Select High Wheel Speed Versus Select Low Patents (Class 303/170)
  • Patent number: 8775048
    Abstract: The method for controlling a safety system (102-108) of a vehicle (10) determines a reference velocity from a first front wheel sensor (20A) and a second front wheel speed signal from a second front wheel sensor (20B). An axle speed sensor (20C) may be used to determine an axle speed signal. A first rear speed signal and a second rear speed signal are determined from the reference velocity, a slip effect and a yaw signal. The yaw signal may be determined from a yaw rate sensor (28). Safety system (102-108) may be controlled in response to the first rear wheel speed signal and the second rear wheel speed signal.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: July 8, 2014
    Assignee: Ford Global Techologies
    Inventors: Michael Edward Brewer, Todd Allen Brown, Thomas Salmon
  • Patent number: 8567875
    Abstract: An anti-skid control device or an automatic brake control device gradually increases a W/C pressure for a boost control valve for a front wheel FR or FL on a high-? surface, by repeating a cycle in which the differential pressure for the boost control valve at the high-? surface side is kept at the first differential pressure for a first period, and after that kept at the second differential pressure for a second period. Therefore, it is possible to suppress the individual variation in the capability for W/C pressure boosting, and accordingly to suppress the difference of the W/C pressures between the right front wheel and the left front wheel. Thus, it is possible to suppress the yaw torque applied to the vehicle and therefore to suppress the spin of the vehicle.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 29, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Mototsugu Sawada, Toru Minematsu
  • Patent number: 8538654
    Abstract: Systems and methods disclosed herein may be useful for braking systems for use in, for example, an aircraft. A method is disclosed comprising determining, at a brake controller, an aircraft reference speed for an aircraft having a first wheel and a second wheel, identifying, at the brake controller, a state comprising the first wheel having a different rotational velocity than the second wheel, wherein the difference in rotational velocity sums to about zero, calculating, at the brake controller, a compensation factor for at least one of the first wheel and the second wheel, and adjusting, at the brake controller, a locked wheel trigger velocity in accordance with the compensation factor.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 17, 2013
    Assignee: Goodrich Corporation
    Inventor: Eric D. Cahill
  • Patent number: 8147006
    Abstract: An anti-skid brake control system for a multi-wheeled vehicle includes both a paired function and an individual function. The paired function controls the wheels of the vehicle in unison. The individual function controls the wheels of the vehicle individually. A paired/individual logic circuit alternatively activates and deactivates the paired function and the individual function. A method for controlling the skid of a vehicle utilizing a paired function and a individual function is also provided.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: April 3, 2012
    Assignee: Hydro-Aire, Inc., a Subsidiary of Crane Co.
    Inventors: Harris K. Butler, III, Scott A. Brittian
  • Patent number: 7991531
    Abstract: A wheel speed transducer including a magnetic device associated with a wheel and a sensor device associated with the axle of the wheel provides data indicative of the velocity of the wheel. A processor located at the axle receives the wheel speed data and processes it to perform antiskid control functions. The velocity data is stored in a data concentrator also associated with the axle. A tire pressure sensor, a brake temperature sensor and a brake torque sensor, each associated with the wheel, send data to the processor at the axle, for storage in the data concentrator. A transmitting antenna associated with the axle and in communication with the data concentrator transmits stored data to a receiving antenna associated with the wheel. A data port at the wheel and in communication with the receiving antenna provides an interface to an external device for receiving the data.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: August 2, 2011
    Assignee: Hydro-Aire, Inc.
    Inventors: John Gowan, Gary DeVlieg
  • Patent number: 7805233
    Abstract: A wheel speed transducer including a magnetic device associated with a wheel and a sensor device associated with the axle of the wheel provides data indicative of the velocity of the wheel. A processor located at the axle receives the wheel speed data and processes it to perform antiskid control functions. The velocity data is stored in a data concentrator also associated with the axle. A tire pressure sensor, a brake temperature sensor and a brake torque sensor, each associated with the wheel, send data to the processor at the axle, for storage in the data concentrator. A transmitting antenna associated with the axle and in communication with the data concentrator transmits stored data to a receiving antenna associated with the wheel. A data port at the wheel and in communication with the receiving antenna provides an interface to an external device for receiving the data.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: September 28, 2010
    Assignee: Hydro-Aire, Inc., Subsidiary of Crane Co.
    Inventors: John Gowan, Garrett H. DeVlieg
  • Patent number: 7489996
    Abstract: A wheel speed transducer including a magnetic device associated with a wheel and a sensor device associated with the axle of the wheel provides data indicative of the velocity of the wheel. A processor located at the axle receives the wheel speed data and processes it to perform antiskid control functions. The velocity data is stored in a data concentrator also associated with the axle. A tire pressure sensor, a brake temperature sensor and a brake torque sensor, each associated with the wheel, send data to the processor at the axle, for storage in the data concentrator. A transmitting antenna associated with the axle and in communication with the data concentrator transmits stored data to a receiving antenna associated with the wheel. A data port at the wheel and in communication with the receiving antenna provides an interface to an external device for receiving the data.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: February 10, 2009
    Assignee: Hydro-Aire, Inc.
    Inventors: John Gowan, Gary DeVlieg
  • Patent number: 7448700
    Abstract: In controlling a vehicle, an ECU (anti-lock brake control device) of a brake control device judges a difference in relative length between lock-to-lock time intervals of left and right wheels (step 302), calculates cumulative compensation amounts in dependence on the judged difference (steps 306, 310 to 316), then calculates pressure increase amounts which are brake fluid pressures to be applied respectively to wheel cylinders for the left and right wheels in a pressure increasing mode, in dependence on the cumulative compensation amounts and a base pressure increase amount, and then controls the brake fluid pressures in the pressure increasing mode so that the brake fluid pressures coincide with those so calculated.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: November 11, 2008
    Assignee: Advics Co., Ltd.
    Inventor: Masato Terasaka
  • Patent number: 7258404
    Abstract: An anti-skid brake control system for a multi-wheeled vehicle includes both a paired function and an individual function. The paired function controls the wheels of the vehicle in unison. The individual function controls the wheels of the vehicle individually. A paired/individual logic circuit alternatively activates and deactivates the paired function and the individual function. A method for controlling the skid of a vehicle utilizing a paired function and a individual function is also provided.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: August 21, 2007
    Assignee: Hydro-Aire, Inc.
    Inventors: Harris K. Butler, III, Scott A. Brittian
  • Patent number: 7222923
    Abstract: In a case where one of a left and right pair of drive wheels is a non-controlled wheel to which braking force of a vehicle behavior control is not applied, and the other of the drive wheels is a controlled wheel to which braking force is applied, a detected vehicle wheel speed for the non-controlled wheel is corrected to a smaller value in accordance with increase in the roll angle, and increase in the braking force of the controlled wheel when a roll angle of a vehicle body is larger than a threshold value. In a vehicle behavior control, when lateral G acts upon the vehicle during turning, braking force is applied to the controlled wheel that is at the outside of the turn. This braking force application causes driving force of the controlled wheel to be partially transferred to the non-corrected wheel that is at the inside of the turn, whereby the vehicle wheel speed of the non-corrected wheel is increased. Accordingly, in the present invention, correction calculation is performed.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: May 29, 2007
    Assignee: Advics Co., Ltd.
    Inventors: Masaki Banno, Hiroshi Matsuoka, Shinichi Tagawa
  • Patent number: 7188911
    Abstract: A braking device for a motorcycle, in which front wheel braking means is operated in conjunction with a braking operation on a rear wheel, eliminates a rapid change in front/rear braking force distribution at the time of a rear wheel braking operation so as to consistently allow a rider to feel a smooth braking operation. Braking force distribution characteristics on the rear and front wheels are previously set for each vehicle speed. When the braking operation on the rear wheel is performed, a brake caliper on the front wheel is controlled so as to maintain braking force distribution characteristics corresponding to a vehicle speed when the operation is started.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: March 13, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuhiko Tani, Masanobu Nakayama, Yukimasa Nishimoto
  • Patent number: 6880900
    Abstract: A target wheel cylinder pressure for each wheel is calculated according to an amount of braking operation performed by a vehicle operator. When anti-skid control is required, the wheel cylinder pressure is controlled to be equal to the target wheel cylinder pressure for reducing the brake slip of the wheel. When one of the rear-left and the rear-right wheels is anti-skid controlled, the target wheel cylinder pressure for the other wheel for which the anti-skid control is not performed is set to the same value as the target wheel cylinder pressure for the wheel for which the anti-skid control is performed. Linear valves are controlled based on the target wheel cylinder pressure, controlling the wheel cylinder pressures for the rear-left and the rear-right wheels to have substantially the same value.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 19, 2005
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masahiro Hara, Toshihisa Nihei, Naruyuki Matsui, Masahiro Matsuura
  • Patent number: 6685282
    Abstract: When a method for operating a reference speed judges that an ABS control is being executed, the method judges whether the ABS control is being executed to a front wheel or not. When the method judges that the ABS control is not executed to the front wheel, the method considers that the lifting of a rear wheel does not occur, and makes the reference speed follow the fastest wheel speed VRH. When the method judges that the ABS control is being executed to the front wheel, and further judges that a reference body deceleration is a predetermined value or more, the method considers that the lifting of the rear wheel has occurred, and makes the reference speed follow a speed VRM. The speed VRM is a wheel speed calculated in accordance with the following formula: VRM=&agr;VRL+(1−&agr;)VRH (0<&agr;<1), where &agr; character VRL indicates the slowest wheel speed, and a character &agr; indicates a default.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: February 3, 2004
    Assignee: Bosch Automotive Systems Corporation
    Inventor: Tadashige Sakamoto
  • Patent number: 6655753
    Abstract: A method for determining parameters for the viscosity or temperature of a brake fluid of a vehicle by way of a predetermined pressure build-up within time limits in at least one defined section of a brake circuit and for detecting a pressure in the said section and/or a time which is required for the build-up of the said pressure.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: December 2, 2003
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Jochen Führer
  • Patent number: 6491358
    Abstract: A braking force distribution control apparatus for a vehicle has a lateral acceleration detecting unit detecting lateral acceleration of the vehicle, a longitudinal acceleration detecting unit detecting longitudinal acceleration of the vehicle, a vehicle speed detecting unit detecting a vehicle speed, and a braking control unit adapted to select. When preset conditions for brake operating time are satisfied, the braking control unit executes one of select-low control and independent braking control in accordance with the lateral acceleration, the longitudinal acceleration and the vehicle speed, the select-low control controlling braking forces of left and right wheels depending on a wheel on the side with a large slipping condition. The independent braking control system independently controls the braking force for each wheel in dependency on the slipping condition of each of the wheels.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: December 10, 2002
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Yuji Soejima, Tohru Akiyama
  • Patent number: 6466855
    Abstract: An apparatus and a method for estimating a vehicle speed of a vehicle in which a driving state can be switched between a four-wheel drive (4WD) state and a two-wheel drive (2WD) state. The driving state of the vehicle can be determined based on one or more pieces of information. A controller calculates the vehicle speed based on a wheel speed of at least one non-driven wheel when it is determined that the vehicle is in the 2WD state. When it is determined that the vehicle is not in the 2WD state or when it cannot be determined that the vehicle is in the 2WD state, the controller calculates the vehicle speed based on the lowest one and/or the second lowest one of the wheel speeds of all of the wheels. Further, an apparatus and method for performing predetermined control, such as behavior control or traction control, that perform the control by using the estimated vehicle speed.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: October 15, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Katsuyuki Yamaguchi
  • Patent number: 6216080
    Abstract: A wheel module for the control of the braking force on a wheel of a vehicle with an electrically controlled braking system (EBS), in which the need for data transfer to other wheel modules, or to a central module, if present, is reduced considerably. All magnitudes required for an ABS regulation of a wheel such as, for example, vehicle reference speed, are calculated directly in the wheel module according to the invention, so that these magnitudes need not be transmitted from a central module via a data bus.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: April 10, 2001
    Assignee: WABCO GmbH
    Inventors: Henrich Riedemann, Thomas Wolf
  • Patent number: 6142587
    Abstract: Anti-lock braking system for an automobile is disclosed. It includes a brake unit that can control brake pressures within wheel cylinders of each road wheels of the automobile separately. In an anti-lock control mode, a control unit is operative to determine a controlled wheel speed for a road wheel to be controlled. The control unit determines a slip of the road wheel based on the determined controlled wheel speed and activates the brake unit in a direction to decrease the determined slip. In determining the controlled wheel speed, the control unit is operative to select a higher one of actual wheel speeds of front and rear road wheels on the opposite side to the side where the road wheel to be controlled exists. Then, the control unit is operative to use, as the controlled wheel speed, a lower one of an actual wheel speed of the road wheel to be controlled and the selected higher one wheel speed.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: November 7, 2000
    Assignee: Unisia Jecs Corporation
    Inventors: Nobuyuki Ohtsu, Jun Kubo
  • Patent number: 6126250
    Abstract: A brake system for a motor vehicle is proposed, in which at least the braking force distribution between the front and rear axles is influenced by an automatic electronic controller. In the event of a defect in a rotational speed sensor of a front wheel or a rear wheel, emergency operating measures are proposed, which maintain the functionality of the braking force distribution controller even after a defect has occurred.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: October 3, 2000
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Gutoehrlein, Thomas Meier
  • Patent number: 5792968
    Abstract: A method of an accurate detection of a spinning vehicle wheel. Observed wheel speeds are derived by measuring the speed of each wheel and the slowest speed is set as the slowest observed wheel speed. A maximum probable wheel speed is derived by multiplying the slowest observed wheel speed by the ratio of the maximum wheel speed to the slowest wheel speed for a given minimum turning radius. The maximum probable wheel speed is compared with an observed wheel speed and if the observed wheel speed is greater, the wheel is deemed to be spinning.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: August 11, 1998
    Assignee: Nisshinbo Industries Inc.
    Inventors: Noriyuki Takemasa, Keiji Toyoda, Wataru Ozawa, Susumu Yamada, Hiroshi Oshiro
  • Patent number: 5752751
    Abstract: A vehicular anti-skid control apparatus comprises a differential pressure detector for detecting the pressure difference inside brake lines of separate brake channels, a brake failure detector for detecting failure in one of the brake channels based on the anti-skid control state of each brake channel, a brake failure evaluator for evaluating failure of the brake system based on both output signals of the differential pressure detector and brake failure detector wherein the anti-skid control method is changed from normal anti-skid control to a particular anti-skid control when a brake failure occurs.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: May 19, 1998
    Assignees: Sumitomo Electric Industries, Ltd., Suzuki Motor Corporation
    Inventors: Tohru Nakaura, Shigeki Suzuki, Yasushi Tanabe, Yoshitaka Suzuki
  • Patent number: 5684702
    Abstract: In a control system, for instance forming part of a vehicle anti-lock brake system, a plurality of control processors provides similar or identical control signals of the system in response to a shared transducer input. An independent data correlation processor compares data generated in the control processors for correlation and, in the absence of proper correlation, provides an indication which may be used to disable anti-lock operation of the brake system. In preferred embodiments, a four wheel vehicle with an anti-lock brake system is monitored by dual microprocessors. Each wheel has a speed sensor which supplies an input to each microprocessor. The data correlation processor compares the outputs of the microprocessors for each wheel and sends and alarm or disables the anti-lock brake system if the difference in the microprocessors output is beyond a limit amount.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: November 4, 1997
    Assignee: Lucas Industries plc
    Inventors: Mark Ian Phillips, John Anthony Bolton, Anthony John Ainsworth
  • Patent number: 5613742
    Abstract: An anti-lock ABS braking system for a road vehicle includes a respective dump valve for each brake actuator which enables pressure to be selectively dumped from that actuator to release the braking action of the relevant rear wheel. Whether a given rear wheel of the vehicle is still operating in a stable condition is established, as is the aggregate dump valve time of the rear wheel opposite to that under consideration. The brake pressure at the still stable rear wheel is allowed to continue to rise for a prescribed period and then its dump valve is actuated for a period corresponding to the measured aggregate dump time of the opposite rear wheel.
    Type: Grant
    Filed: January 30, 1995
    Date of Patent: March 25, 1997
    Assignee: Lucas Industries public limited company
    Inventors: Alan L. Harris, Mark I. Phillips
  • Patent number: 5612880
    Abstract: A method of controlling the driving state of a vehicle in which an antilock brake control for eliminating a locking tendency of a wheel during braking can be carried out, and a four-wheel drive state and a two-wheel drive state can be switched from one to another. A monitored estimated vehicle speed is calculated on the basis of highest one of wheel speeds of the vehicle wheels and a value is detected by a longitudinal acceleration/deceleration sensor for detecting a longitudinal acceleration or deceleration of a vehicle speed, and a judgement speed is determined at a value lower than the monitored estimated vehicle speed. The vehicle speed is also independently determined based upon the speed of each of the vehicle wheels. The four-wheel drive state is switched to the two-wheel drive state in response to highest one of vehicle speeds independently calculated on the basis of the wheel speeds becoming equal to or less than the judgement speed in the four-wheel drive state.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: March 18, 1997
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takeshi Kojima, Toshio Yahagi, Kazuaki Fukami, Syouji Suzuki, Kunimichi Hatano
  • Patent number: 5570936
    Abstract: A fluid pressure control method of an anti-skid control apparatus for a vehicle, wherein the anti-skid control apparatus includes a tandem master cylinder, wheel cylinders of wheels, wheel speed sensors associated with the respective wheels, a control unit receiving the outputs of the wheel speed sensors for judging skid conditions of the respective wheels, and fluid pressure control valves arranged between the tandem master cylinder and the respective wheels, which receive instructions from the control unit for controlling brake fluid pressures of the respective wheels. The control unit supplies brake-decreasing instructions and brake-holding instructions independently to the ones of the fluid-pressure control valves for the front wheels, controls the others of the fluid-pressure control valves for the rear wheels by the diagonal "Select Low" between the skid conditions of the respective rear wheels and respective front wheels diagonally connected to the respective rear wheels.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: November 5, 1996
    Assignee: Nippon A B S, Ltd.
    Inventors: Mitsunao Ohmori, Motoo Yokota
  • Patent number: 5559702
    Abstract: An antilock brake control method for a four-wheel drive vehicle including calculating an estimated vehicle speed on the basis of a wheel speed of a wheel and a value obtained by adding an offset value to an output from a longitudinal acceleration/deceleration sensor for detecting a longitudinal acceleration or deceleration of the vehicle. When it is detected that all of the four wheels are in their spinning state, the addition of the offset value to the output from the longitudinal acceleration/deceleration sensor is stopped, and the estimated vehicle speed is calculated on the basis of the wheel speed and the output from the longitudinal acceleration/deceleration sensor.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: September 24, 1996
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takeshi Kojima, Toshio Yahagi, Kazuaki Fukami, Syouji Suzuki, Kunimichi Hatano
  • Patent number: 5518308
    Abstract: In a method of controlling an anti-skid brake system for a vehicle having one modulator and two wheel speed sensors for each axle, when the vehicle brakes during running, for example, on a split road where surface friction coefficients on the right and left surfaces of the road are greatly different from each other or on a curved road where torque values of the right and left wheels are quite different from each other, in case that one of the right and left wheels which is lower torque is set in a pressure reducing mode while the other wheel which is higher torque of the road is in a normal service braking state, a retaining mode or a slow pressure reducing mode is selected to the braking pressure of the right and left wheels. Therefore, when the conditions of the right and left wheel are quite different from each other as mentioned above, the braking pressure is retained or is intensified slowly so as to secure its braking force and thereby shorten the braking distance of the vehicle.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: May 21, 1996
    Assignee: Jidosha Kiki Co., Ltd.
    Inventor: Ryuta Sugawara
  • Patent number: 5511863
    Abstract: An anti-skid brake control system (9) for a wheeled vehicle has a conventional continuous source of pressurized hydraulic fluid, a hydraulically actuated wheel rotation braking device which responds via a wheel brake valve (11) to applied hydraulic pressure to apply a braking force to a wheel of the vehicle, and an operator actuatable control (10, 12, 39) for varying the supply of hydraulic pressure to the wheel rotation braking device. The system is responsive directly to the operator actuatable control (10, 12, 39) for determining the deceleration (14) currently commanded by the operator and further dynamically determines a maximum permissible wheel deceleration (47) at a given time. The operator controlled supply of hydraulic pressure to the braking device is overridden in the event that the deceleration (14) currently commanded by the operator exceeds the maximum permissible wheel deceleration.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: April 30, 1996
    Assignee: Alliedsignal Inc.
    Inventor: Peter J. Suh
  • Patent number: 5488557
    Abstract: In an anti-skid controlling system and method for an automotive vehicle, the anti-skid control mode is gradually changed from an anti-skid control mode common to each rear tire wheel on the basis of a larger slip rate of both rear tire wheels to an anti-skid control mode for each individual rear tire wheel on the basis of each tire wheel slip rate when the lateral acceleration applied to the vehicle is increased.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: January 30, 1996
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Toshiro Matsuda
  • Patent number: 5452947
    Abstract: A circuit configuration for a brake system comprising an anti-locking control is furnished with circuits which: (1) at a low friction coefficient on either vehicle side, individually control the brake pressure on the rear wheel brakes upon commencement of a control process, (2) after the first entrance of a rear wheel into a stable phase switch to "select-low", and (3) in the select-low control phased if during a predetermined period of time no instability occurs on the non-selected rear wheel, increase the brake pressure on the non-selected wheel in the next pressure build-up phase by a fixed or variable amount. According to a first embodiment, the brake pressure is delivered prematurely into a wheel brake of the rear wheel if the wheel speed falls below a slip threshold if, at the same time, the factual reacceleration is above a threshold value and if another value derived from the maximum value of the filtered wheel acceleration is exceeded.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: September 26, 1995
    Assignee: IIT Automotive Europe GmbH
    Inventors: Norbert Ehmer, Thomas Striegel