With Heat Actuated Bimetal Element Patents (Class 310/307)
  • Patent number: 6603238
    Abstract: A thin plate-shaped substrate 21 comprised of a monocrystal is provided with a piezoelectric element 24, and both ends of a movable piece 20 whose one surface is provided with a movable contact 25 are fixed and supported to a base 11. Then, by curving the movable piece 20 via the piezoelectric element 24, the movable contact 25 is brought in and out of contact with a pair of fixed contacts 38 and 39 that face the movable contact. With this arrangement, a subminiature micro-relay having a mechanical contact mechanism that has a small resistance in turning on the contact and the desired vibration resistance, frequency characteristic and insulating property can be obtained.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 5, 2003
    Assignee: Omron Corporation
    Inventors: Minoru Sakata, Takuya Nakajima, Tomonori Seki, Teruhiko Fujiwara, Masashi Takeuchi
  • Patent number: 6590313
    Abstract: A MEMs microactuator can be positioned in an interior region of a frame having at least one opening therein, wherein the frame expands in response to a change in temperature of the frame. A load outside the frame can be coupled to the microactuator through the at least one opening. The microactuator moves relative to the frame in response to the change in temperature to remain substantially stationary relative to the substrate. Other MEMs structures, such as latches that can engage and hold the load in position, can be located outside the frame. Accordingly, in comparison to some conventional structures, temperature compensated microactuators according to the present invention can be made more compact by having the interior region of the frame free of other MEMs structures such as latches.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: July 8, 2003
    Assignee: Memscap S.A.
    Inventors: Vivek Agrawal, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6533366
    Abstract: Hydraulic or electro-hydraulic braking systems which include at least one wheel braking device and micro-machined technology, such as microvalves, are described herein. The use of the microvalves helps to eliminate audible noise produced in the hydraulic systems as well as allows for reduced package size of the system. In particular, many of the braking systems described herein have Anti-lock Braking System (ABS) capabilities, and as such employ apply microvalves, dump microvalves and changeover microvalves. The microvalves may be digitally or proportionally controlled for selectively controlling the pressure supplied to the wheel brake cylinders.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: March 18, 2003
    Assignee: Kelsey-Hayes Company
    Inventors: Richard J. Barron, Edward N. Fuller, Gerald M. Sivulka, Gregory P. Campau, Charles Darnell
  • Patent number: 6531947
    Abstract: A micrometer sized, single-stage, vertical thermal actuator with controlled bending capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator bends generally at the flexure so that the member moves away from the substrate when current is applied to at least the hot arm.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: March 11, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Billy L. Weaver, Douglas P. Goetz, Kathy L. Hagen, Mike E. Hamerly, Robert G. Smith, Silva K. Theiss
  • Patent number: 6516146
    Abstract: An actuator using a novel shape memory alloy which, even when there is a large difference between a transformation start temperature of the shape memory alloy and a heating start temperature, can diminish a time lag based on the temperature difference from the time when an operation start command signal is outputted until the start of movement of an actuating member, thereby causing, the actuating member to start deformation quickly and permitting a driven member to be actuated quickly. When the driven member is moved from an initial position to a reference position in operation, if the amount of movement of the driven member is larger than a normal amount of movement, an electric current larger than an electric current value calculated from the amount of movement is fed to the actuating member which is constructed of the shape memory,alloy, thereby causing the actuating member to be displaced quickly to actuate the driven member quickly.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: February 4, 2003
    Assignee: Minolta Co., Ltd.
    Inventor: Akira Kosaka
  • Patent number: 6504118
    Abstract: This invention is a new type of relay that incorporates the functional combination of multimorph actuator elements with electrostatic state holding mechanisms in the development of a micromachined switching device. This combination of elements provides the benefits of high-force multimorph actuators with those of zero-power electrostatic capacitive latching in microfabricated relays with high reliability and low power consumption. The operation of the relay invention allows for several stable states for the device: a passive state using no power, an active state driving the multimorph actuator with some power, and a latched state electrostatically holding the switch state requiring essentially no power. Multimorph actuators covered by this invention include piezoelectric, thermal, and buckling multimorph actuation mechanisms. These devices use one or more sets of actuator armatures in cantilever or fixed-beam configurations, and use one or more sets of electrostatic latch electrodes for state holding.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: January 7, 2003
    Inventors: Daniel J Hyman, Mark K Hyman, Peter D Bogdanoff
  • Publication number: 20020185932
    Abstract: Actuators that employs a shape memory alloy component as the driving element include linear and rotational devices. An Intrinsic Return Means (IRM) may be imparted to the SMA actuator, thereby reducing the use of a spring return mechanism. The rotational actuator may include a cylindrical bobbin with a helical groove to receive an SMA wire. A number of turns may be placed in a small length of bobbin to amplify the rotational excursion. In another rotational actuator, a plurality of narrow, coaxial rings are provided, the rings being nested in close concentric fit or stacked in side-by-side fashion. Each ring is provided with a groove extending thereabout to receive an SMA wire and contraction of the wire causes each ring to rotate with respect to the adjacent ring. In an embodiment for linear actuation, the invention provides a bar-like component having SMA wires joined between bars.
    Type: Application
    Filed: July 22, 2002
    Publication date: December 12, 2002
    Inventors: Mark A. Gummin, William Donakowski, Geoffrey A. Gaines
  • Patent number: 6483419
    Abstract: A micrometer sized, single-stage, horizontal and vertical thermal actuator capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The horizontal and vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above and laterally offset from the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator exhibits horizontal and vertical displacement when current is applied to at least the hot arm.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: November 19, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Billy L. Weaver, Douglas P. Goetz, Kathy L. Hagen, Mike E. Hamerly, Robert G. Smith, Silva K. Theiss
  • Patent number: 6483056
    Abstract: This invention is a new type of relay that incorporates the functional combination of multimorph actuator elements with electrostatic state holding mechanisms in the development of a micromachined switching device. This combination of elements provides the benefits of high-force multimorph actuators with those of zero-power electrostatic capacitive latching in microfabricated relays with high reliability and low power consumption. The operation of the relay invention allows for several stable states for the device: a passive state using no power, an active state driving the multimorph actuator with some power, and a latched state electrostatically holding the switch state requiring essentially no power. Multimorph actuators covered by this invention include piezoelectric, thermal, and buckling multimorph actuation mechanisms. These devices use one or more sets of actuator armatures in cantilever or fixed-beam configurations, and use one or more sets of electrostatic latch electrodes for state holding.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: November 19, 2002
    Inventors: Daniel J Hyman, Mark K Hyman, Peter D Bogdanoff
  • Patent number: 6474065
    Abstract: A multijunction thermoelectric actuator comprising a composite of a plurality of serially connected alternating electrically conducting material strips, P and N type semiconductors, for example, which actuator is operated by the passage of an electrical current across the composite and the connections or junctions of such strips. Depending upon the direction of flow of the current, a cooling effect takes place on one side of the composite or the other, and simultaneously a heating effect takes place on the other side causing the composite to bend toward the heated side. The strips can be constructed so as to overlap the adjacent strips and a programmable power supply can be used to provide different levels of electrical power at various positions along the composite yielding complex and controllable bending patterns of the actuator.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: November 5, 2002
    Inventor: Gregory R. Brotz
  • Publication number: 20020158547
    Abstract: Mounting systems for micro-electromechanical system (MEMS) structures are provided including a non-Newtonian fluid having a threshold viscosity that is positioned between a MEMS base member and the MEMS structure so as to position the MEMS structure relative to the base member. A MEMS actuator is coupled to the MEMS structure. The MEMS actuator is positioned to cause movement of the MEMS structure relative to the MEMS base member by generating a force sufficient to exceed the threshold viscosity of the non-Newtonian fluid when the MEMS actuator is actuated. The MEMS structure may be a MEMS mirror positioned for pivotal movement about a bearing member to control tilt of the MEMS mirror.
    Type: Application
    Filed: April 26, 2001
    Publication date: October 31, 2002
    Inventor: Robert L. Wood
  • Patent number: 6438954
    Abstract: A micrometer sized multi-directional thermal actuator capable of repeatable and rapid displacement in a substantially horizontal direction, a substantially vertical direction, and/or a combination thereof. The multi-directional thermal actuator constructed on a surface of a substrate includes three or more beams each cantilevered from one or more anchors at a first end to extend generally parallel to the surface of the substrate. A member mechanically and electrically couples the distal ends of the beams. Application of current to a circuit comprising combinations of any two or more of the beams displaces the member in one of three or more non-parallel radial directions, respectively.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 27, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Douglas P. Goetz, Mike E. Hamerly, Daniel B. Pendergrass, Robert G. Smith, Silva K. Theiss, Billy L. Weaver
  • Patent number: 6424165
    Abstract: A new class of materials testing apparatus has been invented. Particularly suited to the measurement of fracture and fatigue properties in the extremely strong materials encountered in microelectromechanical systems, material strains well in excess of 1% can be applied pseudostatically, dynamically, or repetitively by these testers. There are no other practical methods to determine these material properties routinely in a process environment, and few alternatives in any circumstances.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: July 23, 2002
    Assignee: Sandia Corporation
    Inventors: Maarten de Boer, Fernando Bitsie, Brian D. Jensen
  • Patent number: 6410361
    Abstract: A MEMS thermal actuator device is provided that is capable of providing linear displacement in a plane generally parallel to the surface of a substrate. Additionally, the MEMS thermal actuator of the present invention may provide for a self-contained heating mechanism that allows for the thermal actuator to be actuated using lower power consumption and lower operating temperatures. The MEMS thermal actuator includes a microelectronic substrate having a first surface and at least one anchor structure affixed to the first surface. A composite beam extends from the anchor(s) and overlies the first surface of the substrate. The composite beam is adapted for thermal actuation, such that it will controllably deflect along a predetermined path that extends substantially parallel to the first surface of the microelectronic substrate. In one embodiment the composite beam comprises two or layers having materials that have correspondingly different thermal coefficients of expansion.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: June 25, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Vijayakumar R. Dhuler, Edward Hill, Allen Cowen
  • Patent number: 6407478
    Abstract: A microelectromechanical device comprises first and second beam members that have respective first ends connected to anchors, and that are also connected together. The first and second beam members are connected to a dielectric tether by a first tether anchor. The microelectromechanical device further comprises a third beam member that has a first end that is connected to an anchor and that is connected to the dielectric tether by a second tether anchor. At least one of the first and the second beam members are configured to elongate when the first and/or the second beam member is heated to a temperature that is greater than a temperature of the third beam member.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: June 18, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Robert L. Wood, Vivek Agrawal
  • Patent number: 6407482
    Abstract: A thin plate-shaped substrate 21 comprised of a monocrystal is provided with a piezoelectric element 24, and both ends of a movable piece 20 whose one surface is provided with a movable contact 25 are fixed and supported to a base 11. Then, by curving the movable piece 20 via the piezoelectric element 24, the movable contact 25 is brought in and out of contact with a pair of fixed contacts 38 and 39 that face the movable contact. With this arrangement, a subminiature micro-relay having a mechanical contact mechanism that has a small resistance in turning on the contact and the desired vibration resistance, frequency characteristic and insulating property can be obtained.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: June 18, 2002
    Assignee: Omron Corporation
    Inventors: Minoru Sakata, Takuya Nakajima, Tomonori Seki, Teruhiko Fujiwara
  • Patent number: 6404098
    Abstract: Disclosed herein is a drive unit using a shape memory alloy including: a shape memory alloy member made from a shape memory alloy, the shape memory alloy member exhibiting superelasticity when being energized; a drive body connected to the shape memory alloy member, the drive body being moved from a stopping position to a specific operational position when the shape memory alloy member is energized; and a locking mechanism for retaining the drive body at the specific operational position. With this configuration, the drive unit using a shape memory alloy is capable of reducing the power consumption as well as miniaturizing the drive unit.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: June 11, 2002
    Assignee: Sony Corporation
    Inventors: Shun Kayama, Yasuhiro Kataoka
  • Patent number: 6386507
    Abstract: A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components are actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: May 14, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Vijayakumar R. Dhuler, Mark David Walters
  • Patent number: 6384509
    Abstract: A flexible area 2 is joined at one end via a thermal insulation area 7 to a semiconductor substrate 3 which becomes a frame and at an opposite end to a moving element 5. The thermal insulation area 7 is made of a thermal insulation material a resin such as polyimide or a fluoridated resin. The flexible area 2 is made up of a thin portion 2S and a thin film 2M different in thermal expansion coefficient. When a diffused resistor 6 formed on the surface of the thin portion 2S is heated, the flexible area 2 is displaced because of the thermal expansion difference between the thin portion 2S and the thin film 2M, and the moving element 5 is displayed with respect to the semiconductor substrate 3.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: May 7, 2002
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Shigeaki Tomonari, Hitoshi Yoshida, Masanao Kamakura, Hiroshi Kawada, Masaaki Saito, Kazuhiro Nobutoki, Jun Ogihara, Shuichi Nagao
  • Patent number: 6367251
    Abstract: Lockable microelectromechanical actuators include a microelectromechanical actuator, a thermoplastic material that is coupled to the microelectromechanical actuator to lock the microelectromechanical actuator, and a heater that melts the thermoplastic material to allow movement of the microelectromechanical actuator. When the thermoplastic material solidifies, movement of the microelectromechanical actuator can be locked, without the need to maintain power, in the form of electrical, magnetic and/or electrostatic energy, to the microelectromechanical actuator, and without the need to rely on mechanical friction to hold the microelectromechanical actuator in place. Thus, the thermoplastic material can act as a glue to hold structures in a particular position without the need for continuous power application. Moreover, it has been found unexpectedly, that the thermoplastic material can solidify rapidly enough to lock the microelectromechanical actuator at or near its most recent position.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: April 9, 2002
    Assignee: JDS Uniphase Corporation
    Inventor: Robert L. Wood
  • Patent number: 6367252
    Abstract: In embodiments of the present invention, a microelectromechanical actuator includes a beam having respective first and second ends attached to a substrate and a body disposed between the first and second ends having a sinuous shape. The body includes a portion operative to engage a object of actuation and apply a force thereto in a direction perpendicular to the beam responsive to at least one of a compressive force and a tensile force on the beam. The sinuous shape may be sinusoidal, e.g., a shape approximating a single period of a cosine curve or a single period of a sine curve. The beam may be thermally actuated or driven by another actuator. In other embodiments, a rotary actuator includes first and second beams, a respective one of which has first and second ends attached to a substrate and a body disposed between the first and second ends. Each body includes first and second oppositely inflected portions.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: April 9, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Edward A. Hill, Vijayakumar Rudrappa Dhuler, Allen Cowen, Ramaswamy Mahadevan, Robert L. Wood
  • Patent number: 6360539
    Abstract: Microelectromechanical actuators include a substrate, spaced apart supports on the substrate and a thermal arched beam that extends between the spaced apart supports and that further arches upon heating thereof, for movement along the substrate. One or more driven arched beams are coupled to the thermal arched beam. The end portions of the driven arched beams move relative to one another to change the arching of the driven arched beams in response to the further arching of the thermal arched beam, for movement of the driven arched beams. A driven arched beam also includes an actuated element at an intermediate portion thereof between the end portions, wherein a respective actuated element is mechanically coupled to the associated driven arched beam for movement therewith, and is mechanically decoupled from the remaining driven arched beams for movement independent thereof.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: March 26, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Edward A. Hill, Vijayakumar R. Dhuler, Allen B. Cowen, Ramaswamy Mahadevan, Robert L. Wood
  • Patent number: 6346789
    Abstract: An apparatus for and method of controlling the circulating fan of a gas appliance. The circulating fan is powered by an alternating current electric motor. An electronic circuit, powered by the heat of the gas appliance, determines the rotational speed of the electric motor by controlling the effective duty cycle of the alternating current source coupled to the electric motor.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: February 12, 2002
    Assignee: Honeywell International Inc.
    Inventors: Douglas D. Bird, Brent Chian
  • Publication number: 20020011758
    Abstract: A MEMs microactuator can be positioned in an interior region of a frame having at least one opening therein, wherein the frame expands in response to a change in temperature of the frame. A load outside the frame can be coupled to the microactuator through the at least one opening. The microactuator moves relative to the frame in response to the change in temperature to remain substantially stationary relative to the substrate. Other MEMs structures, such as latches that can engage and hold the load in position, can be located outside the frame. Accordingly, in comparison to some conventional structures, temperature compensated microactuators according to the present invention can be made more compact by having the interior region of the frame free of other MEMs structures such as latches.
    Type: Application
    Filed: September 26, 2001
    Publication date: January 31, 2002
    Inventors: Vivek Agrawal, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6324748
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: December 4, 2001
    Assignee: JDS Uniphase Corporation
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Publication number: 20010038254
    Abstract: A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate, a microactuator disposed on the substrate and formed of a single crystalline material, and at least one metallic structure disposed on the substrate adjacent the microactuator such that the metallic structure is on substantially the same plane as the microactuator and is actuated thereby. For example, the MEMS device may be a microrelay. As such, the microrelay may include a pair of metallic structures that are controllably brought into contact by selective actuation of the microactuator. While the MEMS device can include various microactuators, one embodiment of the microactuator is a thermally actuated microactuator which advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch.
    Type: Application
    Filed: June 26, 2001
    Publication date: November 8, 2001
    Inventor: Vijayakumar R. Dhuler
  • Patent number: 6310419
    Abstract: Resistor networks, digital potentiometers and microelectromechanical structures that include a plurality of resistors selectable by a plurality of microelectromechanical actuators are provided. More particularly, a thermal relay type of actuator is provided as a switch which may selectively control which of the plurality of resistors is connected. In one particularly advantageous embodiment, the heater for the thermal relay and the plurality of resistors are formed from a common layer of the integrated circuit structure, such as a doped polysilicon layer, which may simplify the manufacturing process. Preferably, a thermal arched beam actuator is utilized in combination with film resistors to provide an integrated circuit device suitable for applications such as digital potentiometers.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: October 30, 2001
    Assignee: JDS Uniphase Inc.
    Inventor: Robert L. Wood
  • Patent number: 6303885
    Abstract: A bi-stable micro-machined electromechanical system (“MEMS”) switch. In a preferred embodiment, the bi-stable MEMS switch is used in an N×N optical signal switching system. Spring arms act in conjunction with a hollow beam portion of a movable center body of the switch to accommodate strain in the arms as the switch is moved from a first position to a second position, thus avoiding buckling of the spring arms. Both the first and second switch position occur at local minimums of mechanical potential energy, thus providing two stable switch states. The center body is moved in relation to static portions of the switch by an actuator, such as an electro-static comb drive.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: October 16, 2001
    Assignee: Optical Coating Laboratory, Inc.
    Inventors: Bryant P. Hichwa, Cornel Marxer, Michael Gale
  • Patent number: 6291922
    Abstract: A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate, a microactuator disposed on the substrate and formed of a single crystalline material, and at least one metallic structure disposed on the substrate adjacent the microactuator such that the metallic structure is on substantially the same plane as the microactuator and is actuated thereby. For example, the MEMS device may be a microrelay. As such, the microrelay may include a pair of metallic structures that are controllably brought into contact by selective actuation of the microactuator. While the MEMS device can include various microactuators, one embodiment of the microactuator is a thermally actuated microactuator which advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: September 18, 2001
    Assignee: JDS Uniphase, Inc.
    Inventor: Vijayakumar R. Dhuler
  • Patent number: 6262512
    Abstract: Microelectromechanical structures include a microelectronic substrate and spaced apart supports on the microelectronic substrate. A beam extends between the spaced apart supports and expands upon application of heat thereto, to thereby cause displacement of the beam between the spaced apart supports. The application of heat to the beam creates a thermal conduction path from the beam through the spaced apart supports and into the substrate. A thermal isolation structure in the heat conduction path reduces thermal conduction from the beam, through the spaced apart supports and into the substrate, compared to absence of the thermal isolation structure. The thermal isolation structure preferably has lower thermal conductivity than the beam and the supports. The heat that remains in the beam thereby can be increased.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: July 17, 2001
    Assignee: JDS Uniphase Inc.
    Inventor: Ramaswamy Mahadevan
  • Patent number: 6255757
    Abstract: A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components arc actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: July 3, 2001
    Assignee: JDS Uniphase Inc.
    Inventors: Vijayakumar R. Dhuler, Mark David Walters
  • Patent number: 6242841
    Abstract: A stepper motor includes the following. A rotatable hub. A first shaped memory alloy (abbreviated to SMA) rotary-driver, which when heated undergoes a shape change to rotationally couple with the hub and rotate the hub in a predetermined direction, and which can be deformed to reverse the shape change to rotationally uncouple from the hub. A first return spring connected with the first SMA rotary-driver for deforming the first SMA rotary-driver, when no longer heated, to reverse the shape change of the first SMA rotary-driver and rotationally uncouple the first SMA rotary driver from the hub. A second SMA rotary-driver, which when heated undergoes a shape change to rotationally couple with the hub and rotate the hub in the predetermined direction, and which when can be deformed to reverse the shape change to rotationally uncouple from the hub.
    Type: Grant
    Filed: January 6, 2000
    Date of Patent: June 5, 2001
    Assignee: Eastman Kodak Company
    Inventor: Patricia L. Williams
  • Patent number: 6236139
    Abstract: MEMS structures are provided that compensate for ambient temperature changes, process variations, and the like, and can be employed in many applications. These structures include an active microactuator adapted for thermal actuation to move in response to the active alteration of its temperature. The active microactuator may be further adapted to move in response to ambient temperature changes. These structures also include a temperature compensation element, such as a temperature compensation microactuator or frame, adapted to move in response to ambient temperature changes. The active microactuator and the temperature compensation element move cooperatively in response to ambient temperature changes. Thus, a predefined spatial relationship is maintained between the active microactuator and the associated temperature compensation microactuator over a broad range of ambient temperatures absent active alteration of the temperature of the active microactuator.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: May 22, 2001
    Assignee: JDS Uniphase Inc.
    Inventors: Edward Hill, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6218762
    Abstract: Microelectromechanical system (MEMS) structures and arrays that provide movement in one, two, and/or three dimensions in response to selective thermal actuation. Significant amounts of scalable displacement are provided. In one embodiment, pairs of thermal arched beams are operably interconnected and thermally actuated to create structures and arrays capable of moving in a plane parallel to the underlying substrate in one and/or two dimensions. One embodiment provides an arched beam operably connected to a crossbeam such that the medial portion arches and alters its separation from the crossbeam when thermally actuated. In another embodiment, at least one thermal arched beam is arched in a nonparallel direction with respect to the plane defined by the underlying substrate. In response to thermal actuation, the medial portion of the arched beam is arched to a greater degree than the end portions of the thermal arched beam, thereby altering the separation of the medial portion from the underlying substrate.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: April 17, 2001
    Assignee: MCNC
    Inventors: Edward A. Hill, Vijayakumar R. Dhuler
  • Patent number: 6211598
    Abstract: A MEMS thermal actuator device is provided that is capable of providing linear displacement in a plane generally parallel to the surface of a substrate. Additionally, the MEMS thermal actuator may provide for a self-contained heating mechanism that allows for the thermal actuator to be actuated using lower power consumption and lower operating temperatures. The MEMS thermal actuator includes a microelectronic substrate having a first surface and at least one anchor structure affixed to the first surface. A composite beam extends from the anchor(s) and overlies the first surface of the substrate. The composite beam is adapted for thermal actuation, such that it will controllably deflect along a predetermined path that extends substantially parallel to the first surface of the microelectronic substrate.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: April 3, 2001
    Assignee: JDS Uniphase Inc.
    Inventors: Vijayakumar R. Dhuler, Edward Hill, Allen Cowen
  • Patent number: 6211599
    Abstract: A microelectromechanical (MEM) ratcheting apparatus is disclosed which includes an electrostatic or thermal actuator that drives a moveable member in the form of a ring gear, stage, or rack. Motion is effected by one or more reciprocating pawls driven by the actuator in a direction that is parallel to, in line with, or tangential to the path. The reciprocating pawls engage indexing elements (e.g. teeth or pins) on the moveable member to incrementally move the member along a curved or straight path with the ability to precisely control and determine the position of the moveable member. The MEM apparatus can be formed on a silicon substrate by conventional surface micromachining methods.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: April 3, 2001
    Assignee: Sandia Corporation
    Inventors: Stephen M. Barnes, Samuel L. Miller, Brian D. Jensen, M. Steven Rodgers, Michael S. Burg
  • Patent number: 6175170
    Abstract: A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 &mgr;m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 &mgr;m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: January 16, 2001
    Inventors: Sridhar Kota, M. Steven Rodgers, Joel A. Hetrick
  • Patent number: 6161382
    Abstract: A three-layered metallic semiconductor strip in the form of a thermocouple with self-contained heating and cooling means when an electrical current is applied thereto to cause the controlled expansion and contraction of selected layers to move the strip to accomplish work.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: December 19, 2000
    Inventor: Gregory R. Brotz
  • Patent number: 6137206
    Abstract: MEMS (Microelectromechanical System) structures are provided that are designed to rotate in response to thermal actuation or the like. In one embodiment, the MEMS rotary structure includes a hub having one or more radial spoke members that impose a rotational force upon the hub in response to applied changes in temperature. The MEMS rotary structure can also include a ring at least partially encircling the hub and connected to the hub by means of one or more hub spoke members. Controllable clockwise, counterclockwise, or both clockwise and counterclockwise rotation of the hub or ring are provided. The MEMS rotary structures can also include thermal arched beam actuators that are operably connected to the spoke member. As the temperature changes, the thermal arched beam actuators move the spoke members in order to rotate the MEMS structure.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: October 24, 2000
    Assignee: Cronos Integrated Microsystems, Inc.
    Inventor: Edward A. Hill
  • Patent number: 6124662
    Abstract: An actuator for selectively exerting a force responsive to an increase or decrease in applied electrical energy, including an electrically conductive member slideably seated within an electrically non-conductive frame, a thermally responsive and electrically conductive shape memorizing spring seated within the frame and adjacent to the member for urging the member responsive to the passage of electrical current through the shape memorizing spring. An electrically conductive contact strip is connected to the frame and extends therefrom in contact with the member such that movement of the member from the neutral position toward an optimal position will maintain the member in contact with the contact strip and wherein movement of the member to the optimal position will disconnect the member and the contact strip. A power source for generating energy is electrically connected to the contact strip and to the shape memorizing spring whereby a circuit is formed when the member is in contact with the contact strip.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: September 26, 2000
    Inventor: Richard Maness
  • Patent number: 6124663
    Abstract: A fiber optic connector is provided that is capable of precisely aligning an optical fiber with another optical element by using a MEMS positioning apparatus subsystem capable of being manufactured in an affordable, repeatable and reliable manner which can precisely microposition an optical fiber relative to another optical element in each of the X, Y and Z directions.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: September 26, 2000
    Assignees: The Boeing Company, MCNC
    Inventors: John M. Haake, Vijayakumar R. Dhuler, Robert L. Wood
  • Patent number: 6114794
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: September 5, 2000
    Assignee: Cronos Integrated Microsystems, Inc.
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6023121
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: February 8, 2000
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 5994816
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: November 30, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 5973437
    Abstract: A light source including a ballast characterized by a resonant frequency and including a reference bus and a transformer having a secondary winding. The fluorescent lamp is partially covered by a shield, connected to the reference bus and coupled to the secondary winding. The ballast further includes a current sensor connected between the secondary winding and reference bus for sensing current flow through at least the lamp including that portion of lamp current attributable to parasitic capacitances affecting the resonant frequency.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: October 26, 1999
    Assignee: Philips Electronics North America Corporation
    Inventors: Pawel M. Gradzki, Ihor T. Wacyk
  • Patent number: 5962949
    Abstract: A microelectromechanical (MEMS) positioning apparatus is provided that can precisely microposition an object in each of the X, Y and Z directions. The MEMS positioning apparatus includes a reference surface, a support disposed in a fixed position to the reference surface, and a stage defining an XY plane that is suspended adjacent to the support and over at least a portion of the reference surface. The MEMS positioning apparatus also includes at least one and, more typically, several actuators for precisely positioning the stage and, in turn, objects carried by the stage. For example, the MEMS positioning apparatus can include first and second MEMS actuators for moving the stage in the XY plane upon actuation. In addition, the MEMS positioning apparatus can include a Z actuator, such as a thermal bimorph structure, for moving the stage in the Z direction. As such, the MEMS positioning apparatus can precisely position the stage as well as any objects carried by the stage in each of the X, Y and Z directions.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: October 5, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood
  • Patent number: 5955817
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: September 21, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 5909078
    Abstract: Microelectromechanical actuators include at least one arched beam which extends between spaced apart supports on a microelectronic substrate. The arched beams are arched in a predetermined direction and expand upon application of heat thereto. A coupler mechanically couples the plurality of arched beams between the spaced apart supports. Heat is applied to at least one of the arched beams to cause further arching as a result of thermal expansion thereof, and thereby cause displacement of the coupler along the predetermined direction. Internal heating of the arched beams by passing current through the arched beams may be used. External heating sources may also be used. The coupler may be attached to a capacitor plate to provide capacitive sensors such as flow sensors. The coupler may also be attached to a valve plate to provide microvalves. Compensating arched beams may be used to provide ambient temperature insensitivity.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: June 1, 1999
    Assignee: MCNC
    Inventors: Robert L. Wood, Vijayakumar R. Dhuler
  • Patent number: 5821664
    Abstract: Shape memory alloy actuators comprising at least one hollow helical spring with an array of parallel shape memory alloy wires enclosed within or parallel and attached to each of the at least one hollow helical springs. Insulative end caps are attached to end of the at least one hollow helical springs, the insulative end caps defining electrodes for conducting electricity to the arrays of parallel shape memory alloy wires. Voltage means are connected to the electrodes for selectively providing electrical energy to the parallel array of shape memory alloy wires, causing the parallel array of shape memory alloy wires to expand and contract, providing either motion or measurement functions.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: October 13, 1998
    Inventor: Moshen Shahinpoor
  • Patent number: 5597976
    Abstract: The invention encompasses a torus formed by heated and cooled junctions of dissimilar metals such as copper and nickel to generate a low voltage current and form an electrical path of greatly enhanced conductivity wherein a greater current flow may be induced to form a stronger magnetic field. Current at higher voltage may be incrementally removed by magnetic field arrangements to act as magnetic variable switches while at the same time the magnetic field is contained and current also flows through the torus.
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: January 28, 1997
    Inventor: Jon M. Schroeder