Three Or More Stages Patents (Class 315/15)
  • Patent number: 11929230
    Abstract: A large current electron beam is stably emitted from an electron gun of a charged particle beam device. The electron gun of the charged particle beam device includes: a SE tip 202; a suppressor 303 disposed rearward of a distal end of the SE tip; a cup-shaped extraction electrode 204 including a bottom surface and a cylindrical portion and enclosing the SE tip and the suppressor; and an insulator 208 holding the suppressor and the extraction electrode. A shield electrode 301 of a conductive metal having a cylindrical portion 302 is provided between the suppressor and the cylindrical portion of the extraction electrode. A voltage lower than a voltage of the SE tip is applied to the shield electrode.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 12, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Keigo Kasuya, Akira Ikegami, Kazuhiro Honda, Masahiro Fukuta, Takashi Doi, Souichi Katagiri, Aki Takei, Soichiro Matsunaga
  • Patent number: 11192187
    Abstract: An additive manufacturing device utilizing an electron beam and laser integrated scanning comprises: a vacuum generating chamber (1); a worktable means having a forming region at least provided in the vacuum generating chamber (1); a powder supply means configured to supply a powder to the forming region; an electron-beam emission focusing and scanning means (6) and an laser-beam emission focusing and scanning means (7) configured in such a manner that a scanning range of the electron-beam emission focusing and scanning means (6) and a scanning range of the laser-beam emission focusing and scanning means (7) cover at least a part of the forming region; and a controller configured to control the electron-beam emission focusing and scanning means (6) and the laser-beam emission focusing and scanning means (7) to perform a powder integrated-scanning and forming treatment on the forming region.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: December 7, 2021
    Assignee: Tsinghua University
    Inventors: Feng Lin, Bin Zhou, Chao Guo, Wenjun Ge, Lei Zhang
  • Patent number: 11113997
    Abstract: A multi-view display device is provided. The multi-view display device includes a display panel having a plurality of pixels disposed in a matrix arrangement, adjacent first and second pixels of the plurality of pixels constituting a group pixel; a barrier disposed on the display panel and having an opening that transmits light and a shielding portion that shields light; and a driver configured to selectively drive the display panel in a normal driving mode, a narrow viewing angle mode, and a multi-view mode by controlling signals applied to the first and second pixels. The opening is overlapped with the first pixel, and the shielding portion is overlapped with the second pixel.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: September 7, 2021
    Assignee: LG Display Co., Ltd.
    Inventors: Seok Kim, HyeonHo Son, Hanchul Park
  • Patent number: 10165994
    Abstract: A handheld X ray device comprises a camera-like X ray generator body having a zoom ring-like object at a front side of the X ray generator body as an exit of X rays and has a collimator section atop a surface of the zoom ring-like object. The camera-like X ray generator body inside has a voltage boosting circuit, an oscillator circuit, a battery, and a control circuit, and a user interface at a real panel of the camera-like X ray generator body. The glass ball-tube is a cold cathode type X-ray generator with a tungsten filament at a periphery of a cold cathode. The voltage boosting circuit, the oscillator circuit, boosting the voltage of the battery up to a predetermined high voltage under controlled of the control circuit assisting by the user interface.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 1, 2019
    Assignee: Energy Resources International Co., Ltd.
    Inventors: Wen-How Lan, Yi-Teng Shiu, Hung-Chiang Huang, Reng-Sho Chen, Shu-Fen Liao, Yu-Wei Chen
  • Patent number: 8957390
    Abstract: A gun arrangement configured for generating a primary electron beam for a wafer imaging system is described. The arrangement includes a controller configured for switching between a normal operation and a cleaning operation, a field emitter having an emitter tip adapted for providing electrons and emitting an electron beam along an optical axis, an extractor electrode adapted for extracting the electron beam from the emitter tip electrode, a suppressor electrode, and at least one auxiliary emitter electrode arranged radially outside the suppressor electrode, and provided as a thermal electron emitter for thermally emitting electrons towards the optical axis.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: February 17, 2015
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Pavel Adamec
  • Publication number: 20140264019
    Abstract: A gun arrangement configured for generating a primary electron beam for a wafer imaging system is described. The arrangement includes a controller configured for switching between a normal operation and a cleaning operation, a field emitter having an emitter tip adapted for providing electrons and emitting an electron beam along an optical axis, an extractor electrode adapted for extracting the electron beam from the emitter tip electrode, a suppressor electrode, and at least one auxiliary emitter electrode arranged radially outside the suppressor electrode, and provided as a thermal electron emitter for thermally emitting electrons towards the optical axis.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 18, 2014
    Applicant: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik GmbH
    Inventor: Pavel ADAMEC
  • Publication number: 20130134324
    Abstract: One embodiment relates to a high-voltage electron gun including an insulator stand-off having a resistive layer. The resistive layer is at least on an interior surface of the insulator stand-off. A cathode holder is coupled to one end of the insulator 115 stand-off, and an anode is coupled to the other end. The resistive layer advantageously increases the surface breakdown field strength for the insulator stand-off and so enables a compact design for the high-voltage electron gun. Other embodiments, aspects and feature are also disclosed.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 30, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventor: KLA-TENCOR CORPORATION
  • Patent number: 8217577
    Abstract: An apparatus and method of modulating an electron beam to induce a high degree of spatial bunching uses multiple control grids located in close proximity to an electron-emitting cathode. An RF field couples to the electron beam in the cathode-grid gap to induce velocity modulation. The electron beam then propagates through a first control grid, allowing the velocity modulation to induce spatial bunching. The electron beam then traverses a gap between the first grid and a second control grid and interacts with the RF field to induce further bunching of the beam. Simulations show that bunching factors of 50:1 may be achieved.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 10, 2012
    Assignee: L-3 Communications Corporation
    Inventors: Mark Frederick Kirshner, Craig Bisset Wilsen, Richard Donald Kowalczyk, Carter Michael Armstrong
  • Publication number: 20120126697
    Abstract: System that focuses electron beams in an electro-static area to a laminar flow of electrons with uniform distribution of current density and extraordinary demagnification includes a housing having a first interior portion and a second interior portion electrically insulated from the first interior portion. The second interior portion has an electric field-free space. An electrode system is disposed in the first interior portion and includes a cathode assembly and at least one anode assembly. The cathode assembly generates an electron beam that passes through each anode assembly and then into the electric field-free space in the second interior portion. A position of a crossover point on a longitudinal axis maybe regulated by varying dimensions of a substantially cylindrical portion of the anode assembly and a substantially cylindrical portion of a near-cathode electrode assembly.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 24, 2012
    Applicant: ATTI INTERNATIONAL SERVICES COMPANY, INC.
    Inventors: Artush A. ABGARYAN, Eli LEVI
  • Publication number: 20110050097
    Abstract: An apparatus and method of modulating an electron beam to induce a high degree of spatial bunching uses multiple control grids located in close proximity to an electron-emitting cathode. An RF field couples to the electron beam in the cathode-grid gap to induce velocity modulation. The electron beam then propagates through a first control grid, allowing the velocity modulation to induce spatial bunching. The electron beam then traverses a gap between the first grid and a second control grid and interacts with the RF field to induce further bunching of the beam. Simulations show that bunching factors of 50:1 may be achieved.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Inventors: MARK FREDERICK KIRSHNER, CRAIG BISSET WILSEN, RICHARD DONALD KOWALCZYK, CARTER MICHAEL ARMSTRONG
  • Patent number: 7312564
    Abstract: A cathode ray tube has an electron gun oriented along an axis (Z), comprising a quadrupolar device which comprises three electrodes (5, 6, 7). Each electrode possesses a central aperture, a right lateral aperture and a left lateral aperture all three substantially rectangular. The centers (c5.1, c7.1) of the central apertures of the three electrodes are aligned along the axis (Z) of the gun. The centers (c6.1, c6.3) of the left and right lateral apertures of the second electrode (6) are situated along respectively a first axis (z1) and a second axis (z3) that are parallel to the axis (Z) of the gun. The centers (c5.1, c7.1) of the left and right lateral apertures (5.1, 5.3, 7.1, 7.3) of the first and/or of the third electrode (5,7) are offset with respect to the axes (z1, z3) passing through the centers of the apertures of the second electrode. Such an arrangement makes it possible to correct the MODEC defects.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: December 25, 2007
    Assignee: Thomson Licensing
    Inventors: Nicolas Gueugnon, Pierre Bizot, Grégoire Gissot, Nicolas Richard
  • Patent number: 7135813
    Abstract: A main lens is formed by a focus electrode, an intermediate electrode, and an anode electrode successively arranged in a traveling direction of an electron beam. The focus electrode and the anode electrode respectively have an electron beam passage aperture common to three electron beams, having a major axis in a horizontal direction in a portion opposed to the intermediate electrode, and three electron beam passage apertures through which the three electron beams pass are formed respectively in the focus electrode and the anode electrode. Aperture dimensions in a vertical direction of the electron beam passage apertures common to the three electron beams formed respectively in the focus electrode and the anode electrode are smaller than those in the vertical direction of the electron beam passage apertures formed in portions of the intermediate electrode respectively opposed to the focus electrode and the anode electrode.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: November 14, 2006
    Assignee: Matsushita Toshiba Picture Display Co., Ltd.
    Inventors: Tsutomu Takekawa, Hirofumi Ueno
  • Patent number: 7045976
    Abstract: Electron gun for cathode ray tube comprising aligned in series along an axis XX? an electron-emitting cathode K, electrodes G1 and G2 for the formation of an electron beam, a prefocusing electron lens G3, G4, G5, a first quadripolar device G7, G8 electrically controlled in a dynamic manner in synchronism with the screen scan so as to correct beam focusing defects at the screen edge, a main electron lens G8–G9 making it possible to focus the electron beam onto a screen. It also comprises a second quadripolar device G5, G6, G7situated between the prefocusing electron lens G3, G4 and the first quadripolar device and comprising electrodes G5, G6, G7exhibiting rectangular apertures. Those of G5 and G7 are parallel and those of G6 are orthogonal to those of G5 and G7. The electrodes G5 and G7 are placed at a fixed polarization potential, and the electrode G6 is at a polarization potential varying in synchronism with the screen scan.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: May 16, 2006
    Assignee: Thomson Licensing
    Inventors: Grégoire Gissot, Nicolas Richard, Nicolas Gueugnon, Pierre Bizot
  • Patent number: 6952077
    Abstract: An electron gun for a cathode ray tube includes a cathode for radiating electron beams, a scanning velocity modulation coil for synchronizing the electron beams with an image signal, a focus electrode having first and second sub-electrodes disposed with a gap through which a magnetic field generated by the scanning velocity modulation coil passes, a plurality of grid electrodes with the focus electrode for controlling the electron beams radiated from the cathode, a support for aligning and supporting the grid electrodes, and a shield electrode electrically connected to the first and second sub-electrodes to protect against infiltration of an outer electric field. The shield electrode includes plural intermediate electrodes disposed in the gap between the first and second sub-electrodes, and electrical connecting unit for electrically connecting the intermediate electrodes to the first and second sub-electrodes. The intermediate electrodes are spaced away from each other.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: October 4, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duk-Sung Park, Yeong-Guon Won, Bong-Wook Jung, Se-Ja-Chul Hwang
  • Patent number: 6888299
    Abstract: An electron gun for a cathode ray tube and a cathode ray tube using such electron gun is provided. The electron gun includes a cathode for emitting an electron beam; a plurality of grid electrodes aligned sequentially from the cathode, one of the grid electrodes including a plurality of focusing electrodes that are mounted with a predetermined gap therebetween; a support for fixing the grid electrodes in their aligned arrangement; and a shield electrode mounted covering the gap(s) of the focusing electrodes and extending a predetermined distance over the focusing electrodes. The cathode ray tube includes the electron gun; a neck, within which the electron gun is mounted; and a scanning velocity modulation coil mounted on an outer circumference of the neck corresponding to the positioning of the gap(s) of the focusing electrodes.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 3, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Se Ja Chul Hwang, Duk-Sung Park, Yeong-Guon Won, Bong-Wook Jung
  • Patent number: 6841924
    Abstract: A low voltage Einzel gun design maximizes the size of the second main lens to reduce spherical aberrations thereby reducing spot-size and improving focus quality. The gun's final accelerator electrode is formed as an internal conductive coating on the neck, which is connected to anode potential through an anode button. The jumper between the final and second accelerator electrodes is removed and the second accelerator electrode is connected through the high voltage stem pin to an external potential. Connection of the high voltage stem pin to anode potential defines an Einzel gun. The focus electrode is now connected to one of the low voltage stem pins. In a high voltage Einzel gun, connecting the second accelerator electrode and focus electrode to the high voltage and a low voltage stem pin, respectively, would cause arcing between the pins.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: January 11, 2005
    Assignee: Intel Corporation
    Inventor: Thomas A. Skupien
  • Publication number: 20040251836
    Abstract: A prefocus lens section in an electron gun assembly includes a second grid that is disposed on an electron beam generating section side, a third grid that is disposed on a main lens section side, and a shield grid that is disposed between the second grid and the third grid. The shield grid is a cup-shaped electrode with a side wall that surrounds an outer peripheral part of the third grid, which part is located on the second grid side, and extends in parallel to a tube axis. The shield grid has a bottom surface disposed to face the second grid and has an open end disposed to face the third grid. A relationship, Ec<Vf<Er, is established, where Ec is a potential applied to the second grid, Vf is a potential applied to the shield grid, and Er is a potential applied to the third grid.
    Type: Application
    Filed: May 20, 2004
    Publication date: December 16, 2004
    Inventors: Osamu Ono, Shigeru Sugawara, Toshio Shimaoogi, Tomoyuki Hayama
  • Patent number: 6756748
    Abstract: An electron gun for a color CRT includes a triode unit including a cathode, a control electrode, and a screen electrode for emitting an electron beam, first and second auxiliary focusing electrodes sequentially installed coaxially with the triode unit, for forming auxiliary lenses, first and second focusing electrodes installed coaxially with the first and second electrodes, for forming a quadrupole lens, and a final acceleration electrode installed close to the second focusing electrode, for forming a main lens. In the electron gun, protruding portions having flat surfaces corresponding to opposite surfaces of the first and second focusing electrodes are formed on at least one of the opposite surfaces of the first and second focusing electrodes to change the profile of the electron beam by applying a dynamic focus voltage to the edge of electron beam passing holes formed in the opposite surfaces.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: June 29, 2004
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Cheol Bae, Young-Gon Hong
  • Patent number: 6756734
    Abstract: Expressing a perveance of an electron gun to be determined by a form of the electron gun as P&mgr;, a voltage to be impressed on an accelerating electrode Va and a beam current Ib, voltage Va which satisfies the following expression, Ib<P&mgr;×Va3/2 is impressed on the accelerating electrode. Further, the electric potential of the accelerating electrode is maintained at the highest level of all electrodes in the electron tube at all times.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 29, 2004
    Assignee: NEC Microwave Tube, Ltd.
    Inventors: Shunji Tsuida, Hironori Imura, Hideo Makishima
  • Patent number: 6713964
    Abstract: The present invention provides an electron gun for a cathode ray tube that forms a main focus lens of a maximum diameter within a neck of a limited diameter to thereby realize high focus performance and resolution characteristics. The electron gun includes a single cathode emitting electrons; first and second grid electrodes forming a triode portion with the cathode; a third grid electrode provided subsequent to the second grid electrode; a fourth grid electrode provided subsequent to the third grid electrode and to which a focus voltage is applied, the fourth grid electrode including an input section positioned opposing the third grid electrode and an output section connected to the input section; a fifth grid electrode mounted surrounding part of the fourth grid electrode with a predetermined gap therebetween and to which an anode voltage is applied; and a connector interconnecting the third grid electrode and the fifth grid electrode, wherein the output section of the fourth grid electrode is exposed.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: March 30, 2004
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yoo-Seon Kim, Wan-Jae Son
  • Patent number: 6693398
    Abstract: The present invention relates generally to an electron gun for a color cathode ray tube, and more particularly to an electron gun for achieving an excellent focus characteristic on the whole screen by forming a dynamic quadruple lens in the electron gun used for a transpose scan type cathode ray tube.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: February 17, 2004
    Assignee: LG. Philips Displays Korea Co., Ltd.
    Inventor: Sung Ho Cho
  • Patent number: 6642658
    Abstract: An electron gun for a cathode ray tube includes a cathode for radiating thermal electrons, control and screen electrodes disposed away from the cathode at a predetermined distance in respective order, a focus electrode disposed away from the screen electrode, the focus electrode having upper and lower cylinders and an inclined portion disposed between the upper and lower cylinders, and an anode electrode formed in a cylindrical shape, the upper cylinder, the inclined portion, and a part of the lower cylinder are disposed in the anode electrode. A length S1 of the upper cylinder in a direction of a tube axis is less than a length T1 of the inclined portion.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: November 4, 2003
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Tae-Sik Oh
  • Patent number: 6624559
    Abstract: There is provided a cathode ray tube capable of displaying high quality images by suppressing eddy current from occurring and by realizing the velocity modulation. A cylindrical focusing electrode is divided into first cylindrical focusing electrode 4B and second cylindrical focusing electrode 4T and the gap between the both electrodes formed and divided by optimizing the length of the second cylindrical focusing electrode 4T in the tube axial direction is enlarged substantially to increase the infiltration of the velocity modulating magnetic field to the non-electric space of the focusing electrode 4. An electrode 4a having the equal potential with the focusing electrode 4 is disposed at the gap to suppress eddy current from being generated.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: September 23, 2003
    Assignees: Hitachi Ltd, Hitachi Electronic Devices
    Inventors: Nobuyuki Suzuki, Toshio Nakayama, Yasuo Tanaka, Akiyoshi Tobe
  • Patent number: 6621202
    Abstract: A main lens is composed of a dynamic focus electrode, a first auxiliary electrode, a second auxiliary electrode and an anode, which are successively arranged in a direction of travel of electron beams. A sub-lens provided on a cathode side of the main lens is composed of a third grid, a fourth grid and a fifth grid. The first auxiliary electrode is connected to the fourth grid, and both are connected to a voltage supply terminal on a resistor near the fourth grid. A fixed focus voltage is applied to the third grid and fifth grid sandwiching the fourth grid.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: September 16, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Kimiya, Syunji Ookubo
  • Patent number: 6621221
    Abstract: A color cathode ray tube (CRT) has an electron-optical system (1) for generating three electron beams (EBR, EBG, EBB), deflection means (2) and a screen (3). In operation, the deflection means (2) deflect the electron beams (EBR, EBG, EBB), so as to change a landing position of the beams on the screen (3). However, by deflecting the beams, the beams are defocused and the spot on the screen (3) changes. In a color cathode ray tube with a relatively large screen, the electron beam defocusing can be observed to be different in strength for each beam (EBR, EBG, EBB). The invention provides a solution to this problem by providing a modified DAF section (40) in the electron-optical system (1). The DAF section (40) comprises at least two electron lenses (L1, L2) having different strengths for each electron beam (EBR, EBG, EBB).
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: September 16, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Willem Lubertus Ijzerman, Marcellinus Petrus Carolus Michael Krijn
  • Patent number: 6617791
    Abstract: An inductive output tube (IOT) of a multi-staged depressed collector provides improved efficiency by approximating a Brillouin electron beam flow. In one embodiment, an IOT is provided with an electron gun that generates an electron beam, a tube body, a multi-staged depressed collector for collecting the electron beam, and a magnetic solenoid. The electron beam travels through the tube body. The magnetic solenoid produces a magnetic flux that focuses the electron beam as it travels through the tube body. The magnetic flux includes a portion that threads through the electron gun. The IOT is adapted to reduce this portion of the magnetic flux in order to provide improvements in the efficiency of the IOT.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 9, 2003
    Assignee: L-3 Communications Corporation
    Inventor: Robert Spencer Symons
  • Patent number: 6566801
    Abstract: A cathode ray tube comprising an electron source and an electron beam guidance cavity having an input aperture and an output aperture, wherein at least a part of the wall of the electron beam guidance cavity near the output aperture comprises an insulating material having a secondary emission coefficient &dgr;1 for cooperation with the cathode. Furthermore, the cathode ray tube comprises a first electrode connectable to a first voltage source for applying, in operation, an electric field with a first field strength E1 between the cathode and the output aperture. &dgr;1 and E1 have values which enable electron transport through the electron beam guidance cavity. A second electrode is placed between the cathode and the cavity. The second electrode is connected to a second voltage source for applying, in operation, an electric field with a second field strength E2 between the cathode and the second electrode for controlling the emission of electrons.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: May 20, 2003
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Nijs C. Van Der Vaart, Petrus H. F. Trompenaars, Eduard M. J. Niessen, Gerardus G. P. Van Gorkom
  • Patent number: 6538370
    Abstract: A cathode-ray tube electron gun can alleviate unwanted radiation caused when cathodes and a first electron gun constitute an antenna by increasing the number of conduction leads of a first electrode of a cathode-ray tube electron gun from one to a plurality of conduction leads.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: March 25, 2003
    Assignee: Sony Corporation
    Inventors: Yasunobu Amano, Norifumi Kikuchi, Takashi Shirai, Motomu Tadama, Kazuo Sugimoto, Mitsunori Endou
  • Patent number: 6538397
    Abstract: A color cathode-ray tube apparatus comprises an electron gun structure having a plurality of electrodes for constituting a plurality of electron lenses including a main lens for focusing an electron beam on a phosphor screen, and a deflection yoke for producing deflection magnetic fields for deflecting the electron beam emitted from the electron gun structure in a horizontal direction and a vertical direction. An electron beam passage hole formed in at least one of the electrodes constituting the main lens has a waist portion substantially acting on formation of the electron lenses. The waist portion minimizes a horizontal dimension of a region where the electron beam passes.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: March 25, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirofumi Ueno, Tsutomu Takekawa, Noriyuki Miyamoto
  • Patent number: 6509680
    Abstract: The stray emission in an electron gun comprising a main lens system with one or more intermediate electrodes (42, 43, 44) between the focus electrode (41) and the anode electrode (45) is reduced if at least one of the apertures of the main lens system following the focus electrode has apertures which are smaller than those of the focus electrode. The optimal stray emission situation can be found by designing all the apertures of the main lens system. In order to manufacture an electron gun according to the invention, it is advantageous to have an outside reference system for gun mounting, because it will no longer be possible to center the electrodes on pins through the apertures.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: January 21, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Wilhelmus A. M. Aarnink
  • Patent number: 6492767
    Abstract: An electron gun for a color cathode ray tube includes a first electrode, a second electrode and a third electrode. A waveform alternating voltage or a static voltage is applied to the first electrode in which three vertical slot type electron beam passing holes are formed. The second electrode is installed at one side of the first electrode in which circular electron beam passing holes are formed. The third electrode is disposed at the other side of the first electrode. A single horizontal slot type electron beam passing hole is formed in the third electrode to which the same dynamic focus voltage as that in the second electrode is applied.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: December 10, 2002
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Min-cheol Bae
  • Patent number: 6489736
    Abstract: An electron gun assembly has at least one additional electrode located along the equipotential plane of a potential distribution formed between a focusing electrode and anode electrode forming a main lens. In a no-deflection state, the additional electrode receives a voltage of a predetermined level corresponding to the potential of the equipotential plane on which the additional electrode is located. In a deflection state, letting Vf be the application voltage of the focusing electrode, Eb be the application voltage of the anode electrode, and Vs be the application voltage of the addition electrode, a value (Vs−Vf)/(Eb−Vf) changes with an increase in electron beam deflection amount, while the additional electrode forms an electron lens having different focusing powers in the horizontal direction and vertical direction.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: December 3, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirofumi Ueno, Kazunori Satou, Tsutomu Takekawa
  • Patent number: 6486623
    Abstract: A color display device with an improved focus performance. Conventional color display tubes with DAF have an electron gun with a second focusing electrode (25) driven with a dynamic voltage which is varied synchronously with the deflection field. The dynamic quadruple lens formed between the first focusing electrode (23) and the second focusing electrode (25) is designed such that the horizontal lens action, which arises when the voltage on the second focusing electrode is increased, should be compensated by the main lens which becomes weaker when the voltage on the second focusing electrode is increased. In practice, this is not possible in the required range of the dynamic voltage on the second focusing electrode, leading to a deterioration of the focus performance of the color display device.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 26, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Jozef Cornelis Walterus Van Vroonhoven
  • Patent number: 6479926
    Abstract: The electron gun of a cathode ray tube comprises a main electron lens portion consisting of at least four electrodes arranged in the order of first grid (5), second grid (6), third grid (7) and fourth grid (8). An intermediate first voltage and an anode voltage are applied to the first grid (5) and the fourth grid (8), respectively. A resistor (100) is connected at one end to the second grid (6) and at the other end to the third grid (7) positioned adjacent to the second grid, with the result that second and third voltages of substantially the same potential, which are intermediate between the first voltage and the anode voltage, are applied to the second grid and the third grid, respectively. These grids are arranged such that a second electrostatic capacitance between the second and third grids (6, 7) is smaller than any of a first electrostatic capacitance between the first and second grids (5, 6) and a third electrostatic capacitance between the third and fourth grids (7, 8).
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: November 12, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Awano, Junichi Kimiya
  • Publication number: 20020163310
    Abstract: Disclosed is a power-supplying device for an electron gun in a color display tube (CDT) provided with an fly back transformer (FBT) having a focus voltage output terminal and an acceleration voltage output terminal, further having a power supplying part supplying a predetermined reference voltage; a focus voltage detection part detecting a focus voltage of the focus voltage output terminal; and a focus voltage boost part boosting the focus voltage of the focus voltage output terminal in case that the focus voltage detected by the focus voltage detection part is lower than the reference voltage of the power supplying part. With this configuration, it is possible to recover the voltage of the focus voltage output terminal dropped according to the grid discharging of the electron gun in the color display tube to the normal voltage.
    Type: Application
    Filed: October 23, 2001
    Publication date: November 7, 2002
    Inventors: Sang-Young Lee, Joong-Yeol Kwon, Jung-Hyun Ahn
  • Patent number: 6472832
    Abstract: A sixth grid, which is part of a main electron lens section, is made up of a first anode, an auxiliary electrode and a second anode. A fifth grid is applied with an intermediate voltage. The first and second anodes are applied with an anode voltage. An intermediate electrode and the auxiliary electrode are applied with a voltage whose level is between the levels of the intermediate voltage and anode voltage.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: October 29, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Kimiya, Shigeru Sugawara, Syunji Ookubo
  • Patent number: 6441568
    Abstract: An in-line three beam electron gun for a color cathode ray tube comprising a cathode for emitting electron beams, a control electrode and a screen electrode, first through fourth focusing electrodes and an accelerating electrode, wherein the third focusing electrode has vertically elongated electron beam apertures to form a quadrupole lens, and the fourth focusing electrode has circular electron beam apertures. A first uni-potential lens is formed between the first and second focusing electrodes, a second uni-potential lens is formed between the second and third focusing electrodes, a quadrupole lens is formed between the third and fourth focusing electrodes and a main leans is formed between the fourth electrode and the accelerating electrode, when a static voltage is applied to the first and second focusing electrodes and a dynamic focusing voltage synchronous to a deflection signal is applied to the third and fourth focusing electrodes.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: August 27, 2002
    Assignee: Samsung SDI Co., Ltd.
    Inventors: In-gyu Park, Young-kon Hong
  • Patent number: 6437498
    Abstract: A three in-line beam type color CRT includes a focus electrode and an anode. The focus electrode includes a first focus sub-electrode supplied with a first fixed focus voltage and a second focus sub-electrode supplied with a second fixed voltage superposed with a dynamic voltage synchronized with beam deflection, and the first and second focus sub-electrodes form a quadrupole lens therebetween. Two side electron beams are deflected toward a center electron beam with increasing dynamic voltage in the quadrupole lens. An axial distance Lgf (mm) from a cathode side end of the first focus sub-electrode to an anode side end of the second focus sub-electrode, an axial distance Ls (mm) from the end of the second focus sub-electrode to the phosphor screen, and a useful diagonal dimension D (mm) of the phosphor screen satisfy 0.06×Ls (mm)≦Lgf (mm)≦26 (mm) and 1.50≦D/Ls≦1.70.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: August 20, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Tomoki Nakamura, Shoji Shirai, Yasuharu Yatsu
  • Patent number: 6424084
    Abstract: In the electron gun assembly of a cathode ray tube, a main electron lens portion is formed by a fifth grid to an eighth grid, and incorporates a quadrupole lens. The fifth grid receives a voltage obtained by superposing, on a voltage as a reference voltage, a dynamic voltage that parabolically changes with an increase when the electron beam is deflected amount of the electron beam. The sixth grid receives a voltage obtained by superposing, on a voltage as a reference voltage, a dynamic voltage that parabolically changes with an increase when the electron beam is deflected amount of the electron beam. The seventh grid receives the voltage, while the eighth grid receives an anode voltage.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: July 23, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Kimiya, Takashi Awano, Shigeru Sugawara
  • Patent number: 6404149
    Abstract: An electron gun assembly forms an electron beam generator, pre-focusing lens, sub-lens, and main lens. The sub-lens has a weaker horizontal focusing power than the vertical one, and the main lens has a stronger horizontal focusing power than the vertical one. When the electron beam is not deflected, a first quadrupole lens is formed between the pre-focusing lens and sub-lens, and a second quadrupole lens is formed between the sub-lens and-main lens. At least one grid forming each of the first and second quadrupole lenses receives a dynamic focusing voltage which parabolically changes in synchronism with the deflection magnetic field and becomes higher when the electron beam is deflected than when it is not deflected.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: June 11, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirofumi Ueno, Tsutomu Takekawa
  • Patent number: 6369512
    Abstract: A projection tube has a phosphor-coated faceplate at one end of a vacuum envelope and a plural-beam providing electron lens structure at the opposite end thereof. The electron lens structure includes four electrodes having axially-aligned apertures defining parallel channels for the plural electron beams to pass through to be focused and converged onto a small spot on the faceplate. The first and second electrodes of the electron lens structure shape the electron beams and the third and fourth electrodes thereof converge and focus the electron beams toward the same location on the faceplate. The potential applied to the fourth electrode is at or close to the potential at the phosphor, and is substantially higher than the potential applied to the third electrode. The lens structures of the third and fourth electrodes may each include an inner electron lens structure and an outer electron lens structure.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: April 9, 2002
    Assignee: Sarnoff Corporation
    Inventors: Roger Casanova Alig, Dennis John Bechis
  • Patent number: 6356011
    Abstract: An electron gun for a cathode ray tube includes a triode portion composed of three cathodes arranged in a horizontal line, and control and screen electrodes sequentially placed next to the cathode. First to fourth focusing electrodes are sequentially arranged one after another next to the screen electrode. The first focusing electrode has a first side facing the screen electrode and a second side facing a second focusing electrode. Three circular-shaped beam passage holes are formed in both sides of the first focusing electrode. The second focusing electrode has a first side facing the first focusing electrode and a second side facing the third focusing electrode. Three vertically elongated beam passage holes are formed in the first side facing the first focusing electrode and three circular-shaped beam passage holes are formed in the second side facing the third focusing electrode.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: March 12, 2002
    Assignee: Samsung Display Devices Co., LTD
    Inventor: In-Kyu Park
  • Patent number: 6353282
    Abstract: An electron gun of a color cathode ra tube includes (1) a beam forming region having cathodes, a G1 electrode and a G2 electrode and (2) a main lens formed of plural electrodes including a G3 electrode supplied with a fixed focus voltage and an accelerating electrode. The main lens includes a final lens formed between the accelerating electrode and an electrode opposing the accelerating electrode and configured so that outer electron beats are deflected toward a trajectory of a center electron beam and a lens strength of the final lens weakens with beam deflection The electron gun also has at least one multipole lens located between the final lens and the beam forming region and configured so as to change a cross sectional shape of the electron beams with beam deflection, and a lens formed between a pair of electrodes located between the final lens and the beam forming region and having axially spaced opposing surfaces each having opposing center beam apertures and opposing outer beam apertures.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: March 5, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Tutomu Tojyou, Shoji Shirai, Shinichi Kato
  • Publication number: 20020008457
    Abstract: A three in-line beam type color CRT includes a focus electrode and an anode. The focus electrode includes a first focus sub-electrode supplied with a first fixed focus voltage and a second focus sub-electrode supplied with a second fixed voltage superposed with a dynamic voltage synchronized with beam deflection, and the first and second focus sub-electrodes form a quadrupole lens therebetween. Two side electron beams are deflected toward a center electron beam with increasing dynamic voltage in the quadrupole lens. An axial distance Lgf (mm) from a cathode side end of the first focus sub-electrode to an anode side end of the second focus sub-electrode, an axial distance Ls (mm) from the end of the second focus sub-electrode to the phosphor screen, and a useful diagonal dimension D (mm) of the phosphor screen satisfy 0.06×Ls (mm) ≦Lgf (mm)≦26 (mm) and 1.50≦D/Ls≦1.70.
    Type: Application
    Filed: August 8, 2001
    Publication date: January 24, 2002
    Inventors: Tomoki Nakamura, Shoji Shirai, Yasuharu Yatsu
  • Patent number: 6339284
    Abstract: In a self-convergent type color cathode ray tube apparatus, three in-line electron beams emitted from an electron gun assembly are deflected by non-uniform magnetic fields generated by a deflection yoke and thus self-converged onto a screen. The electron gun assembly has a second grid and a third grid. First and second auxiliary grids are disposed between the second and third grids. A dynamic voltage varying in synchronism with deflection of the electron beams is applied to the first auxiliary grid situated on the second grid side. A fixed voltage is applied to the second auxiliary grid situated on the third grid side. Accordingly, the second grid, the first and second auxiliary grids and the third grid form an electron lens such that a higher astigmatism is provided by focusing in a direction perpendicular to a direction of arrangement of the three electron beams than by focusing in the direction of arrangement of the three electron beams and the degree of the astigmatism is dynamically varied.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: January 15, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Takekawa, Hirofumi Ueno
  • Patent number: 6339293
    Abstract: An electron gun assembly of a cathode ray tube has a main electron lens section comprising at least four electrodes, provided in a sequence of first, second, third and fourth grids, a middle first voltage is applied to the first grid, and an anode voltage is applied to the fourth grid. The adjacent second grid and third grid are connected by a resistor, and second and third voltages of substantially the same potential, corresponding to voltages higher than the middle first voltage and lower than the anode voltage, are applied thereto. An asymmetrical lens is provided between the adjacent second grid and the third grid second lens region, and a voltage which changes in synchronism with the deflecting magnetic field is applied to the first grid.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: January 15, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Kimiya, Takashi Awano, Shigeru Sugawara
  • Patent number: 6331752
    Abstract: A color cathode ray tube having an electron gun including a beam forming region for generating a plurality of electron beams from cathodes and directing the plurality of electron beams toward a phosphor screen along initial paths in a horizontal plane, and a main lens for focusing the plurality of electron beams on the phosphor screen. The main lens including a final lens configured so that the plurality of electron beams are focused in both horizontal direction and a vertical direction with outer electron beams among the plurality of electron beams being deflected toward a trajectory of a center electron beam among the plurality of electron beams, and a lens strength thereof being weakened with an increase in an amount of deflection of the plurality of electron beams.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: December 18, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Tutomu Tojyou, Shoji Shirai, Shinichi Kato
  • Patent number: 6304026
    Abstract: A color cathode ray tube includes a phosphor screen, an in-line type electron gun having an electron beam generating section for projecting three electron beams arranged in parallel with each other in a horizontal plane toward the phosphor screen, a focus electrode, and an anode adjacent to the focus electrode and forming a main lens in cooperation with the focus electrode for focusing the electron beams on the phosphor screen. The focus electrode includes at least a first focus sub-electrode and a second focus sub-electrode on the order named from the cathode, the first focus sub-electrode and the second focus sub-electrode forming an electrostatic quadrupole lens therebetween.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: October 16, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Tomoki Nakamura, Shoji Shirai, Yasuharu Yatsu
  • Patent number: 6225766
    Abstract: An inline type electron gun assembly has a main lens for focusing three electron beams on a phosphor screen. A resistor is arranged in a cathode ray tube. A voltage obtained by dividing a high voltage with the resistor is applied to an intermediate electrode. Voltages of a focusing electrode, the intermediate electrode, and a final accelerating electrode that constitute the main lens are determined to increase sequentially. Electron beam holes in the intermediate electrode on the focusing electrode side, and electron beam holes in the intermediate electrode on the final focusing electrode side form vertically elongated holes longer in the vertical direction than in the horizontal direction. Electron beam holes in the focusing electrode on the intermediate electrode side and electron beam holes in the final accelerating electrode on the intermediate electrode side form open holes having no side wall portions.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: May 1, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Osamu Ono, Shigeru Sugawara, Kazunori Satou, Takashi Awano
  • Patent number: 6100630
    Abstract: A color cathode-ray tube which increases the degree of freedom in designing its main electron lens, decreases the electron beam spot diameter, and achieves high resolution, in which the between the focusing electrode (15) applied with the focusing voltage (Vf) and the anode electrode (17) applied with the anode voltage (Va), there is provided an intermediate electrode (16) applied with the potential Vm which is higher than the focusing voltage (Vf) and lower than the anode voltage (Va), and the focusing electrode (15). These voltages are set by a dividing resistor (30).
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: August 8, 2000
    Assignee: Sony Corporation
    Inventors: Yasunobu Amano, Koji Ichida, Naruhiko Endo, Yoichi Ohshige, Masahiko Mizuki