Acceleration-deceleration Versus Timing Patents (Class 303/184)
  • Patent number: 9802588
    Abstract: A vehicle control apparatus which performs a travel control of a vehicle during a traffic jam, includes a wheel setting unit configured to set at least one wheel to be a brake wheel to be applied with a braking force during the travel control and at least one wheel to be a non-brake wheel not to be applied with the braking force during the travel control, and a control unit configured to perform the travel control of the vehicle based on a rotation amount of the at least one brake wheel and a rotation amount of the at least one non-brake wheel detected by a wheel speed sensor detecting the rotation amount of a wheel of the vehicle.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: October 31, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Go Inoue, Yoshitaka Fujita
  • Patent number: 9522661
    Abstract: A vehicle control apparatus which performs a parking control of a vehicle, includes a wheel setting unit configured to set at least one brake wheel which is a wheel to which a braking force is applied during the parking control and at least one non-brake wheel which is a wheel to which the braking force is not applied during the parking control, and a control unit configured to perform the parking control of the vehicle based on a rotation amount of at least one brake wheel and a rotation amount of at least one non-brake wheel detected by a wheel speed sensor detecting the rotation amount of a wheel of the vehicle.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: December 20, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Go Inoue, Yoshitaka Fujita
  • Patent number: 8801114
    Abstract: A signal indicating an estimated body deceleration and a deceleration indicated by a detection signal from a G sensor are pass through first and second filters having different filter constants. Based on a resulting difference in response speeds thereof, it is determined whether sudden braking, i.e., quick depression, is being performed. If quick depression is determined, then even if an upper limit of a W/C pressure to rear wheels is set in order to prevent rear wheel locking precedent to front wheel locking, the W/C pressure is increased so as to exceed such an upper limit. Thus, a greater deceleration can be achieved than when the W/C pressure at the set upper limit is generated.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 12, 2014
    Assignees: Advics Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Junji Mizutani, Michio Akiyoshi, Satoshi Udaka
  • Patent number: 8688380
    Abstract: A method and apparatus in a vehicular telemetry system and a remote data analysis system for detecting an event and switching a data acquisition mode. Checking a state of a data acquisition mode. If the state is in a filtered data state and if an indicator value is at or above a threshold value, then switch the data acquisition mode to an unfiltered data state and acquire unfiltered data. If the data acquisition mode is in an unfiltered data state and if the indicator value is below the threshold value, switch the data acquisition mode to a filtered data state and acquire filtered data.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 1, 2014
    Assignee: GEOTAB Inc.
    Inventors: Neil Charles Cawse, Darren Marc Lohmann Beams, Antonios Partheniou, Stelian Dumitrascu
  • Patent number: 6513886
    Abstract: A brake system control method for use in a vehicle in which wheel speed normalization factors are iteratively updated, comprising the steps of: monitoring a plurality of wheel speed signals from a plurality of wheel speed sensors; determining for each wheel a wheel acceleration responsive to the wheel speed signal; determining an acceleration dead band for each wheel, wherein the acceleration dead band is proportional to a measure of vehicle acceleration; comparing the wheel acceleration to the dead band; and if the magnitude of the wheel acceleration is greater than the magnitude of the dead band, inhibiting update of the normalization factors.
    Type: Grant
    Filed: May 7, 1996
    Date of Patent: February 4, 2003
    Assignee: General Motors Corporation
    Inventors: John Andrew Weber, Alfred Russell Robertson, Kevin Gerard Leppek, Alexander Kade, Allen John Walenty, David Alan Thatcher
  • Patent number: 6470255
    Abstract: In a vehicular braking control apparatus and method, the hydraulic pressure on a wheel cylinder is gradually reduced with a relatively gentle gradient of reduction (k3) at the time when a braking operation member, operated by an operating person of the vehicle, is detected to have been operated to a predetermined position. At the time when a state of the braking operation is detected to have reached a predetermined threshold, the hydraulic pressure on the wheel cylinder is reduced with a relatively great gradient of reduction (k2). Therefore, it is possible to reduce vibrations of a brake pedal or the change in deceleration while adopting a relatively simple construction.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: October 22, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kouichi Hara, Hironori Miyakoshi, Nobuyuki Furui, Akira Hattori
  • Patent number: 6334657
    Abstract: Road wheel accelerations are calculated in a controller from respective road wheel velocity values. Any one of the road wheel velocities, including the road wheel velocity of one of the road wheels that is a controlled system in an anti-lock brake control during a brake operation, is selected on the basis of a predetermined condition, any one of the road wheel accelerations is selected from among results of calculations of the road wheel accelerations which corresponds to one of the road wheel velocities which is selected so as to generate a control-purpose road wheel acceleration, and anti-lock brake control is executed for each road wheel during the brake operation using the selected road wheel velocity and the control-purpose road wheel acceleration so as to prevent a wheel's lock for each road wheel from occurring.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: January 1, 2002
    Assignee: Unisia Jecs Corporation
    Inventor: Nobuyuki Ohtsu
  • Patent number: 5947568
    Abstract: An anti-skid control device for braking a vehicle safely and quickly comprises a wheel speed sensor, a computer and an actuator for controlling brake fluid pressure in a wheel cylinder. The computer calculates, based on the wheel speed detected by the sensor, a wheel slip ratio relative to a road surface, a wheel speed acceleration and a gradient of the wheel speed acceleration, and controls the actuator so that it increases, decreases or holds the brake fluid pressure according to the data calculated. The brake fluid pressure is decreased to avoid locking of the wheel when the slip ratio exceeds a predetermined value, the wheel speed acceleration is below a predetermined value and the gradient of the wheel speed acceleration becomes lower than the predetermined level. In this manner, the brake fluid pressure is not decreased unnecessarily, and a desirable anti-skid control is achieved for braking the vehicle quickly and safely.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: September 7, 1999
    Assignee: Denso Corporation
    Inventor: Takashi Watanabe
  • Patent number: 5487598
    Abstract: Vehicle antilock braking systems having an operator controlled master cylinder (11) and a second source (55, 57) of pressurized hydraulic fluid for selectively supplying rebuild pressure after an antilock event are disclosed. The system is selectively operable in one of three braking modes, a normal braking mode (119) where braking force is proportional to an operator brake pedal pressure, an enhanced anti-skid braking mode (69) where braking force may be maintained at a maximum nonskid level, and a conventional anti-skid braking mode (71) where braking force follows a cyclic pattern of fluid pressure bleed and build. The system includes circuitry (17, 19, 35, 37, 93, 95) for determining the speed of each wheel and an arrangement (59) operable independently of any vehicle wheels for determining vehicle deceleration.
    Type: Grant
    Filed: December 12, 1994
    Date of Patent: January 30, 1996
    Assignee: AlliedSignal Inc.
    Inventors: Robert M. Rivard, Michael J. Schneider, Tamas I. Pattantyus, Kenneth S. Towers, Jack R. Phipps