Split Coefficient Of Friction (mu) Patents (Class 303/149)
  • Patent number: 10933851
    Abstract: According to one embodiment, for example, when it is determined that a certain condition has been satisfied while first antilock control is being executed, a controller of a brake control apparatus executes second antilock control by opening and closing a solenoid valve with a motor stopped so that brake fluid of the wheel cylinder is caused to flow into a reservoir, the second antilock control including a second pressure reduction mode, the second pressure reduction mode reducing a pressure of a wheel cylinder while substantially equilibrating the pressure of the wheel cylinder and a pressure of the reservoir at a certain pressure or larger, the certain pressure being larger than zero.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 2, 2021
    Assignees: ADVICS CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun Shinozaki, Koichi Kokubo, Masayuki Naito, Yuji Yoshii, Masahiro Hara
  • Patent number: 10479368
    Abstract: A method for operating a driver assistance system of a motor vehicle, which includes multiple wheels in contact with a roadway, the driver assistance system including at least one unit which includes a friction coefficient model and at least one sensor, which provides an input signal for the friction coefficient model, a friction coefficient between at least one of the wheels and the roadway being ascertained with the aid of the friction coefficient model, and the driver assistance system being set or calibrated as a function of the ascertained friction coefficient. Friction coefficients are ascertained with the aid of multiple of the units that ascertained friction coefficients are compared to one another, at least one valid friction coefficient of the friction coefficients is determined with the aid of the comparison, and the driver assistance system is set or calibrated as a function of the valid friction coefficient.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 19, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Offenhaeuser, Erik Lesser, Martin Kieren, Nils Hagenlocher
  • Patent number: 10029679
    Abstract: The present invention extends to methods, systems, and computer program products for controlling skidding vehicles. In general, a vehicle adjusts its configuration to mitigate the skidding. The vehicle can recognize dynamic skid situations and apply strategies to avoid an accident. In response to a signal that a vehicle is in a specified type of skid, the vehicle's configuration can be automatically changed to recover from the skid. Different configuration changes can be used to recover from different skid types, including: oversteer, understeer and counter steer. Changing vehicle configuration can include utilizing vehicle systems such as, for example, steering, braking, cruise control, lane keeping, etc.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 24, 2018
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Ivan Nava
  • Patent number: 9789861
    Abstract: In a braking force control system for a vehicle having a braking system capable of controlling braking force of each of right and left front wheels and right and left rear wheels independently of one another, when anti-skid control starts being performed on one of the front wheels while the vehicle is running on a road having different coefficients of friction on the left side and right side thereof, increase of the braking force of the other front wheel laterally opposite to the above-indicated one front wheel is suppressed, and increase of the braking force of at least one of the right and left rear wheels is suppressed.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 17, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Satoshi Shimizu
  • Patent number: 9778310
    Abstract: An apparatus for detecting leakage current through a solenoid coil that includes a capacitor connected to one end of the solenoid coil and a feedback circuit that monitors the rate of decay of the capacitor voltage to determine if an excessive leakage current is present.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: October 3, 2017
    Assignee: Kelsey-Hayes Company
    Inventor: Paul Schliebe
  • Patent number: 8955923
    Abstract: A brake system for a motor vehicle, in particular for a utility vehicle, with a device for reducing the yawing moment on the front axle of the vehicle, characterized in that a device for measuring the slip and/or a device for measuring the load on the rear axle or on two running wheels of the rear axle of the vehicle arranged on sides opposite one another is present and a regulating or control device for influencing the brake pressure on the front wheels is present which limits the brake pressure on the front wheels depending on the measured slip and/or depending on the measured load on the rear axle or on the running wheels of the rear axle, the regulating or control device multiplying the difference of the brake pressures on the front wheels by a value which is smaller than 1.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: February 17, 2015
    Assignee: Knorr-Bremse Systeme Fuer Nutzfahrzeuge GmbH
    Inventors: Adnan Mustapha, Dieter Woerner
  • Patent number: 8915554
    Abstract: A vehicle brake fluid pressure control apparatus controls operations of a fluid pressure adjusting unit capable of performing adjustment of individually increasing and decreasing brake fluid pressures acting respectively on wheel brakes for front wheels and wheel brakes for rear wheels to be within allowable differential pressures allowable between the brake fluid pressures of the wheel brakes for the left and right coaxial front wheels and the left and right coaxial rear wheels. In the apparatus, estimated vehicle body deceleration calculator calculates an estimated vehicle body deceleration of a vehicle and allowable differential pressure setting device sets the allowable differential pressures matching a road surface friction coefficient based on the estimated vehicle body deceleration calculated by the estimated vehicle body deceleration calculator. This enables accurate judgment of a road surface having a high friction coefficient and setting of sufficiently large allowable differential pressures.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: December 23, 2014
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Tomoaki Sekiya
  • Patent number: 8831852
    Abstract: In an integrated controller for a vehicle, a main control unit determines whether a road ahead is a split-? road based on captured images obtained by left and right CCD cameras, and, if so, increases a braking intervention distance correction gain for correcting braking intervention distances set by a collision prevention control unit. The collision prevention control unit performs collision prevention control at a brake timing earlier than usual using the braking intervention distances corrected by the correction gain. Furthermore, when the road ahead is determined to be a split-? road, the main control unit decreases a target torque correction gain for correcting a target torque set by an engine control unit to prevent the vehicle from becoming unstable as a result of a yaw moment acting on the vehicle generated by a generated driving force due to a difference in friction coefficient ? between left and right road surfaces.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 9, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Masayuki Yajima, Tasuku Maruyama
  • Patent number: 8775040
    Abstract: A vehicle control system obtains an index indicating a running condition of a vehicle on the basis of a vehicle parameter indicating a motion of the vehicle and then sets a running characteristic of the vehicle in accordance with the index. The vehicle control system includes a noise reduction unit that is configured to obtain the index on the basis of the vehicle parameter of which a fluctuating component that fluctuates because of a driver's driving operation or the influence of a running road surface.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shin Noumura, Ken Koibuchi, Keisuke Takeuchi, Toshio Tanahashi, Hiroyuki Hanamura, Yoji Takanami, Norimi Asahara, Kaiji Itabashi
  • Patent number: 8688306
    Abstract: Aspects of the present disclosure relate generally to limiting the use of an autonomous or semi-autonomous vehicle by particular occupants based on permission data. More specifically, permission data may include destinations, routes, and/or other information that is predefined or set by a third party. The vehicle may then access the permission data in order to transport the particular occupant to the predefined destination, for example, without deviation from the predefined route. The vehicle may drop the particular occupant off at the destination and may wait until the passenger is ready to move to another predefined destination. The permission data may be used to limit the ability of the particular occupant to change the route of the vehicle completely or by some maximum deviation value. For example, the vehicle may be able to deviate from the route up to a particular distance from or along the route.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 1, 2014
    Assignee: Google Inc.
    Inventors: Philip Nemec, Christopher Paul Urmson, Bradley Templeton, Nathaniel Fairfield, Anthony Scott Levandowski
  • Patent number: 8682599
    Abstract: A road surface friction coefficient estimating device includes a lateral force detecting section for detecting the lateral force of a wheel during traveling, a slip angle detecting section for detecting the slip angle of the wheel during traveling, and a road surface ? calculating section for estimating the relationship between the detected lateral force and the detected slip angle on the basis of the ratio between the detected lateral force and the detected slip angle, the correlation between the lateral force and the slip angle in the case of the reference road surface, and at least either the detected lateral force or the detected slip angle.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 25, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuuki Shiozawa, Masaaki Nawano, Hiroshi Mouri
  • Patent number: 8668281
    Abstract: A brake hydraulic pressure control device includes: a normally open linear solenoid valve configured to adjust a valve closing force depending on an power supply amount; a normally closed solenoid valve; and a controller configured to control switching of a hydraulic pressure within the wheel brake between a pressure increasing state, a pressure holding state, or a pressure reducing state, wherein: when shifting to the pressure increasing state from the pressure reducing state or the pressure holding state is made, the controller controls the power supply amount so that increasing is made at a first gradient up to a turning point target hydraulic pressure, and increasing is made at a second gradient gentler than the first gradient from the turning point target hydraulic pressure up to the end of the increasing; and the controller determines the turning point target hydraulic pressure.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: March 11, 2014
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Tomonori Hirose
  • Patent number: 8639412
    Abstract: A road surface friction coefficient estimating device includes a braking/driving force detecting section for detecting the braking/driving force of a wheel during traveling, a slip ratio detecting section for detecting the slip ratio of the wheel during traveling, and a road surface ? calculating section for estimating the relationship between the detected braking/driving force and the detected slip ratio on the basis of the ratio between the detected braking/driving force and the detected slip ratio, the correlation between the braking/driving force and the slip ratio in the case of the reference road surface, and at least either the detected braking/driving force or the detected slip ratio.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 28, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuuki Shiozawa, Hiroshi Mouri, Masaaki Nawano
  • Patent number: 8567875
    Abstract: An anti-skid control device or an automatic brake control device gradually increases a W/C pressure for a boost control valve for a front wheel FR or FL on a high-? surface, by repeating a cycle in which the differential pressure for the boost control valve at the high-? surface side is kept at the first differential pressure for a first period, and after that kept at the second differential pressure for a second period. Therefore, it is possible to suppress the individual variation in the capability for W/C pressure boosting, and accordingly to suppress the difference of the W/C pressures between the right front wheel and the left front wheel. Thus, it is possible to suppress the yaw torque applied to the vehicle and therefore to suppress the spin of the vehicle.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 29, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Mototsugu Sawada, Toru Minematsu
  • Patent number: 8463462
    Abstract: Systems and methods are provided that may he useful for testing braking systems for use in, for example, an aircraft. A system is disclosed that allows for built in testing. For example, a method if provided comprising sending, from a brake controller, a test command set to at least one of an electromechanical actuator (EMAC) and a brake servo valve (BSV) in response to a landing gear retraction, receiving, at the brake controller, feedback from the at least one of the EMAC and the BSV in response to the test command set, and comparing, at the brake controller, the feedback with a predetermined signature.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 11, 2013
    Assignee: Goodrich Corporation
    Inventor: Eric D. Cahill
  • Patent number: 8412435
    Abstract: A system, method and computer program product is provided for detecting if a vehicle has spun. A normal force and a lateral force of each of a front and rear axle of a vehicle is estimated. A coefficient of friction representative of a surface is estimated. Lateral momenta of the front and rear axles based on the coefficient of friction and the normal and lateral forces is calculated. Whether a surplus momentum is present, is determined. If the surplus momentum is present, a yaw rate of the vehicle is integrated respect to time to obtain a vehicle rotation estimation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations, LLC
    Inventor: Daniel S. Maitlen
  • Publication number: 20130076117
    Abstract: A vehicle brake fluid pressure control apparatus controls operations of a fluid pressure adjusting unit capable of performing adjustment of individually increasing and decreasing brake fluid pressures acting respectively on wheel brakes for front wheels and wheel brakes for rear wheels to be within allowable differential pressures allowable between the brake fluid pressures of the wheel brakes for the left and right coaxial front wheels and the left and right coaxial rear wheels. In the apparatus, a fluid pressure acquiring device acquires a lock fluid pressure of a wheel brake of a wheel coaxial with a wheel being a control target, the lock fluid pressure being a fluid pressure at which pressure decrease by an anti-lock brake control is started. An allowable differential pressure setting device sets the allowable differential pressures matching a road surface friction coefficient on the basis of at least the lock fluid pressure obtained by the fluid pressure acquiring device.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 28, 2013
    Applicant: NISSIN KOGYO CO., LTD.
    Inventor: NISSIN KOGYO CO., LTD.
  • Publication number: 20130076116
    Abstract: A vehicle brake fluid pressure control apparatus controls operations of a fluid pressure adjusting unit capable of performing adjustment of individually increasing and decreasing brake fluid pressures acting respectively on wheel brakes for front wheels and wheel brakes for rear wheels to be within allowable differential pressures allowable between the brake fluid pressures of the wheel brakes for the left and right coaxial front wheels and the left and right coaxial rear wheels. In the apparatus, estimated vehicle body deceleration calculator calculates an estimated vehicle body deceleration of a vehicle and allowable differential pressure setting device sets the allowable differential pressures matching a road surface friction coefficient based on the estimated vehicle body deceleration calculated by the estimated vehicle body deceleration calculator. This enables accurate judgment of a road surface having a high friction coefficient and setting of sufficiently large allowable differential pressures.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 28, 2013
    Applicant: NISSIN KOGYO CO., LTD.
    Inventor: NISSIN KOGYO CO., LTD.
  • Patent number: 8388071
    Abstract: A braking controller is equipped to provide braking force distribution of the required total braking force, to distribute the required total braking force by regeneration distribution. The regeneration distribution is required to be within a rear-wheel dominant range, in which the distribution ratio is inclined toward the rear-wheels when compared with an ideal distribution line that provides distribution enabling the front and rear wheels to simultaneously lock, as well as within a range that is not greater than a rear-wheel locking limit enabling the rear wheels to lock in relation to a road-surface friction coefficient upon braking. A rear-wheel braking force change ratio, which is a change ratio of the rear-wheel braking force with regard to a change of the front-wheel braking force associated with the change of the required total braking force, is required to always be positive.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: March 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Yokoyama, Hidekazu Moriki, Masaru Ito
  • Patent number: 8351877
    Abstract: A high performance and cost effective method of RF-digital hybrid mode power amplifier systems with high linearity and high efficiency for multi-frequency band wideband communication system applications is disclosed. The present disclosure enables a power amplifier system to be field reconfigurable and support multiple operating frequency bands on the same PA system over a very wide bandwidth. In addition, the present invention supports multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: January 8, 2013
    Assignee: Dali Systems Co. Ltfd.
    Inventors: Wan Jong Kim, Kyoung Joon Cho, Shawn Patrick Stapleton
  • Patent number: 8342616
    Abstract: An object of the invention is to reduce an influence of deviation in pressure increasing performance, which would be caused by individual differences of pressure increase valves, so that a desired braking force may be obtained. A moderate pressure increasing operation is carried out for wheel cylinder pressure of a wheel, which is on a high ?-road, wherein a demand differential pressure for a pressure increase valve is set at a first target pressure for a first time period and then switched to a second target pressure for a second time period. The influence of the deviation may be absorbed during the moderate pressure increasing operation, so that a difference of wheel cylinder pressure between front left and front right wheels may be reduced.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: January 1, 2013
    Assignee: Advics Co., Ltd.
    Inventor: Mototsugu Sawada
  • Patent number: 8147006
    Abstract: An anti-skid brake control system for a multi-wheeled vehicle includes both a paired function and an individual function. The paired function controls the wheels of the vehicle in unison. The individual function controls the wheels of the vehicle individually. A paired/individual logic circuit alternatively activates and deactivates the paired function and the individual function. A method for controlling the skid of a vehicle utilizing a paired function and a individual function is also provided.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: April 3, 2012
    Assignee: Hydro-Aire, Inc., a Subsidiary of Crane Co.
    Inventors: Harris K. Butler, III, Scott A. Brittian
  • Patent number: 8121758
    Abstract: A vehicle (10) includes a control system (18) that is used to control a vehicle system. The control system determines an axle torque, and longitudinal forces at each tire in response to the axle torque. Lateral forces at each tire are determined in response to the longitudinal forces. The control system of the vehicle is determined in response to the longitudinal and lateral forces.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: February 21, 2012
    Assignee: Ford Global Technologies
    Inventor: Jianbo Lu
  • Patent number: 8100482
    Abstract: A brake hydraulic pressure control apparatus for a vehicle includes anti-skid control means for executing an anti-skid control including a pressure reducing control and a pressure increasing control for one of front wheels at which an anti-skid control start condition is established, yaw moment control means for executing a yaw moment control, while the anti-skid control has been executed only for a first front wheel, for a second front wheel, wheel cylinder pressure estimated value calculating means, pressure difference estimated value calculating means, pressure increasing control means, and the pressure difference estimated value calculating means including pressure difference at specific time calculating means for calculating a pressure difference estimated value at specific time on the basis of a pressure difference estimated value at the first front wheel and a wheel cylinder pressure difference between the wheel cylinder pressure estimated values at the second front wheel and the first front wheel.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: January 24, 2012
    Assignee: Advics Co., Ltd.
    Inventors: Yoshiaki Kito, Katsuo Obai, Masato Terasaka
  • Patent number: 8078361
    Abstract: Disclosed is a method for assisting an operator of a vehicle in adjusting a nominal steering angle at steerable wheels of the vehicle for the vehicle stabilization. An additional steering torque is applied to the steering line of the vehicle, which is determined dependent on a difference between a nominal steering angle and an instantaneous steering angle. The method is characterized in that a value of a load moment acting on the steering line of the vehicle is estimated, and that the additional steering torque is established dependent on the estimated value for the load moment.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 13, 2011
    Assignee: Continental Teves AG & Co., OHG
    Inventors: Fred Galkowski, Thomas Berthold, Thomas Raste, Urs Bauer
  • Patent number: 8060275
    Abstract: An on-board diagnostic system of a vehicle comprises disabling diagnostic operation, such as a misfire monitor, based on road roughness. In one example, the disabling of the diagnostic operation is based on brake actuation and degradation of an anti-lock braking system.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: November 15, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Jahan Asgari, Timothy Feldkamp, Craig Stephens, Moses Fridman, Davor Hrovat, Arthur Varady, Mitch McConnell
  • Patent number: 7974761
    Abstract: According to the present invention, when a target braking/driving force and a vehicle target yaw moment required to a vehicle cannot be achieved through a control of a braking/driving forces of wheels, in a rectangular coordinate of the braking/driving force and the yaw moment, a polygon indicating the maximum range of the braking/driving force and the yaw moment attainable by the braking/driving forces of the wheels, and an ellipse that crosses each side of the polygon and has a major axis and a minor axis aligning with the coordinate axis of the rectangular coordinate are set, for example.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: July 5, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Kazuya Okumura, Michitaka Tsuchida, Yoshio Uragami, Kensuke Yoshizue, Satoshi Ando, Koji Sugiyama
  • Patent number: 7894631
    Abstract: There is provided an obstacle detection apparatus for detecting an obstacle based on an image of periphery of a vehicle and a distance to an obstacle present in the vehicle's periphery.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: February 22, 2011
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Toshiaki Kakinami
  • Patent number: 7845739
    Abstract: A brake regulation system for motor vehicles is provided with an electronic control unit, by which an automatic parking brake function can be activated in the stationary phase of the motor vehicle and can be deactivated upon reaching a predetermined triggering condition. The control unit can determine in a wheel selective manner the coefficient of friction, or rather the adhesion between the tires and the roadway at the location of the motor vehicle, which is held so as to be stationary by use of the parking brake function. In the presence of different coefficients of friction or adhesion coefficients at the right and left wheel of at least one driven axle, the triggering condition is adapted in the direction of a longer hold of the brake pressure.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: December 7, 2010
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Guenther Sokoll
  • Patent number: 7798576
    Abstract: In an ABS control, a vehicle brake control device detects a sudden change road in which a friction coefficient changes suddenly from a high value to a lower value and controls, based on the detection of the sudden change road, the currents to be supplied to a first and a second electrical motor in a first manner or a second manner, wherein in the first manner the currents are controlled so that the first and second electrical motors would eventually stop rotating if the motor control portion kept controlling the currents in the first manner for a sufficiently long time, and in the second manner the currents are controlled so that the first and second electrical motors would eventually start rotating in a reverse direction if the motor controlling portion kept controlling the currents in the second manner for a sufficiently long time.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 21, 2010
    Assignee: Advics Co., Ltd.
    Inventors: Takashi Sato, Hiroaki Niino
  • Patent number: 7751961
    Abstract: A method for classifying a road surface condition by estimating the maximum tire/road surface coefficient of friction and actively inducing acceleration or deceleration. In one embodiment, the induced acceleration/deceleration is provided by applying torque to the driven wheels of the vehicle. The speeds of the driven and non-driven wheels are measured. The tire/road surface coefficient of friction and the driven wheel slip ratio are calculated from the wheel speeds. The tire/road surface coefficient of friction and the wheel slip ratio are used to determine the slope of the wheel slip/coefficient of friction curve, which is used to classify the road surface condition.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 6, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Mutasim A. Salman, Sarmad Y. Hermiz
  • Patent number: 7734406
    Abstract: A method, computer usable medium including a program, and a system for braking a vehicle during brake failure. The method and computer usable medium include the steps of determining a brake force lost corresponding to a failed brake, and determining a brake force reserve corresponding to at least one non-failed brake. At least one commanded brake force is determined based on the brake force lost and the brake force reserve. Then at least one command brake force is applied to the at least one non-failed brake wherein at least one of an undesired yaw moment and a yaw moment rate of change are limited to predetermined values. The system includes a plurality of brake assemblies wherein a commanded brake force is applied to at least one non-failed brake.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael W. Oppenheimer, David B. Doman, Aleksander B. Hac
  • Patent number: 7661772
    Abstract: A method to improve the braking behavior of a vehicle is provided, in which it is not permitted to exceed a maximum allowable braking pressure difference between the braking pressures on the two wheels of one axle, and in which the maximum allowable braking pressure difference between the wheels of one axle is a function of at least one variable describing the vehicle dynamics. When an unstable behavior of the vehicle is recognized, the maximum allowable braking pressure difference between the wheels of the axle is maintained or reduced.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: February 16, 2010
    Assignee: Robert Bosch GmbH
    Inventor: A. Holger Heinemann
  • Patent number: 7651177
    Abstract: A method for controlling regenerative braking of an electric that compensates the difference between slip amounts of left and right wheels when an anti-lock braking system ABS is activated in a regenerative braking mode of the driving wheels in the electric vehicle. Steps include activating an anti-lock braking system in a regenerative braking mode of the electric vehicle, detecting slip amounts of left and right wheels to compare the same, and controlling to reduce a hydraulic braking torque or a regenerative braking torque in accordance with the difference between the slip amounts of left and right wheels.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: January 26, 2010
    Assignee: Hyundai Motor Company
    Inventors: Gab Bae Jeon, Byeong Cheol Yang
  • Patent number: 7454279
    Abstract: System for detecting stability/instability of behavior of a motor vehicle upon occurrence of tire slip or lock. State of the motor vehicle is determined on the basis of an alignment torque (Ta) applied from a road and a side slip angle (?). By taking advantage of such torque/slip-angle characteristic that although the alignment torque is proportional to a side slip angle when the latter is small, the alignment torque becomes smaller as the side slip angle increases, a normal value is determined from a straight line slope and the side slip angle in a region where the latter is small. Unstable behavior of the motor vehicle is determined when deviation of actual measured value from the normal value increases. Further, unstable state is determined when the slope of the alignment torque for the slip angle departs significantly from that of approximate straight line slope.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: November 18, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hiroshi Fujioka, Takanori Matsunaga, Takashi Maeda, Toshinori Matsui, Masahiko Kurishige, Hideyuki Tanaka
  • Patent number: 7448700
    Abstract: In controlling a vehicle, an ECU (anti-lock brake control device) of a brake control device judges a difference in relative length between lock-to-lock time intervals of left and right wheels (step 302), calculates cumulative compensation amounts in dependence on the judged difference (steps 306, 310 to 316), then calculates pressure increase amounts which are brake fluid pressures to be applied respectively to wheel cylinders for the left and right wheels in a pressure increasing mode, in dependence on the cumulative compensation amounts and a base pressure increase amount, and then controls the brake fluid pressures in the pressure increasing mode so that the brake fluid pressures coincide with those so calculated.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: November 11, 2008
    Assignee: Advics Co., Ltd.
    Inventor: Masato Terasaka
  • Patent number: 7434896
    Abstract: A method for brake regulation in a vehicle when driving off on a split-? roadway is provided, in which method the presence of a drive-off procedure on a split-? roadway having a high coefficient of friction side and a low coefficient of friction side is recognized, and as a result, the brake pressure on a driven wheel on the high coefficient of friction side of the vehicle is increased.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: October 14, 2008
    Assignee: Robert Bosch GmbH
    Inventor: Thomas Sauter
  • Patent number: 7401870
    Abstract: A system and method of controlling an automotive vehicle having a controllable suspension component includes applying brake-steer to at least one wheel, generating a suspension control signal in response to the brake-steer signal, and allowing at least one wheel coupled to the suspension component to articulate to reduce the turning radius of the vehicle.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 22, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Hongtei E Tseng, Timothy G. Offerle, Gregory P. Brown
  • Patent number: 7331642
    Abstract: A method is provided for vehicle stability control of a vehicle where the vehicle includes a slip control braking system that applies independent braking pressure to respective vehicle brakes of the vehicle. The vehicle further includes a steering system for applying steering intervention for stability control. The method includes detecting a split-mu braking condition and applying a steering assist torque to the steering system. A determination is made whether a steering wheel angle condition is within a predetermined threshold. An aggressive braking strategy is applied if the steering wheel angle condition is within the predetermined threshold, else applying a non-aggressive braking strategy.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: February 19, 2008
    Assignee: Kelsey-Hayes Company
    Inventor: Joe Miller
  • Patent number: 7258404
    Abstract: An anti-skid brake control system for a multi-wheeled vehicle includes both a paired function and an individual function. The paired function controls the wheels of the vehicle in unison. The individual function controls the wheels of the vehicle individually. A paired/individual logic circuit alternatively activates and deactivates the paired function and the individual function. A method for controlling the skid of a vehicle utilizing a paired function and a individual function is also provided.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: August 21, 2007
    Assignee: Hydro-Aire, Inc.
    Inventors: Harris K. Butler, III, Scott A. Brittian
  • Patent number: 7171296
    Abstract: An electronic control unit calculates a target yaw rate in accordance with a vehicle speed and a steering angle and calculates the yaw rate difference on the basis of the target yaw rate and an actual yaw rate. The electronic control unit estimates the grip factor of a front wheel to road surface and sets a distribution ratio for distribution of a vehicle-control target value among actuators of a steering system, a brake system, and a drive system in accordance with the estimated grip factor. The electronic control unit controls the actuators of the three systems in accordance with control instruction values distributed on the basis of the vehicle-control target value and the distribution ratio.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Kato, Minekazu Momiyama, Takayuki Ohta, Akira Kodama
  • Patent number: 7099765
    Abstract: A method of determining the grip coefficient ? in the contact area of a tire on a road includes the steps of selecting a plurality of fixed points in space (that is to say ones that are fixed in the reference frame associated with the vehicle) which points lie at different azimuths along the circumference in at least one sidewall of the tire, obtaining a corresponding number of measurements of circumferential distance variation (extension or contraction) at these fixed points when the tire is rolling on the road, and the measurement signals are processed so as to extract the grip coefficient ?.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 29, 2006
    Assignee: Michelin Recherche et Technique S.A.
    Inventor: David Bertrand
  • Patent number: 7069135
    Abstract: A method for estimation of the maximum grip coefficient on the basis of knowledge of the forces and the self-alignment torque which are generated in the contact area of a tire, includes the steps of: selecting a plurality of fixed points in space, which lie at different azimuths along the circumference in at least one sidewall of the tire, carrying out a corresponding number of measurements of circumferential distance variation (extension or contraction) at these fixed points when the tire is rolling on the road, processing the measurement signals so as to extract the three components of a resultant of forces which are exerted by the road on the contact area of a tire and the self-alignment torque generated by the tire from them, processing the evaluation signals of the three components of a resultant of forces which are exerted by the road on the contact area of a tire and of the self-alignment torque generated by the tire so as to extract the said grip coefficient ? from them.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: June 27, 2006
    Assignee: Michelin Recherche Et Technique S.A.
    Inventor: David Bertrand
  • Patent number: 7059687
    Abstract: A braking force distribution control device is provided in which wheel speeds of respective wheels of a vehicle are detected. On the basis of the detected wheel speeds, slopes of coefficients of friction ? between the wheels and a road surface are estimated as road surface ? slope values of the respective wheels. On the basis of the estimated road surface ? slope values of the respective wheels, braking forces of the respective wheels are controlled such that the braking forces among the respective wheels are adjusted.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: June 13, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiyuki Yasui, Tsuyoshi Yoshida, Yutaka Ohnuma, Akira Tanaka, Masaru Sugai, Eiichi Ono, Mamoru Sawada
  • Patent number: 7035725
    Abstract: The sliding, integral, and proportional controller for providing aircraft antiskid braking control includes a reference velocity subsystem, a velocity error ratio subsystem, and a main controller subsystem generating a control command output signal indicative of a command braking pressure. The main controller subsystem includes a one dimensional sliding mode controller subsystem to determine an estimated net wheel torque signal, an adaptive threshold subsystem for generating an adaptive threshold based upon the modified slip ratio signal and a clock signal, integral gain subsystems, a proportional controller subsystem, and a pressure limiter. A method for determining braking efficiency of an aircraft braking system independent of the specific conditions is also provided.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: April 25, 2006
    Assignee: Hydro-Aire, Inc.
    Inventors: Duk-Hyun Park, Robert D. Cook
  • Patent number: 7013208
    Abstract: The sliding, integral, and proportional controller for providing aircraft antiskid braking control includes a reference velocity subsystem, a velocity error ratio subsystem, and a main controller subsystem generating a control command output signal indicative of a command braking pressure. The main controller subsystem includes a one dimensional sliding mode controller subsystem to determine an estimated net wheel torque signal, an adaptive threshold subsystem for generating an adaptive threshold based upon the modified slip ratio signal and a clock signal, integral gain subsystems, a proportional controller subsystem, and a pressure limiter. A method for determining braking efficiency of an aircraft braking system independent of the specific conditions is also provided.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: March 14, 2006
    Assignee: Hydro-Air, Inc.
    Inventors: Duk-Hyun Park, Robert D. Cook
  • Patent number: 6890041
    Abstract: Improved methods and systems for controlling hydraulically or electrically actuated anti-lock brake systems (ABS) on air and land vehicles requiring only measurement of wheel angular speed although brake torque measurements can also be employed if available. A sliding mode observer (SMO) based estimate of net or different wheel torque (road/tire torque minus applied brake torque) derived from the measured wheel speed is compared to a threshold differential wheel torque derived as a function of a “skid signal” also based on wheel speed only to generate a braking control signal. The braking control signal can be employed to rapidly and fully applying and releasing the brakes in a binary on-off manner and, as an additional option, possibly modulating the maximum available brake hydraulic pressure or electrical current when the brakes are in the “on” state in a continuous manner.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: May 10, 2005
    Inventors: William B. Ribbens, Ronald J. Fredricks
  • Patent number: 6880900
    Abstract: A target wheel cylinder pressure for each wheel is calculated according to an amount of braking operation performed by a vehicle operator. When anti-skid control is required, the wheel cylinder pressure is controlled to be equal to the target wheel cylinder pressure for reducing the brake slip of the wheel. When one of the rear-left and the rear-right wheels is anti-skid controlled, the target wheel cylinder pressure for the other wheel for which the anti-skid control is not performed is set to the same value as the target wheel cylinder pressure for the wheel for which the anti-skid control is performed. Linear valves are controlled based on the target wheel cylinder pressure, controlling the wheel cylinder pressures for the rear-left and the rear-right wheels to have substantially the same value.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 19, 2005
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masahiro Hara, Toshihisa Nihei, Naruyuki Matsui, Masahiro Matsuura
  • Patent number: 6866349
    Abstract: A vehicle traction control system having capabilities for braking intervention and coefficient of friction detection is provided, a slipping wheel being braked by braking intervention if a slip threshold is exceeded. In order to improve the lateral stability of the vehicle when cornering on road surfaces having a low coefficient of friction, the slip threshold for the drive wheel on the outside of the curve is reduced independently of that of the drive wheel on the inside of the curve and is set to a lower value than that for the wheel on the inside of the curve.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 15, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Sauter, Helmut Wandel
  • Patent number: 6863356
    Abstract: Device and method are described for operating a vehicle using a vehicle controller to individually adjust braking forces of the wheels of at least one axle of the vehicle and using a yawing moment compensator to at least partially compensate for a yawing moment of the vehicle resulting from different braking forces of individual wheels of at least one axle by intervening in a steering of the vehicle, the action of the yawing moment compensator on the steering not being performed or only to a lesser degree while the vehicle controller is adjusting braking forces.
    Type: Grant
    Filed: October 20, 2001
    Date of Patent: March 8, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Hackl, Wolfgang Kraemer, Rainer Muenz