Vacuum-type Tube Patents (Class 313/495)
  • Patent number: 9034212
    Abstract: An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 19, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Patent number: 9034205
    Abstract: The formula of a luminescent material is NaY1-xLnxGeO4, wherein Ln is lanthanon, and the value of x is 0<x?0.2. The luminescent material adulterated with lanthanon constitutes germanate luminescent material comprising lanthanon, which improves efficiently the stability and luminescent performance of the luminescent material. The presence of lanthanon enables the luminescent material to emit light with different colors such as red, green, blue, etc. under the excitation of cathode rays, and be better used in a filed emission device. In the preparation method of the luminescent material, source components are mixed up and directly and sintered, and the luminescent material is acquired.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 19, 2015
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Chaopu Shi, Wenbo Ma
  • Patent number: 9006964
    Abstract: The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Lightlab Sweden AB
    Inventor: Qiu-Hong Hu
  • Patent number: 8994260
    Abstract: Silicon substrate having (100) crystal orientation can be wet etched to form (111) sharp tip pyramids. The sharp tip pyramids can be used to fabricate electrodes for flat panel displays, such as a plasma display panel or a field emission display.
    Type: Grant
    Filed: October 5, 2013
    Date of Patent: March 31, 2015
    Inventors: Srinivas H. Kumar, Ananda H. Kumar, Tue Nguyen
  • Patent number: 8950903
    Abstract: The present invention relates to an LED light bulb emitting light rays in a downward direction comprising a lamp cap, a base, a lamp body and a lamp cover, characterized in that, a reflector assembly is arranged in the center of a spherical cavity of the lamp cover; the reflector assembly is composed of a reflector support and a reflector fastened to the reflector support; the reflector support is composed of a small-diameter upper ring, a large-diameter lower ring, a plurality of poles connecting the upper ring and the lower ring, and a fastener at the bottom of the lower ring for fastening the reflector; the reflector is composed of a trumpet-shaped milky cover and a hook fastener arranged on an inner ring surface of an opening at the bottom of the cover for fastening the fastener of the reflector support.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: February 10, 2015
    Inventors: Daisung Moon, Sangpil Moon
  • Patent number: 8933864
    Abstract: A flat panel display including a plurality of electrically addressable pixels; using a passive matrix on a first substrate, a passivating layer on at least partially around the pixels; a conductive frame on the passivating layer, and a plurality of cold cathode emitters on select portions of the conductive frame within the display, wherein exciting the conductive frame and addressing one of the pixels using the associated passive matrix causes electrons to strike at least one of the pixels and result in the emission of light from those pixels. Using a metal layer (ML) on a second substrate the extent of electrons emitted is enhanced through the incorporation of a noble gas or mixture thereof, causing a multiplication of the electrons emitted by the cold cathode when the gas is ionized.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: January 13, 2015
    Assignee: CopyTele, Inc.
    Inventors: Frank J. DiSanto, Denis Krusos
  • Patent number: 8922122
    Abstract: The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufaturing Company, Ltd.
    Inventors: Chih-Hong Hwang, Chun-Lin Chang, Nai-Han Cheng, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 8901806
    Abstract: A novel display device with higher reliability having a structure of blocking moisture and oxygen, which deteriorate the characteristics of the display device, from penetrating through a sealing region and a method of manufacturing thereof is provided.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Hiromichi Godo, Kaoru Tsuchiya
  • Patent number: 8901807
    Abstract: A metal gate electrode for a field emission device includes a plurality of metal strips. Some of the metal strips are arranged substantially along a first direction, and other metal strips are arranged substantially along a second direction substantially perpendicular to the first direction. The metal strips are connected to each other to define a plurality of rectangular apertures through which electrons can pass.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hai-Yan Hao, Shou-Shan Fan
  • Patent number: 8872418
    Abstract: A field emission display is also provided. The field emission display includes a plurality of pixel units. Each of the plurality of pixel units includes a first electrode located on the insulating substrate; a plurality of first electron emitters located on and electrically connected to the first electrode; a first phosphor layer located on the first electrode; a second electrode located on the insulating substrate and spaced from the first electrode, wherein the second electrode extends at least partly around the first electrode; a plurality of second electron emitters located on and electrically connected to the second electrode; and a second phosphor layer located on the second electrode.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 28, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8847476
    Abstract: Embodiments of the invention include methods and devices for producing light by injecting electrons from field emission cathode across a gap into nanostructured semiconductor materials, electrons issue from a separate field emitter cathode and are accelerated by a voltage across a gap towards the surface of the nanostructured material that forms part of the anode. At the nanostructure material, the electrons undergo electron-hole (e-h) recombination resulting in electroluminescent (EL) emission. In a preferred embodiment lighting device, a vacuum enclosure houses a field emitter cathode. The vacuum enclosure also houses an anode that is separated by a gap from said cathode and disposed to receive electrons emitted from the cathode. The anode includes semiconductor light emitting nano structures that accept injection of electrons from the cathode and generate photons in response to the injection of electrons.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 30, 2014
    Assignee: The Regents of the University of California
    Inventor: Deli Wang
  • Patent number: 8841830
    Abstract: A field emission cathode device includes a substrate and a carbon nanotube structure. The substrate includes a first surface. The carbon nanotube structure defines a contact body and an emission body. The contact body is contacted to the first surface of substrate. The emission body is curved away from the first surface. The carbon nanotube structure includes a number of carbon nanotubes joined end to end from the contact body to the emission body to form a continuous structure.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 23, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8835884
    Abstract: A charged particle beam apparatus including a charged particle emission gun with which cleaning of a tip is possible without stopping the operation of the charged particle emission gun for a long time and without heating the tip. The charged particle emission gun includes a cleaning photo-irradiation apparatus that generates ultraviolet light or infrared light to irradiate a tip, and an optical fiber for guiding the ultraviolet light or the infrared light toward the tip. The cleaning photo-irradiation apparatus generates ultraviolet light or an infrared light with a predetermined wavelength and intensity to desorb a molecule adsorbed on the tip through photon stimulated desorption, or to desorb a molecule adsorbed on the tip through photon stimulated desorption and ionize the desorbed molecule.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Noriaki Arai
  • Patent number: 8823605
    Abstract: An incandescent light source display includes a container and a number of incandescent light sources. The incandescent light sources are located in the container. Each of the incandescent light sources includes a first electrode, a second electrode and an incandescent element. The second electrode is spaced from the first electrode. The incandescent element is electrically connected to the first electrode and the second electrode. The incandescent element includes a carbon nanotube structure.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: September 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8786171
    Abstract: A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: July 22, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Qingtao Li
  • Patent number: 8778469
    Abstract: When local heating by use of laser sealing or the like is applied, the bonding strength between glass substrates and a sealing layer is improved to provide an electronic device having increased reliability. An electronic device includes a first glass substrate, a second glass substrate, and a sealing layer to seal an electronic element portion disposed between these glass substrates. The sealing layer is a layer obtained by locally heating a sealing material by an electromagnetic wave, such as laser light or infrared light, to melt-bond the sealing material, the sealing material containing sealing glass, a low-expansion filler and an electromagnetic wave absorber. In the first and second glass substrates, each reacted layer is produced to have a maximum depth of at least 30 nm from an interface with the sealing layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 15, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Sohei Kawanami, Yoshinori Ami, Yoko Mitsui
  • Patent number: 8766522
    Abstract: Improved field emission cathodes comprise a fiber of highly aligned and densely packed single-wall carbon nanotubes, double-wall carbon nanotubes, multi-wall carbon nanotubes, grapheme nanoribbons, carbon nanofibers, and/or carbon planar nanostructures. The fiber cathodes provide superior current carrying capacity without degradation or adverse effects under high field strength testing. The fibers also can be configured as multi-fiber field emission cathodes, and the use of low work function coatings and different tip configurations further improves their performance.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: July 1, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Steven B Fairchild, Benji Maruyama
  • Patent number: 8727827
    Abstract: A method for making field emission electron source comprises following steps. An insulating layer is coated on outer surface of a linear carbon nanotube structure. A field emission electron source preform is formed by locating a plurality of conductive ring on outer surface of the insulating layer, wherein the plurality of conductive ring is space from each other, and each conductive ring comprises a first ring face and a second ring face opposite to the first ring face. A plurality of field emission electron source is formed by cutting off the plurality of conductive ring, the insulating layer, and the linear carbon nanotube structure, wherein each field emission electron source comprises at least one conductive ring, and a ring face of the conductive ring, end surface of the insulating layer, and end surface of the linear carbon nanotube structure are coplanar.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 20, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Cai-Lin Guo, Jie Tang, Peng Liu, Shou-Shan Fan
  • Patent number: 8729787
    Abstract: The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 20, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 8716926
    Abstract: A backlight unit includes a first substrate including an anode electrode; and a second substrate including a cathode electrode and an electron emission element, wherein the cathode electrode includes a terminal portion and at least one electrode strip extending from the terminal portion, and the electrode strip includes an electron emission portion on which the electron emission element is mounted and a junction portion which is disposed between the terminal portion and the electron emission portion, and wherein the closer the junction portion is to the terminal portion the greater the width of the junction portion is.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-jeong Cho, Hun-su Kim, Bok-chun Yun
  • Publication number: 20140049184
    Abstract: A field emission display is also provided. The field emission display includes a plurality of pixel units. Each of the plurality of pixel units includes a first electrode located on the insulating substrate; a plurality of first electron emitters located on and electrically connected to the first electrode; a first phosphor layer located on the first electrode; a second electrode located on the insulating substrate and spaced from the first electrode, wherein the second electrode extends at least partly around the first electrode; a plurality of second electron emitters located on and electrically connected to the second electrode; and a second phosphor layer located on the second electrode.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 20, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: PENG LIU, SHOU-SHAN FAN
  • Patent number: 8643265
    Abstract: In a backlight assembly, a light emitting module is divided into a plurality of light generating blocks each sequentially outputting a plurality of primary colors of light having different wavelengths. The light emitting module includes first and second base substrates, and a plurality of electroluminescent units disposed between the first and second base substrates and arranged in each of the light generating blocks. The light emitting module includes a barrier arranged corresponding to a boundary between two adjacent light generating blocks between the first and second base substrates to prevent the primary colors of light from traveling an adjacent light generating block. Thus, a mixture of colored light from the light generating blocks is prevented, thereby improving color reproducibility of the display apparatus.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Haeil Park, Jinseob Byun, Gunwoo Kim
  • Publication number: 20140027655
    Abstract: A tubular or spherical nanostructure composed of a plurality of peptides, wherein each of the plurality of peptides includes no more than 4 amino acids and whereas at least one of the 4 amino acids is an aromatic amino acid.
    Type: Application
    Filed: November 8, 2012
    Publication date: January 30, 2014
    Applicant: Ramot at Tel-Aviv University Ltd.
    Inventor: Ramot at Tel-Aviv University Ltd.
  • Publication number: 20140028192
    Abstract: In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Alfons Dehe, Damian Sojka, Andre Schmenn, Carsten Ahrens
  • Patent number: 8638275
    Abstract: An incandescent light source display includes a substrate, a plurality of first electrode down-leads, a plurality of second electrode down-leads and a plurality of heating units. The plurality of first electrode down-leads are located on the substrate in parallel to each other and the plurality of second electrode down-leads are located on the substrate in parallel to each other. The first electrode down-leads cross the second electrode down-leads and corporately define a grid having a plurality of cells. Each of the incandescent light sources is located in correspondence with each of the cells. Each incandescent light source includes a first electrode, a second electrode and an incandescent element. The incandescent element includes a carbon nanotube structure.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 28, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8629609
    Abstract: Disclosed herein is a triode-type field emission device, in particular for high frequency applications, having a cathode electrode, an anode electrode spaced from the cathode electrode, a control gate electrode arranged between the anode electrode and the cathode electrode, and at least a field-emitting tip; the cathode, control gate and anode electrodes overlapping in a triode area at the field-emitting tip and being operable to cooperate with the field-emitting tip for generation of an electron beam in the triode area. The cathode, control gate and anode electrodes do not overlap outside the triode area, and have a main direction of extension along a respective line; each of these respective lines being inclined at a non-zero angle with respect to each one of the others.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 14, 2014
    Assignee: Selex Sistemi Integrati S.p.A.
    Inventors: Aldo Di Carlo, Claudio Paolini, Eleonora Petrolati, Francesca Brunetti, Riccardo Riccitelli
  • Patent number: 8624477
    Abstract: The present application relates to a carbon nanotube field emitter. The carbon nanotube field emitter includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes joined end-to-end by van der waals attractive force. The carbon nanotube structure has two joined portions, one portion is a triangle shaped carbon nanotube film, which is an electron emitting portion, the other portion is a carbon nanotube wire, which is a support portion.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8624480
    Abstract: The distance between filamentary cathodes and a phosphor on an anode substrate can be reduced by shortening the distance between the filamentary cathodes and a grid. To obtain high luminance without loss of display quality, the present invention provides a vacuum fluorescent display (1) with a driver IC, comprising a display unit (3) provided with a phosphor layer on an anode substrate (2), a plurality of filamentary cathodes (5), a grid (4), a driver IC (6), and a filament support (7) for shielding the IC and supporting an end part of the filamentary cathodes. The end part of the filamentary cathodes is fixed to one short side of the vacuum fluorescent display at a long side of the filament support. Depressions are provided to a surface of the filament support, or slits are provided to the filament support.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 7, 2014
    Assignees: Noritake Itron Corporation, Noritake Co., Limited
    Inventor: Tadami Maeda
  • Patent number: 8618726
    Abstract: A field emission panel includes: a first glass plate which comprises a phosphor layer, a second glass plate which is disposed in parallel to the first glass plate and comprises a plurality of electron emission elements; and a sealing member which is interposed between the first and the second glass plates to seal a space between the first and the second glass plates, wherein a part of the sealing member is hidden inside the first and the second glass plates and the other part of the sealing member is exposed to outsides of the first and the second glass plates.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: December 31, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-seung Cho, Jun-ho Sung, Sang-hyuck Ahn
  • Patent number: 8614581
    Abstract: A vacuum ionization gauge includes a cold cathode, a shield electrode, an anode ring, and a collector. The shield electrode includes a receiving space. The anode ring is located in the receiving space of the shield electrode. The cold cathode includes a field emission unit and a grid electrode corresponding to the field emission unit. The field emission unit includes at least one emitter. Each of the at least one emitter includes a carbon nanotube pipe. The carbon nanotube pipe has a first end, a second end, and a main body connecting to the first end and the second end. The second end has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 24, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8604680
    Abstract: A pixel element includes a substrate layer, a reflector layer, and an emitter layer, electrically isolated from the reflector layer. A first potential is applied to the reflector layer, wherein a potential difference between the emitter layer and the corresponding one reflector layer is operable to draw electrons from the emitter layer to the corresponding reflector layer. The pixel element also includes a transparent layer oppositely positioned a predetermined distance from the emitter layer. The transparent layer has a conductive layer deposited thereon. A second potential is applied to the conductive layer to attract electrons reflected from the reflective layer. The pixel element also includes at least one phosphor layer on the conductive layer oppositely opposed to the corresponding reflector layer. The emitter layer includes a plurality of nanostructures.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: December 10, 2013
    Assignee: Copytele, Inc.
    Inventors: Denis A. Krusos, Anthony J. Campisi, Sergey L. Shokhor
  • Patent number: 8604681
    Abstract: Described herein are improved ion thruster components and ion thrusters made from such components. Further described are methods of making and using the improved ion thruster components and ion thrusters made therefrom. An improved cathode includes an emitter formed from a plurality of vertically aligned carbon nanotubes. An ion thruster can include the improved cathode.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: William Judson Ready, Mitchell L. R. Walker, II
  • Patent number: 8598774
    Abstract: A field emission device includes an insulating substrate, a number of first electrode down-leads, a number of second electrode down-leads, and a number of electron emission units. The first electrode down-leads are set an angle relative to the second electrode down-leads to define a number of cells. Each electron emission unit is located in each cell and includes a first electrode, a second electrode, and a plurality of electron emitters. The second electrode extends surrounding the first electrode. The plurality of electron emitters located on and electrically connected to at least one of the first electrode and the second electrode. A field emission display is also provided.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 3, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8593049
    Abstract: A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 26, 2013
    Assignees: Samsung Electronics Co., Ltd., Korea University Research and Business Foundation
    Inventors: Yoon-chul Son, Yong-chul Kim, Jeong-na Heo, Woo-sung Cho, Byeong-kwon Ju
  • Patent number: 8593047
    Abstract: A pixel tube for field emission display includes a sealed container, an anode, a phosphor, and a cathode. The sealed container has a light permeable portion. The anode is located in the sealed container and spaced from the light permeable portion. The phosphor layer is located on the anode. The cathode is spaced from the anode and includes a cathode emitter. The cathode emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 26, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8593052
    Abstract: The present invention discloses a method for modifying a carbon nanotube electrode interface, which modifies carbon nanotubes used as a neuron-electrode interface by performing three stages of modifications and comprises the steps of: carboxylating carbon nanotubes to provide carboxyl functional groups and improve the hydrophilicity of the carbon nanotubes; acyl-chlorinating the carboxylated carbon nanotubes to replace the hydroxyl functional groups of the carboxyl functional groups with chlorine atoms; and aminating the acyl-chlorinated carbon nanotubes to replace the chlorine atoms with a derivative having amine functional groups at the terminal thereof. The modified carbon nanotubes used as the neuron-electrode interface has lower impedance and higher adherence to nerve cells. Thus is improved the quality of neural signal measurement.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 26, 2013
    Assignee: National Tsing Hua University
    Inventors: Shiang-Jie Yen, Huan-Chieh Su, Tri-Rung Yew, Yen-Chung Chang, Wei-Lun Hsu, Shih-Rung Yeh
  • Patent number: 8581486
    Abstract: The present disclosure provides a field emission device. The field emission device includes an insulating substrate having a first surface, a first electrode, a second electrode, at least one cathode emitter and a secondary electron emitter. The first electrode and the second electrode are spaced from each other and are located on the first surface of the insulating substrate. The cathode emitter is electrically connected to the first electrode and spaced from the second electrode. A secondary electron emitter is spaced from the cathode emitter. The secondary electron emitter has an electron emitting surface exposed to the cathode emitter. A secondary electron emitter is spaced from the cathode emitter. The cathode emitter is oriented toward the secondary electron emitter.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Duan-Liang Zhou, Pi-Jin Chen, Shou-Shan Fan
  • Patent number: 8575832
    Abstract: The present invention relates to a field emission display, which includes: a base substrate; a plurality of cathode strips, disposed over the base substrate; an insulating layer, disposed over the cathode strips and having a plurality of openings, therewith the openings corresponding to the cathode strips; a plurality of anode strips, disposed over the insulating layer, where the cathode strips and the anode strips are arranged into a matrix and the anode strips individually have at least one impacted surface; and a plurality of subpixel units, individually including: an emissive region having a phosphor layer disposed over the impacted surface; and at least one emissive protrusion, corresponding to the emissive region and disposed in the openings to electrically connect to the cathode strips and protrude out of the openings. Accordingly, the present invention can enhance light utilization efficiency of a field emission display.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Tatung Company
    Inventors: Tzung-Han Yang, Chi-Tsung Lo
  • Patent number: 8569941
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 29, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Patent number: 8558444
    Abstract: A field emission type surface light source device and an image display apparatus employing the same. The field emission type surface light source device includes a first substrate and a second substrate that are disposed to face each other; a sealing member that seals the first substrate and the second substrate; first electrodes and second electrodes that are disposed on the first substrate such that the first electrodes cross the second electrodes in an insulated state; electron emitters that are electrically connected to one of the first electrodes and the second electrodes; a phosphor layer that is disposed on one surface of the second substrate; a third electrode that is disposed on one surface of the phosphor layer; and a first terminal and a second terminal that are electrically connected the first electrodes and the second electrodes, respectively, and are disposed on a same side of the first substrate outside of a region sealed by the sealing member.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-seung Cho, Byong-gon Lee
  • Patent number: 8552632
    Abstract: A flat panel display is disclosed. The flat panel display includes a plurality of electrically addressable pixels, a plurality of thin-film transistor driver circuits each been electrically coupled to an associated at least one of the pixels, respectively, a passivating layer on the thin-film transistor driver circuits and at least partially around the pixels, a conductive frame on the passivating layer, and a plurality of nanostructures on the conductive frame, wherein, creating a voltage difference between the pixels and the conductive frame by addressing one of the pixels using the associated driver circuit causes the nanostructures to emit electrons that induce a corresponding one of the pixels to emit light. The display further comprising a nano material deposited on a metal cathode layer. The nano-material providing additional electron emission through secondary electron emission.
    Type: Grant
    Filed: July 16, 2011
    Date of Patent: October 8, 2013
    Assignee: Copytele, Inc.
    Inventors: Denis A. Krusos, Anthony J. Campisi
  • Patent number: 8542493
    Abstract: A flat display apparatus has a flat display panel; a frame that is installed on a rear face side of the display panel; a cover that covers at least a rear face side of the frame; and a high-voltage power supply that applies high voltage to the display panel. The high-voltage power supply has a plurality of cases, each of which encloses one or more transformers and rectifier circuits, and obtains high voltage by connecting the plurality of cases in series, and the plurality of cases are arranged in a space created between the frame and the cover so as to be disposed on a plane in parallel with a screen of the display panel.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: September 24, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naoto Abe, Eisaku Tatsumi, Tatsuya Nakajima
  • Patent number: 8531097
    Abstract: Disclosed is a field emitter, including: a cathode electrode in a shape of a tip; an emitter having a diameter smaller than a diameter of the cathode electrode and formed on the cathode electrode; and a gate electrode having a single hole and located above the emitter while maintaining a predetermined distance from the emitter.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 10, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Woo Jeong, Jun Tae Kang, Yoon Ho Song, Jae Woo Kim
  • Patent number: 8531096
    Abstract: A field emission device includes; a substrate including at least one groove, at least one metal electrode disposed respectively in the at least one groove, and carbon nanotube (“CNT”) emitters disposed respectively on the at least one metal electrode, wherein each of the CNT emitters includes a composite of Sn and CNTs.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-chul Son, Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Patent number: 8525411
    Abstract: An electrically heated planar cathode for use in miniature x-ray tubes may be spiral design laser cut from a thin tantalum alloy ribbon foil (with grain stabilizing features). Bare ribbon is mounted to an aluminum nitride substrate in a manner that is puts the ribbon in minimal tension before it is machined into the spiral pattern. The spiral pattern can be optimized for electrical, thermal, and emission characteristics.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: September 3, 2013
    Assignee: Thermo Scientific Portable Analytical Instruments Inc.
    Inventors: Mark T. Dinsmore, David J. Caruso
  • Patent number: 8525401
    Abstract: A display panel with secured mechanical reliability comprises: a first plate including a display region and a non display region, a second plate facing the first plate, a first frit portion interposed between the first plate and the second plate and sealing the display region from outside, and a second frit portion separated from the first fit portion and comprising a plurality of sub-frits isolated from each other. The sub-frits are located between a first line which passes through points closest to edges of the first plate among outer points of the first frit portion with respect to a sealed space and extends parallel to the edges of the first plate and a second line which passes through points furthest from the edges of the first plate among inner points of the first frit portion with respect to the sealed space and extends parallel to the edges of the first plate.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 3, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Choong-Ho Lee
  • Patent number: 8513868
    Abstract: In a display panel, a conductive member subjected to a prescribed electric potential lower than an anode potential is disposed on a first insulating substrate at a location spaced apart from an anode terminal subjected to the anode potential. An insulating member is disposed on the conductive member such that the insulating member includes a part located closer to the anode terminal than an end, on a side facing the anode terminal, of the conductive member and such that a gap is provided between the part and the first insulating substrate.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsushi Hori, Koji Yamazaki, Kinya Kamiguchi
  • Patent number: 8513869
    Abstract: An image display apparatus includes first and second substrates, an electron emitting device, light emitting members, and a spacer located between the first and second substrates. Straight-line ribs higher than the light emitting members are formed on the second substrate with one of the lines of light emitting members interposed between each adjacent pair of ribs. The spacer extends in a second direction intersecting a first direction in which the ribs extend, and is located between the light emitting members adjacent to each other in the first direction. The ribs include first and second ribs, and each first rib includes a wide portion where it intersects the spacer, the wide portion having a large width in the second direction and being higher than parts of the second ribs intersecting the spacer, at least one of the second ribs being disposed between each adjacent pair of first ribs.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 20, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsushi Noguchi, Yoshitaka Ishioka
  • Patent number: 8487977
    Abstract: A video conference system provides “in the room” telepresence to near end participants. The video conference system includes a frameless or bezelless display device placed in front of a front wall for displaying edge-to-edge 3D images of far end participants. Color of the near end front wall is configured to be the same as the color of the far end rear wall. As a result, images displayed on the display device can merge or blend into the near end front wall, giving the near end participants the perception that the far end participants are actually in the near end conference room. Brightness of the faces/bodies of the near end participants can also be adjusted to match the brightness of the face/bodies of the images of the far end participants as they appear on the display device—therefore enhancing the in the room perception of the far end participants.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 16, 2013
    Assignee: Polycom, Inc.
    Inventors: Youssef Saleh, Gopal Paripally
  • Patent number: 8481860
    Abstract: A conductive paste composition is provided. The conductive paste composition includes 20 to 70 weight % of silver nanoparticles having an average particle size of 1 nm to 250 nm based on a total weight of the conductive paste composition, and 0.01 to 2 weight % of silver-decorated carbon nanotubes based on the total weight of the conductive paste composition.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 9, 2013
    Assignee: LS Cable & System, Ltd
    Inventors: Yoon-Jin Kim, Chang-Mo Ko, Ho-Souk Cho