Control By Motor Circuit Impedance Patents (Class 318/249)
  • Patent number: 11671050
    Abstract: Passive filters, line replaceable units and a modular power supply are provided. In one example the modular power supply has a DC bus link having a positive line and a negative line with at least one passive filter and an inductor having a first end and a second end, the first end coupleable to a phase output. A diode bridge having at least a first diode and a second diode, with an anode of the first diode coupleable to the second end of the inductor and a cathode of the first diode coupleable to the positive line, wherein a cathode of the second diode is coupleable to the second end of the inductor and an anode of the second diode is coupleable to the negative line, and wherein the first diode and the second diode are each configured to produce a combined reverse recovery charge that achieves a target DV/DT for an output voltage of the at least one passive filter.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: June 6, 2023
    Assignee: BAE Systems Controls Inc.
    Inventors: Robert J. Vovos, Peter A. Carruthers, Benjamin T. Webster
  • Patent number: 11050368
    Abstract: Disclosed is an apparatus for controlling a rotation speed of a motor, a motor and a food processing equipment. The apparatus includes: a rotation speed feedback circuit and a rotation speed control loop; the rotation speed feedback circuit comprises a rotation speed inducing unit configured to induce a current rotation speed of the motor and output a rotation speed detection signal, and a resistance adjusting unit configured to adjust a total resistance of a resistor unit of the rotation speed control loop according to the rotation speed detection signal; the rotation speed control loop comprises the resistor unit, a first capacitor, a first controllable switch and a second controllable switch.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: June 29, 2021
    Assignee: SHENZHEN H&T INTELLIGENT CONTROL CO., LTD.
    Inventors: Jingfeng Zhu, Linlin Pi, Gang Zhou
  • Patent number: 10333441
    Abstract: A method for regulating a speed of an electric motor of a power tool, the speed of the electric motor being established as a function of an actuation of a control device, the control device being actuated in such a way that a speed is requested which is less than a maximum speed, the speed being set in such a way that, in a first speed range upon an increase of the torque output by the electric motor, the speed decreases with a first negative slope, the speed being set in a second speed range in such a way that the speed proceeds with a second slope upon an increase of the output torque, the second slope being greater than the first slope when considered mathematically.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: June 25, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Joerg Koniakowsky, Stefan Mock
  • Patent number: 8860350
    Abstract: A motor driving apparatus is applied to a fan and motor mechanism and a voltage supply unit. The motor driving apparatus includes a motor driving unit, a voltage division resistor, a first resistor, a first switch unit, a second resistor, a second switch unit, a third resistor, a third switch unit, a transistor switch, and a pulse width modulation unit. The first switch unit, the second switch unit, and the third switch unit are configured to select the rotational speed upper limitation of the fan and motor mechanism for suppressing noise.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: October 14, 2014
    Assignee: Enermax Technology Corporation
    Inventor: Yen-Wen Su
  • Patent number: 8527168
    Abstract: A method for ascertaining a rotational speed parameter for determining a setpoint torque for driving a drivetrain. The drivetrain comprises a first and at least one second drive assembly for driving a hybrid vehicle. The first drive assembly can be coupled to the drivetrain by means of a clutch. The second drive assembly is mechanically coupled to the drivetrain. When the hybrid vehicle is being driven by means of at least the first drive assembly, the rotational speed parameter corresponds to the value of a shaft rotational speed. When the hybrid vehicle is being driven only by means of the second drive assembly, the rotational speed parameter corresponds to the value of a determined rotational speed.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: September 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Alexander Maass, Christian Vienken, Manfred Hellmann, Kai Moegle
  • Patent number: 8386102
    Abstract: In an electrically powered vehicle, a computer-controlled switching system activates relays to switch additional discrete batteries into a circuit in response to throttle level, where a processor is configured to decide what specific batteries should be present in the circuit at any given time, in response to both throttle level and a battery load balancing optimization scheme.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: February 26, 2013
    Inventor: Eric Gullichsen
  • Patent number: 8355115
    Abstract: A lithographic apparatus includes a positioner configured to position a first part of the apparatus relative to a second part of the apparatus, the positioner including a motor having a motor position dependent motor constant defining a relation between a motor input and a motor output, and a control system to drive the motor, the control system including a set-point generator to provide a reference signal based on a desired position of the first part relative to the second part, and a controller to provide a drive signal to the motor based on the reference signal, wherein the controller includes a compensator which is configured to at least partially compensate the drive signal for the motor position dependent motor constant. The invention further relates to a positioner, a method to optimize the positioning system, and a method to derive a motor position dependent motor constant.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 15, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Robertus Leonardus Tousain, Martijn Robert Hamers, Jeroen Arnoldus Leonardus Johannes Raaymakers
  • Patent number: 8294412
    Abstract: A method for controlling a rotary electrical machine and a control and power module for a rotary electrical machine. The rotary electrical machine includes a plurality of phase windings (9), a power circuit (12, 16) which comprises a plurality of arms each formed by a bridge of switches and which is capable of supplying an electrical network at an output voltage (Vres) equal to a nominal voltage when the bridge of switches is in a nominal mode of operation, an excitation winding (11) through which flows an excitation current (I exc) which generates a magnetic flux in a magnetic excitation circuit (10), and an electronic control circuit (7) which operates the power circuit and controls the excitation current. The method includes locking the bridge in at least one arm of the power circuit in a conductive state when the output voltage exceeds a voltage threshold higher than the nominal voltage. The nominal mode of operation of the bridge is returned to independently of the output voltage.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: October 23, 2012
    Assignee: Valeo Equipements Electriques Moteur
    Inventor: Michaƫl Chemin
  • Patent number: 8288979
    Abstract: An apparatus for controlling a wheel motor is provided. A plurality of switches is provided for controlling a direction of current through motor coils of the wheel motor. A brushless motor control circuit is connected to each of the plurality of switches. Responsive to a request to adjust one of an angular velocity and an angular acceleration of the wheel motor, the plurality of switches are activated to place the motor coils in a predetermined configuration to maximize torque or reduce a total back electromotive force (BEMF) from the motor coils.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Allen Keith Bates, Nhan Xuan Bui, Reed Alan Hancock, Wayne Isami Imaino, Daniel James Winarski
  • Patent number: 8193744
    Abstract: A method for controlling the speed of an AC motor by means of an AC motor speed control having a plurality of capacitors operable to be selectively coupled in parallel electrical connection, the parallel coupled capacitors operable to be coupled in series electrical connection with the AC motor, the method comprising charging the capacitors up to substantially the same predetermined voltage prior to combining the capacitors in parallel electrical connection.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 5, 2012
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Aaron Dobbins, Chen Ming Wu
  • Publication number: 20110241577
    Abstract: The invention relates to an electrical power tool, particularly an electric hand power tool, for operating with alternating current, having an electric motor, and electronic control device, and an electrical power switch for actuating the electric motor, wherein the electronic control device comprises a bias voltage output and a detection input, connected to each other by means of a voltage divider comprising a summation point and to the side of the power switch facing the electric motor, and the control device is further designed such that the potential at the detection input is monitored after actuating the power switch and used for checking whether the power switch is conducting, and that it is actuated again if the power switch was not conducting or returned to the non-conducting state during the monitoring, and that said checking and any renewed actuation of the power switch is repeated within a half-wave of the alternating voltage.
    Type: Application
    Filed: December 11, 2008
    Publication date: October 6, 2011
    Inventor: Bernd Wiesner
  • Patent number: 7671549
    Abstract: An AC motor speed controller includes a plurality of capacitors that may be selectively switched, by means of controllably conductive switches, into series electrical connection with an AC motor and an AC voltage source to control the speed of the motor. To change the speed of the motor, a control circuit renders a first switch conductive, in response to a first detected AC voltage zero crossing, to charge a first capacitor to a predetermined voltage. The control circuit then renders a second switch conductive, in response to a subsequent second detected AC voltage zero crossing, to charge a second capacitor to the predetermined voltage. The control circuit then renders both switches simultaneously conductive at a predetermined time after a subsequent third detected AC voltage zero crossing. The capacitors will thereby be charged to the same voltage prior to being switched into series with the motor, thereby resulting in reduced acoustic noise when changing motor speeds.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 2, 2010
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Aaron Dobbins, Chen Ming Wu
  • Patent number: 7489094
    Abstract: An AC motor speed controller includes a plurality of capacitors that may be selectively switched, by means of controllably conductive switches, into series electrical connection with an AC motor and an AC voltage source to control the speed of the motor. To change the speed of the motor, a control circuit renders a first switch conductive, in response to a first detected AC voltage zero crossing, to charge a first capacitor to a predetermined voltage. The control circuit then renders a second switch conductive, in response to a subsequent second detected AC voltage zero crossing, to charge a second capacitor to the predetermined voltage. The control circuit then renders both switches simultaneously conductive at a predetermined time after a subsequent third detected AC voltage zero crossing. The capacitors will thereby be charged to the same voltage prior to being switched into series with the motor, thereby resulting in reduced acoustic noise when changing motor speeds.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: February 10, 2009
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Aaron Dobbins, Chen Ming Wu
  • Patent number: 7221858
    Abstract: A PWM motor speed control circuit (10) includes a PWM signal generator (20), a driver integrated circuit (IC) (101) and a photocoupler (30) coupled between the PWM signal generator and the driver IC. The photocoupler receives an original PWM signal generated by the PWM signal generator and outputs a new PWM signal in response to the original PWM signal, wherein a voltage parameter of the original PWM signal is isolated by the photocoupler from a voltage parameter of the new PWM signal. The new PWM signal is fed to the driver IC and used for controlling speed of a motor (100).
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: May 22, 2007
    Assignee: Foxconn Technology Co., Ltd.
    Inventor: Chin-Long Ku
  • Patent number: 7132808
    Abstract: A solid state series motor control includes first and second FORWARD DRIVE elements, first and second REVERSE DRIVE elements, first and second diodes, a current sensor, and a capacitance. The series motor control is configured to be interconnected with controlling logic or a processor, the field and armature of a series wound motor, and an external DC power source. The FORWARD DRIVE elements and REVERSE DRIVE elements can be IGBTs or similar semiconductors. The current sensor is configured to measure current passing through the motor armature. The capacitance is a combination of a line filter and source impedance reduction for IGBT switching. The solid state series motor control can control the speed and direction of a series wound motor using solid state components while maintaining the series connection of the armature and the field winding.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: November 7, 2006
    Inventors: Graham S. Thexton, Andrew S. Thexton
  • Patent number: 6809494
    Abstract: There are provided a drive unit 50 having a connection part 52 while driving a motor 61, a control unit 40 having a connection part 48 while receiving a command from a host controller 30 and sending a command to the drive unit 50, a rack for providing a back panel 80 having connected parts 84, 85 for removably making electrical connection to the connection parts 48, 52 while accommodating the control unit 40 and the drive unit 50, and a DC voltage conversion part 14 for converting a DC voltage into an output using an AC voltage as an input while being provided in the back panel 80, and the drive unit 50 is provided with a capacitor 58 while being connected to an output of the DC voltage conversion part 14, and an inverter 59 for converting the DC voltage into an AC voltage based on the command.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: October 26, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Hattori, Koki Matsumoto
  • Patent number: 4992709
    Abstract: A control circuit for a fractional horsepower fan motor connected between hot and neutral wires in and AC circuit is shown. The control circuit includes two or more duplicate branches. Each branch is serially connected, and each branch includes a triac, series resistor and series capacitor. The triac has a gate terminal which is connected to an optical coupling circuit for isolation and responds to a control signal from a low voltage small current source. In an alternative embodiment, a single triac and optical coupling circuit can be used with different capacitors being switched in or out of the circuit.
    Type: Grant
    Filed: June 20, 1989
    Date of Patent: February 12, 1991
    Assignee: Lightolier, Inc.
    Inventor: Raymond T. Griffin
  • Patent number: 4264846
    Abstract: A continuous speed control and braking circuit for a DC propulsion motor having armature and field currents set largely independent of each other to permit operation in the field weakening region of the motor. A direct current control element is pulsed for setting the armature current; a series circuit containing the field winding and a switch is connected in parallel to the DC control element; and a field current bypass diode is shunted across the field winding.
    Type: Grant
    Filed: December 11, 1978
    Date of Patent: April 28, 1981
    Assignee: Siemens Aktiengesellschaft
    Inventors: Helmut Sauer, Peter Loderer, Lothar Roth, Klaus Breuer
  • Patent number: 4259623
    Abstract: A series-wound electric motor is disclosed in which a triac or thyristor is placed in series with the armature winding and one of the field coils. Two control voltages and a reference voltage can be tapped off various points on the electric motor. By utilizing appropriate control circuitry, the current in the armature winding may be turned on and off, while current flow through the field coils can continue to flow. In this fashion, the speed of the motor can be accurately regulated within a permissible range of operating speeds, while maintaining a high efficiency comparable to the efficiency of an unregulated series-wound motor.
    Type: Grant
    Filed: February 19, 1980
    Date of Patent: March 31, 1981
    Assignee: Robert Bosch GmbH
    Inventors: Helmut Moeder, Guenter Schirmer
  • Patent number: 3936708
    Abstract: A portable tool double-pole trigger switch enclosing a speed control circuit that includes a plastic pack SCR (semi-conductor controlled rectifier) of the sensitive gate type, a capacitor and a variable resistor. In a first version, the mounting tab of the SCR is soldered to a connector that is contacted by the resistor slider. A ceramic capacitor may be used by soldering its leads between the cathode and gate terminals of the SCR, the mounting tab serving as the anode terminal. A chip capacitor may be used by soldering it to bridge the cathode and gate terminals. In another version, the mounting tab may be arranged to be contacted directly by the resistor slider, thus eliminating the aforesaid connector.
    Type: Grant
    Filed: July 9, 1974
    Date of Patent: February 3, 1976
    Assignee: Cutler-Hammer, Inc.
    Inventor: Merlin R. Dummer
  • Patent number: RE38264
    Abstract: A data medium is driven by a brushless direct current more, and possesses control signals en a track which can be picked up by a sensing device and supplied to a switch arrangement for activation of the motor winding. The control signals on the track characterize at least those angular positions of the rotor with respect to the stator in which commutation is to be initiated.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: October 7, 2003
    Assignee: Papst Licensing GmbH & Co. KG
    Inventor: Helmut Hans