linkenbach, Marco Besuer
  • Patent number: 8777336
    Abstract: A brake apparatus includes: a master cylinder generating a master cylinder fluid pressure; a wheel brake device applying a braking force to the wheels; a control fluid pressure generation device including a fluid pressure control valve and a fluid pressure pump; an electric motor driving the fluid pressure pump; a control fluid pressure setting unit setting a control fluid pressure; wherein the control fluid pressure generation device rotates the electric motor to circulate a brake fluid and applies a control current to the fluid pressure control valve to thus generate the control fluid pressure in the fluid pressure control valve, and a target rotation number setting unit configured to calculate a pump-necessary discharge flow rate and a brake fluid amount, and set a target rotation number of the electric motor based on the pump-necessary discharge flow rate.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 15, 2014
    Assignee: Advics Co., Ltd.
    Inventors: Masahiro Matsuura, Masayuki Naito, Kazuya Morishita, Masayoshi Oishi
  • Patent number: 8764125
    Abstract: A hydraulic pump comprising a containment body (2) having inside a cylindrical cavity (3) provided with a conduit (4) communicating with a hydraulic actuator and capable of holding a fluid. A piston (5) is movable in the cylindrical cavity (3) and a reservoir (12) of the fluid is in fluid communication with the cylindrical cavity (3). Actuation means (6) connected to the piston (5) move the piston (5) within the cylindrical cavity (3) to operate the hydraulic actuator. The pump also comprises means (13) for closing or opening the connection between the reservoir (12) and the cylindrical cavity (3). The reservoir (12) is substantially lined up with the cylindrical cavity (3) along an axis of longitudinal development (X) of same cylindrical cavity (3), so as to reduce the overall dimensions and the weight of the pump.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: July 1, 2014
    Assignee: Formula S.R.L.
    Inventors: Giancarlo Vezzoli, Gabriele Di Pietro, Samuele Laghi, Marco Fiesoli
  • Publication number: 20140167494
    Abstract: A vehicle braking system is provided that includes a brake pedal; a pedal simulator that generates reaction force corresponding to the brake pedal force and a pedal position sensor that detects a brake pedal operating state. A booster boosts brake pedal force and a master cylinder generates hydraulic pressure by activating the booster. A hydraulic controller is activated by the master cylinder and activates a wheel cylinder. A hydraulic power unit includes a cut valve controlling brake fluid supply between a reservoir and the pedal simulator, apply valves selectively supplying brake operating fluid to the booster and release valves selectively releasing the brake operating fluid from the booster. A switch unit selects reaction force modes and a controller operates the hydraulic power unit based on an output signal from the pedal position sensor, and adjusts the cut valve timing based on reaction force mode transmitted from the switch unit.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 19, 2014
    Applicant: Hyundai Motor Company
    Inventor: Gab Bae Jeon
  • Publication number: 20140167493
    Abstract: A vehicle braking system includes a master cylinder having first and second outputs. First and second hydraulic braking circuits are provided between the respective master cylinder outputs and respective hydraulic wheel cylinders. A first pump provided in the first hydraulic braking circuit is operable to generate pressure and move hydraulic fluid within the first hydraulic braking circuit. A second pump provided in the second hydraulic braking circuit is operable to generate pressure and move hydraulic fluid within the second hydraulic braking circuit. A valving arrangement establishes fluid communication between the first pump and the second hydraulic braking circuit in a first configuration and prevents fluid communication between the first pump and the second hydraulic braking circuit in a second configuration.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventor: Ryan A. Kuhlman
  • Publication number: 20140159471
    Abstract: A vehicular braking apparatus including a shut-off valve for shutting off, as needed, a flow of oil from a wheel cylinder to a master cylinder; a pressure increase-decrease control valve increasing and decreasing a pressure in the wheel cylinder; a reservoir receiving and storing in a reservoir chamber the oil from the wheel cylinder when the pressure increase-decrease control valve is in a pressure decrease position; a pump sucking in and pressuring the oil from the reservoir chamber and supplying the oil to the wheel cylinder via the pressure increase-decrease control valve when the pressure increase-decrease control valve is in a pressure increase position; and a communication control valve controlling communication between the master cylinder and the reservoir chamber. The communication control valve is a normally-closed valve and is opened by a suction pressure of the pump.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi ISONO, Yasuji Mizutani
  • Publication number: 20140159472
    Abstract: A vehicular braking apparatus including a shut-off valve for shutting off, as needed, a flow of oil from a wheel cylinder to a master cylinder; a pressure increase-decrease control valve increasing and decreasing a pressure in the wheel cylinder; a reservoir receiving and storing in a reservoir chamber the oil from the wheel cylinder when the pressure increase-decrease control valve is in a pressure decrease position; a pump sucking in and pressuring the oil from the reservoir chamber and supplying the oil to the wheel cylinder via the pressure increase-decrease control valve when the pressure increase-decrease control valve is in a pressure increase position; and a communication control valve controlling communication between the master cylinder and the reservoir chamber. The communication control valve is a normally-closed valve and is opened by a suction pressure of the pump.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi ISONO, Yasuji MIZUTANI
  • Publication number: 20140159470
    Abstract: A vehicle braking system having a hydraulic brake circuit has a triggerable delivery pump and has an accumulator having an adjustable wall which is acted upon by a spring force in the flow path between an outlet valve of a wheel brake unit and the delivery pump. The adjustable wall is in an intermediate position in the unloaded starting condition.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Inventors: Alexander BAREISS, Andreas Weh
  • Patent number: 8746810
    Abstract: A brake fluid pressure control device 10 includes: a block-shaped housing 30, front and rear wheel-use flow paths, mounting holes in each side surface of the housing 30; a pair of front wheel-use switching valve bodies 1a and 2a that are mounted in a pair of mounting holes 31a and 31b that control the pressure of a brake fluid supplied to a front wheel-use wheel cylinder 103; a pair of rear wheel-use switching valve bodies 3a and 4a that are mounted in a pair of mounting holes 31c and 31d that control the pressure of the brake fluid supplied to a rear wheel-use wheel cylinder 106; a pressure sensor 13 that is inserted inside a mounting hole 31j in the first side surface 30a of the housing 30; and an electronic control unit 8 that drives and controls the front wheel-use and rear wheel-use switching valve bodies 1a to 4a.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: June 10, 2014
    Assignee: Bosch Corporation
    Inventors: Hiroaki Atsushi, Tohru Masuno, Makoto Sasaki, Yoshio Tajika, Sirichai Bannasarn
  • Publication number: 20140152084
    Abstract: A rotating pump includes an outer rotor and an inner rotor. The inner and outer rotors are rotated by a drive shaft between a first side plate and a second side plate to pump put fluid. The first side plate faces the inner and outer rotors and has a first surface and a second surface. The first surface is inclined to an axial direction of the drive shaft to create a wedge-shaped gap between itself and one of the inner and outer rotor. The second surface extends more parallel to a direction perpendicular to the axis direction of the drive shaft than the first surface does. The geometric configurations of the first and second surfaces serve to minimize the leakage of the brake fluid without sacrificing a reduction in resistance to sliding motion of the inner rotor and the outer rotor on the second side plate.
    Type: Application
    Filed: November 29, 2013
    Publication date: June 5, 2014
    Applicants: Nippon Soken, Inc., Advics Co., Ltd., DENSO CORPORATION
    Inventors: Yasuhiro Kawase, Kazunori Uchiyama, Naoki Hakamada, Kazuhide Uchida, Takahiro Yamaguchi, Tomoaki Kawabata
  • Publication number: 20140152085
    Abstract: A motor vehicle brake system actuated in brake-by-wire and fallback operating modes, having a brake master cylinder, brake circuits, a pressure medium storage vessel, a brake pedal, a separating valve for separating the brake circuit into a first section connected to the separating valve the master cylinder, and a second section connected to the separating valve and the wheel brakes. A first pressure provision device has a piston actuated by an actuator, a simulation device connected by a simulator release valve to the master cylinder for a pleasant brake pedal feel in the brake-by-wire operating mode. A first electronic control and regulating unit actuates the first pressure provision device, the separating valves and the simulator release valve. A second pressure provision device has a suction connector and a pressure connector per brake circuit being connected to the inlet of the separating valve.
    Type: Application
    Filed: April 16, 2012
    Publication date: June 5, 2014
    Applicant: Continental Teves AG & Co. oHG
    Inventors: Harald Biller, Stefan A. Drumm, Marco Besier, Stefen Linkenbach, Christopher Scharf
  • Publication number: 20140117748
    Abstract: A rotary pump has a linear groove formed on an end surface of a second side plate of an outer rotor. Thereby, it becomes possible to generate a force for pushing back the outer rotor to a sealing member side, and thus it becomes possible to reduce load applied to the second side plate. As a result, contact resistance between the outer rotor and the second side plate becomes smaller, and smoother pumping operation becomes possible. Further, since the force for pushing back the outer rotor to the first sealing member side is generated in the linear groove, it is possible to reduce an amount of decrease in a contacting area with the outer rotor and the second side plate, thereby reducing an amount of wear of the outer rotor and the second side plate.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Applicants: Nippon Soken, Inc., DENSO CORPORATION, Advics Co., Ltd.
    Inventors: Kazunori Uchiyama, Naoki Hakamada, Kazuhide Uchida, Yasuhiro Kawase, Takahiro Yamaguchi, Tomoaki Kawabata, Kunihito Ando, Tadayoshi Usami
  • Patent number: 8702180
    Abstract: A motor and pump assembly for providing pressure to a brake actuating device of a motor vehicle brake system is described herein. The assembly comprises an electric motor and a double diaphragm pump. The pump includes a pump housing, two opposed working diaphragms, and crank drives each being coupled between the electric motor and a respective diaphragm for moving the diaphragm. A working chamber is defined between the pump housing and a working chamber cover. Each working chamber including an inlet channel, an inlet valve associated with the inlet channel, an outlet channel, and an outlet valve associated with the outlet channel, wherein the outlet channels are defined in the covers of the working chamber and in the pump housing to direct air displaced from the working chambers into an inside space of the pump housing. An air outlet unit is provided for exhausting the air from the inside space.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 22, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Manfred Rüffer, Wolfgang Ritter, Karlheinz Seitz, Stefan Drumm, Jose Gonzalez, Michael Jürging, Daniela Gude, Oliver Volkering, Jürgen Schonlau
  • Patent number: 8688340
    Abstract: An apparatus for supplementing a brake vacuum pressure may include an engine control unit (ECU) that generates a vacuum pressure control signal for supplementing the brake vacuum pressure in accordance with the result of determining whether the brake vacuum pressure is included in a reference vacuum pressure range after a vehicle implements an ISG process, a sub-oil pump that is operated in accordance with a control signal from the ECU to supply hydraulic pressure to the inside of an automatic transmission after the vehicle implements the ISG process, a vacuum pump that generates and supplies the brake vacuum pressure to a brake system, and an electronic clutch that selectively couples the sub-oil pump and the vacuum pump to allow driving force of the sub-oil pump to be transmitted to the vacuum pump or to be cut, in accordance with whether the vacuum pressure control signal is sent thereto.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: April 1, 2014
    Assignee: Hyundai Motor Company
    Inventors: Junghwan Bang, Sejun Kim, Chongah Gwon, Jiyong Yu
  • Patent number: 8684473
    Abstract: A gear pump includes: a drive shaft; a first gear; a second gear; a first plate disposed between the first gear and the second gear, and arranged to liquid-tightly seal the first surfaces of the first and second gear; a pair of second plates disposed, respectively, on the second surfaces of the first and second gears, and arranged to liquid-tightly seal the second surfaces of the first and second gears, each of the second plates including a tooth top sealing portion having a seal surface arranged to seal a tooth top of the first gear and a tooth top of the second gear, and to form a suction portion with the first plate and the second plate; and an urging member arranged to urge the drive shaft toward the seal surface of the tooth top sealing portion of one of the first and second plates.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: April 1, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Chiharu Nakazawa, Yoshiki Sakamoto, Ryohei Maruo, Toshihiro Koizumi
  • Patent number: 8672418
    Abstract: A sealing structure is provided wherein an annular groove formed in a pump cylinder of a piston pump receives therein a seal ring made of a synthetic resin material and having an inner circumferential surface fluid-tightly contacting an outer circumferential surface of the pump piston and an O-ring arranged on the outer circumferential side of the seal ring and urging the seal ring radially inward. The seal ring is formed at its axial end portions with flange portions for preventing the O-ring from coming off. In the state that the seal ring and the O-ring are fitted in the annular groove, the flange portions do not receive a load from the O-ring, and a surface pressure which the seal ring applies to the outer circumferential surface of the piston at an axial center portion thereof is set to be higher than surface pressures which it applies to the outer circumferential surface of the piston at axial end portions thereof.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 18, 2014
    Assignee: Advics Co., Ltd
    Inventors: Tomoo Harada, Tsunekazu Nishida
  • Patent number: 8668280
    Abstract: A device and method for a hydraulic brake system of a land vehicle in order to block a brake circuit of the brake system with regard to a supply of brake pressure generated by a driver, to establish a hydraulic connection between the output side of a wheel brake and the input side of a controllable pump and to generate a predetermined brake pressure at the input side of the wheel brake by the use of a pump.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: March 11, 2014
    Assignee: Lucas Automotive GmbH
    Inventors: Frank Heller, Josef Knechtges
  • Patent number: 8666598
    Abstract: A method of controlling a yawing movement of an aircraft running along the ground, the aircraft comprising at least one first landing gear with a steerable bottom part bearing wheels. The method comprises the steps of (1) on the basis of a yaw rate setpoint {dot over (?)}c, determining a wheel-steering prepositioning angle ?p; and (2) using closed-loop control which as its input has the yaw rate setpoint and which generates a command to steer the bottom part in order to steer it through a steering angle ?c equal to the sum of this prepositioning angle ?p and of an angle ?z which is determined taking account of an error between the yaw rate setpoint {dot over (?)}c and the measured yaw rate {dot over (?)}m when the steerable bottom part is steered by the steering angle ?c.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventors: David Lemay, David Frank, Michel Basset, Yann Chamaillard
  • Patent number: 8659606
    Abstract: A computer-implemented method includes identifying a representation of a feature of an animated character by inverting a skinned representation of the feature in one position. The inversion includes a non-linear inversion of the skinned representation of the feature. The method also includes skinning the identified feature representation to produce the animated character in another position.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 25, 2014
    Assignee: LucasFilm Entertainment Company Ltd.
    Inventors: Frederic P. Pighin, Cary Phillips
  • Patent number: 8651587
    Abstract: A hydraulic brake system equipped for anti-slip control and for active brake interventions has a self-priming pump. A pressure retention valve prevents the brake system's low-pressure accumulator and the wheel brakes from being evacuated below atmospheric pressure during a sensitive brake operation. A two-position valve deactivates the bias of the pressure retention valve by opening a fluid path from the low-pressure accumulator to the pump when it is desired that the wheel brakes be retracted farther to reduce drag and excessive wear of the brake friction elements.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 18, 2014
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Martin Baechle, James John Rizzo, Yuji Nakayasu
  • Patent number: 8651586
    Abstract: In a braking device for a motor vehicle having a first group and a second group of brake circuits, each brake circuit being associated with one group of wheels, and at least the first group of brake circuit being implemented as hydraulic brake circuits, at least one group of wheels being connected to at least one operating unit, which may cause a deceleration of the wheels, the task of a comfortable connection of recuperation brake applications to conventional brake applications is achieved in that a control unit controls the brake application of the brake circuit or circuits of the second group and optionally the deceleration effect of the operating unit or assemblies, the first group of brake circuits being activatable directly by the driver using a brake operating unit.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: February 18, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Gebhard Wuerth, Volker Mehl, Michael Kunz, Matthias Leiblein, Werner Quirant
  • Publication number: 20140021777
    Abstract: The disclosure relates to a fluidically controlled pressure switching valve for a vehicle brake system including a valve chamber, which is arranged in a valve interior and into which an inlet opening and an outlet opening open, and a valve closing body, which is movable in the valve interior and which comprises a piston, defining a first piston surface and a second piston surface, and including a closing element. The valve closing body is movable in accordance with a pressure difference between a pressure acting on the first piston surface and a pressure acting on the second piston surface, against the force of a setting spring arranged in the valve interior, between a closed position, in which a fluid connection between the inlet opening and the outlet opening is interrupted, and an open position, in which the fluid connection between the inlet opening and the outlet opening is open.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 23, 2014
    Inventors: Michael Dinerman, Andrej Gardt
  • Publication number: 20140021776
    Abstract: In order to provide a hydraulic brake system of a motor vehicle that damps noises that would be produced under a vehicle running support brake control and damps uncomfortable feeling that would be applied to a driver when a brake pedal stroke takes place, there is proposed a brake fluid pressure control system in which a fluid pressure required by a selected brake cylinder of a road wheel is calculated based on a behavior of the motor vehicle, and for obtaining the required fluid pressure required by the selected brake cylinder, an upstream side brake fluid pressure controlling device is operated to increase the brake cylinder fluid pressure to a given pressure and thereafter a downstream side brake fluid pressure controlling device is operated to further increase the brake cylinder fluid pressure.
    Type: Application
    Filed: June 10, 2013
    Publication date: January 23, 2014
    Inventor: Hiroshi FURUYAMA
  • Patent number: 8630780
    Abstract: A method for controlling a brake system including receiving a braking signal for setting a braking action by the brake system, ascertaining a minimum rate of pressure increase in the brake system in order to effect the braking action within a predefined response time, and setting a pumping capacity of a pump of the brake system so that the pressure in the brake system increases in accordance with the minimum rate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 14, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Michael Bunk, Konstantin Agapov, Andreas Krautter, Matthias Schanzenbach
  • Patent number: 8622486
    Abstract: The invention is based on a hydraulic unit for regulating the brake pressure in a vehicle brake system. Hydraulic units of such a type are the core component of an anti-lock vehicle brake system, of a drive slip vehicle brake system or of a vehicle brake system which regulates driving stability. The invention proposes a particularly advantageous arrangement of the required recesses in a housing block of a hydraulic unit. On account of the arrangement, the housing block can be reduced in terms of its dimensions, and can be produced with a lower weight and more simply in terms of production. For this purpose, according to the invention, the pressure fluid connection from one of the ports of the master brake cylinder to the suction side of one of the pump elements extends through the valve receptacle of the switching valve.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: January 7, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Tandler, Andeas Weh
  • Publication number: 20140001821
    Abstract: A brake system includes a brake activation element, an activation-element-coupling device having a first piston which is moved into a first internal chamber of the activation-element-coupling device by activating the brake activation element, a master brake cylinder with a second piston to which a driver braking force is transmitted in a driver braking mode to move the second piston into a second internal chamber of the master brake cylinder, a braking medium reservoir, which is hydraulically disconnected from the second internal chamber when the second piston moves a minimum travel distance, and at least a first wheel brake cylinder and at least a first pump. In an external force braking mode, movement of the second piston is prohibited despite the driver's braking force, and the at least one first pump pumps a braking medium volume out of the braking medium reservoir into the at least one first wheel brake cylinder.
    Type: Application
    Filed: November 23, 2011
    Publication date: January 2, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Dietmar Baumann
  • Publication number: 20130342005
    Abstract: A method for controlling the wheel brake pressures in wheel brake cylinders in a hydraulic vehicle braking system proposes to connect the wheel brake cylinders via wheel valves to a piston pump, the pistons of which are double-action pistons, and the two piston sides are connectable by means of pump valves. In order to increase the wheel brake pressure, the wheel valves are opened during a delivery stroke of the piston pump and the pump valves are closed, and the wheel valves are closed and the pump valves opened during a suction stroke. In order to reduce the wheel brake pressures, the valves are controlled in reverse.
    Type: Application
    Filed: October 25, 2011
    Publication date: December 26, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventor: Dietmar Baumann
  • Patent number: 8608255
    Abstract: When vehicle speed V decreases to or below a preset reference vehicle speed Vref during output of regenerative braking force from a motor in response to the driver's depression of a brake pedal, the vehicle of the invention performs a replacement pre-operation (steps S190 to S220 and S160) and a replacement operation (steps S240 to S280 and S160) and controls the motor and an electronically controlled hydraulic braking system to satisfy a braking force demand BF*. The replacement pre-operation actuates and controls pumps included in a brake actuator of the electronically controlled hydraulic braking system to exert their proper pressurization performance. The replacement operation decreases the regenerative braking force output from the motor and enhances a pressure increase by the pumps to replace the regenerative braking force with a pressure increase-based braking force BFpp.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 17, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Advics Co., Ltd.
    Inventors: Michihito Shimada, Kazuya Maki
  • Patent number: 8608254
    Abstract: An electric motor system that triggers brake and steering function upon engine failure featuring an electric motor; and a vacuum pump, an oil pump, and a sensor each operatively connected to the electric motor. The vacuum pump is connected to the vehicle's brake servo and the oil pump is connected to an oil reservoir and to the vehicle's steering sector. The sensor is adapted to detect when the engine is turned off. When the engine is turned off the sensor is activated and causes activation of the electric motor. Activation of the electric motor causes activation of the vacuum pump and the oil pump. The vacuum pump functions to provide a vacuum in the servo brake of the vehicle and the oil pump functions to create oil pressure with oil in the oil reservoir and direct oil pressure to the steering sector.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 17, 2013
    Inventors: Elido N. Diaz, Carmen Man
  • Patent number: 8585372
    Abstract: A motor/pump assembly for a motor vehicle brake system including a pump and a motor driving the pump, the pump having opposite working diaphragms which are, in each case, mounted between a pump casing and a cover and thereby delimit a space and which can be moved by a crank drive, the space being assigned, in each case, an inlet duct with an inlet valve and an outlet duct with an outlet valve. The outlet ducts are arranged in the covers and in the pump casing such that air displaced out of the spaces is conducted into an inner space surrounding the crank drive of the pump casing and that an air outlet unit be provided, which allows a low-noise blow-out of the air from the inner space as a result of the deflection of the air.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: November 19, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Jens Bacher, Lazar Milisic, Wolfgang Ritter, Karlheinz Seitz, Manfred Rüffer, Jose Gonzalez, Thomas Stahl, Michael Jürging, Yuejun Qian
  • Patent number: 8585156
    Abstract: A travel control device for a work vehicle includes: a hydraulic pump; a plurality of hydraulic motors connected to the hydraulic pump in parallel through a closed-circuit connection, that drive different wheels with pressure oil delivered from the hydraulic pump; a slip detection device that detects a slip occurring at each of the wheels; and a flow control device that reduces, upon detection of a slip occurring at any of the wheels by the slip detection device, a quantity of pressure oil supplied to a hydraulic motor for driving the wheel at which the slip has been detected, among the plurality of hydraulic motors.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: November 19, 2013
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Tsutomu Udagawa, Eiji Egawa, Tsukasa Toyooka, Makoto Sugaya, Hideo Sorata, Tsuyoshi Nakamura, Akira Nakayama, Kazuo Takiguchi, Kensuke Satou
  • Publication number: 20130292999
    Abstract: A brake system for a vehicle includes: a main brake cylinder with a floating piston able to be shifted at least partially into the main brake cylinder, and a brake medium storage device into which a specified storage volume of a brake medium is able to be transferred without counterpressure, the brake medium storage device being hydraulically connected via an electrically controllable first valve to the main brake cylinder in such a way that, in response to a shifting of the floating piston partially into the main brake cylinder by a shift travel that is below a shift travel limit corresponding to the storage volume, a brake medium volume less than the specified storage volume is transferred without counterpressure from the main brake cylinder into the brake medium storage device.
    Type: Application
    Filed: September 1, 2011
    Publication date: November 7, 2013
    Inventors: Stefan Strengert, Michael Kunz
  • Patent number: 8573714
    Abstract: To make a brake device generate a required braking force, a hydraulic control section switches, according to the relative magnitude between the required braking force and a braking force exerted by braking operation, between drive of a pump motor and non-drive of the pump motor and a master cut valve reduces the flow of brake fluid in the direction to a master cylinder. By this, a wheel cylinder maintains hydraulic pressure capable of generating the required braking force. As a result, the pump motor is not necessarily always driven when the required braking force is generated, and the operating time period of the pump motor is reduced. As a result, a load on the pump motor is reduced to enhance durability of the pump motor.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ayako Nishimura, Motonari Ohbayashi, Masayuki Naito
  • Patent number: 8571779
    Abstract: A brake control apparatus is provided with a frictional braking unit configured to generate frictional braking force, a regenerative braking unit configured to generate regenerative braking force, a fluid pressure control valve configured to adjust an operating fluid pressure, and a controlling unit configured to execute regenerative control to cover entire required braking force required by a driver by the regenerative braking force and executing switching control to cover the required braking force by the frictional braking force in place of the regenerative braking force by adjusting to increase the operating fluid pressure by the fluid pressure control valve when a predetermined condition is satisfied. By covering the entire required braking force by regenerative braking force and executing the switching control to adjust to increase the operating fluid pressure by the fluid pressure control valve to cover the required braking force when a predetermined condition is satisfied.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: October 29, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Eiji Nakamura
  • Publication number: 20130278048
    Abstract: A power-assisted braking system for a vehicle is described, including: a brake master cylinder having a chamber which is hydraulically connected to a wheel brake cylinder for braking a wheel of the vehicle; a hydraulic actuator which activates a piston of the brake master cylinder in order to pressurize the hydraulic fluid in the chamber; a low-pressure accumulator which stores the hydraulic fluid under pressure, and the actuator for activating the piston of the brake master cylinder; a pump which supplies the hydraulic fluid from the tank to the low-pressure accumulator; and a drive device which drives the pump. A method for controlling a power-assisted braking system is also described.
    Type: Application
    Filed: August 1, 2011
    Publication date: October 24, 2013
    Inventors: Manfred Gerdes, Jochen Mayer
  • Patent number: 8565980
    Abstract: The invention relates to a hydraulic brake system and a method for controlling a hydraulic brake system for a land vehicle having a predetermined holding capacity for hydraulic fluid and at least one wheel brake. The invention is characterized by detecting if a current holding capacity of the brake system has increased in relation to the predetermined holding capacity and, if so, by feeding hydraulic fluid to the at least one wheel brake in a controlled manner and an amount corresponding at least to the increase in capacity.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: October 22, 2013
    Assignee: Lucas Automotive GmbH
    Inventors: Nicholas Alford, Josef Knechtges, Andreas Marx, Michael Schwarz
  • Patent number: 8550218
    Abstract: A brake actuator has a motor that provides input rotation in first and second directions. A reducer couples to the motor and reduces the input rotation into an output rotation to be applied to a brake screw of a progressive cavity pump drive. A sensor measures rotational speed of the drive shaft. In manual operation, an operator can view an indication of the rotational speed and can manually operate the motor accordingly to control rotation of the shaft. In automated operation, a controller automatically controls the motor based on the rotational speed measured by the sensor. The controller can also use a torque sensor to detect the torque applied to the brake screw, a displacement sensor to detect displacement of the brake screw, and/or a current sensor to detect the current consumption of the motor.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: October 8, 2013
    Assignee: Weatherford Industria e Comecio Ltda.
    Inventors: Jorge Robles Villa, Eduardo Perdomini Lara
  • Patent number: 8550573
    Abstract: In a brake device, when a piston (38A, 38B) of a slave cylinder (23) seizes at an advanced position, an out-valve (60, 61) is opened to discharge brake fluid in a wheel cylinder (16, 17; 20, 21) to a reservoir (62). Then, an in-valve (54, 56) and the out-valve (60, 61) are both closed, and a pump (64) is activated. This allows the brake fluid in the reservoir (62) to be supplied to a fluid pressure chamber (39A, 39B) of the slave cylinder (23), enabling a piston (38A, 38B) of the slave cylinder (23), which has seized at the advanced position, to be pushed back to a retreated position. When the seizure of the piston (38A, 38B) is eliminated in this way, the brake fluid pressure generated in the master cylinder (11) can be supplied to the wheel cylinder (16, 17; 20, 21) via the fluid pressure chamber (39A, 39B) of the slave cylinder (23). Accordingly, it is proposed a method of eliminating seizure of a slave cylinder of a brake device capable of the backup of a failure in the slave cylinder (23).
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 8, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kunimichi Hatano
  • Publication number: 20130257141
    Abstract: A hydraulic antilock brake device, comprises an oil tank filled with hydraulic oil, a pump electric motor group, a one-way valve, a piloted overflow valve, a manual two-position three-way valve, an adjustable throttling valve, an adjustable throttle valve, a high pressure oil inlet tube, and an oil return tube. the high pressure oil inlet tube and the oil return tube are communicated with a hydraulic controlled negative feedback two-position four-way valve, which is communicated with a brake cylinder connected with a friction sheet. Fast valve holes are provided at two ends of an inner chamber of said hydraulic controlled negative feedback two-position four-way valve, and fast valves are located in the fast valve holes. Two ends of an inner chamber of said braking cylinder are provided with feed-back grooves communicated with the fast valve holes by oil passage. The hydraulic antilock brake device can ensure the driving safety.
    Type: Application
    Filed: May 27, 2013
    Publication date: October 3, 2013
    Applicant: NANYANG TAI DING TECHNOLOGY CO., LTD.
    Inventors: Lanmei DOU, Xing WANG
  • Patent number: 8544962
    Abstract: An electronically controlled boosted brake system including an isolation valve between a source of pressurized fluid and a boost valve for selectively restricting the flow of fluid from the source to the boost valve. Another feature of the brake system relates to an accumulator valve connected between the boost valve and the accumulator for controlling when the operating pressure of the accumulator is supplied to the boost valve. Yet another feature is a unique master cylinder design including at least one primary piston positioned within a housing in an overlapping relationship with portions of a pair of secondary pistons.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 1, 2013
    Assignee: Kelsey-Hayes Company
    Inventor: Blaise J. Ganzel
  • Publication number: 20130234501
    Abstract: The invention relates to a piston-cylinder device for conducting a hydraulic fluid under pressure to an actuating arrangement, in particular a brake system, having at least one piston which delimits a pressure chamber, which is connected to the actuating arrangement via a hydraulic line. Provision is made according to the invention that the hydraulic fluid is conducted to the pressure chamber under pressure by means of an additional arrangement.
    Type: Application
    Filed: October 6, 2011
    Publication date: September 12, 2013
    Applicant: IPGATE AG
    Inventor: Heinz Leiber
  • Publication number: 20130221734
    Abstract: In the brake control device, a wheel-cylinder hydraulic pressure (Pw) obtained by adding the linear-valve pressure difference to a master-cylinder hydraulic pressure (Pm) is applied to the wheel cylinder while the vehicle is running. When an operation of a brake pedal is started while the vehicle is running (t1), the driving of the hydraulic pump is started. Thereafter, when the vehicle is stopped (t2), the driving of the hydraulic pump is stopped. When the start of movement of the vehicle is detected during an operation of returning the brake pedal (t4) and an operation of re-depressing the brake pedal is detected (t5) in this state (specifically, while the vehicle is in a stopped state, the hydraulic pump is in a stopped state, and the brake pedal is being operated), the driving of the hydraulic pump is started (t5).
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: ADVICS CO., LTD.
    Inventor: ADVICS CO., LTD.
  • Publication number: 20130221733
    Abstract: A brake control apparatus includes a first brake fluid passage connecting a master cylinder to a wheel cylinder. A second brake fluid passage is connected to the first brake fluid passage. A first pump pressurizes brake fluid from the master cylinder and sends the pressurized brake fluid to the wheel cylinder through the second brake fluid passage. A third brake fluid passage is branched from the first brake fluid passage, and connected to the first pump. A fourth brake fluid passage is branched from the third brake fluid passage, and connected to the first brake fluid passage. A pressure regulator reservoir is disposed in the fourth brake fluid passage. A second pump sends brake fluid from the pressure regulator reservoir to the wheel cylinder by discharging to the first brake fluid passage.
    Type: Application
    Filed: January 3, 2013
    Publication date: August 29, 2013
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventor: HITACHI AUTOMOTIVE SYSTEMS, LTD.
  • Patent number: 8500215
    Abstract: A hydraulic unit for slip-controlled braking systems has a plurality of receiving holes for transport devices associated with a plurality of hydraulic circuits bundled into groups, wherein the receiving holes are disposed at a distance from each in parallel with the upper side and a drive shaft having eccentrics located at the plane spacing for driving the transport devices. In order to provide a compromise optimized for manufacturing a small, convenient hydraulic unit, it is proposed that three theoretical planes (E1, E2, E3) are arranged in parallel to the upper side, each receiving two V-shaped receiving holes for transport devices disposed at an angle to each other, and that the drive shaft includes three separate eccentrics for driving the transport devices.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: August 6, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Heiko Gastauer, Petra Fischbach-Borazio, Axel Hinz, Uwe Greiff
  • Patent number: 8500218
    Abstract: A hydraulic system for a slip-regulated dual circuit braking system includes two separating valve receiving holes disposed between a plurality of wheel brake connections which open up into the receiving body and the valve receiving holes of a first valve series include a plurality of inlet valves.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 6, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Petra Fischbach-Borazio, Heiko Gastauer, Axel Hinz, Uwe Greiff