Dynamic Braking Patents (Class 318/375)
  • Patent number: 8941338
    Abstract: An electric braking device for printing material processing machines includes at least one electric drive to be braked that is supplied by a power converter in motor operation and is braked by the power converter in generator operation. A control unit switches on a redundant electric braking device in the case of a failure of the power converter by using a switch. The braking device has at least two braking stages, an additional switch for actuation in at least two stages, and at least one brake resistor. In the circuit of the redundant electric braking device, a braking current is measured and the measured value is fed to a comparator for comparing the actual braking current to a desired braking current. A printing press having the braking device is also provided.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 27, 2015
    Assignee: Heidlelberger Druckmaschinen AG
    Inventors: Reiner Villhauer, Klaus-Dieter Kleibaumhueter, Josef Reiter, Andreas Schulz
  • Patent number: 8928260
    Abstract: A traction motor system calculates motor flux by generating a real time effective resistance of a resistance grid calculated from motor torque and measured voltage on a DC link. Calculating effective resistance avoids solely relying on DC link voltage, which can be influenced by conditions such as wheel slip and drop out of one or more resistance grids. The effective resistance calculation is based on nominal motor values using known power levels and conditions. From these nominal values and the effective resistance, various scaling factors based on actual motor power can be generated and used to adjust a nominal flux reference to more accurately reflect actual motor flux. The scaling factors include power and torque scaling factors and a resistance scaling factor that is active during conditions such as wheel slip.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Caterpillar Inc.
    Inventors: Alexander Cameron Crosman, III, Joshua M. Williams
  • Patent number: 8922142
    Abstract: A motor controller for an electric motor having a stator and a rotor. The motor controller includes a power input for receiving AC power from a power source; a control input for receiving a control signal from a control; and circuitry for switching power from the power source to the electric motor in response to the control signal. The circuitry is operable to: apply a braking waveform to the stator while the rotor is rotating; monitor a reactive power of the stator; detect an increase in the reactive power of the stator to determine the rotor has substantially stopped rotating; and remove the braking waveform from the stator in response to detecting the increase in the reactive power.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 30, 2014
    Assignee: Nidec Motor Corporation
    Inventors: Darko Marcetic, Thomas J. Sheahan
  • Patent number: 8917038
    Abstract: A motor control device has a drive circuit that drives an electric motor with a battery as a power supply, a switch element that is provided between the battery and the drive circuit, the switch element supplying a current from the battery to the drive circuit when being turned on, the switch element cutting off the current from the battery to the drive circuit when being turned off, a rotation speed detector that detects a rotation speed of the electric motor, and a controller that operates the drive circuit to control the electric motor. The controller turns on the switch element when the rotation speed of the electric motor, which is detected by the rotation speed detector, is greater than or equal to a first predetermined value during stopping of the control of the electric motor.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: December 23, 2014
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventors: Takayuki Fukuoka, Yoshiki Yamagishi, Satoshi Kido, Yasutaka Shirota
  • Patent number: 8907601
    Abstract: A braking apparatus for a vehicle includes a permanent magnet synchronous motor including a rotor having a permanent magnet, and a stator capable of driving the rotor to rotate and configured to couple the rotor to each of at least a pair of wheels of the vehicle; a power accumulating portion that accumulates power to be supplied to the permanent magnet synchronous motor; a conversion control portion that converts the power of the power accumulating portion to excite the stator and control the rotation of the rotor; and an in-phase excitation control portion that applies exciting brake to the wheel by exciting the stator by supplying power in the same phase as the excitation with respect to the stator in the direction of rotation of the rotor according to the control performed by the conversion control portion, wherein the wheel is stopped by the exciting brake.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: December 9, 2014
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Akemi Okawa, Masanori Mori
  • Patent number: 8890448
    Abstract: The invention relates to a braking apparatus, an electric drive and an elevator system. The braking apparatus comprises an apparatus for dynamic braking, for braking an electric machine with dynamic braking, an input for the control signal of the braking apparatus, and also a controller, for controlling the apparatus for dynamic braking as a response to the aforementioned control signal of the braking apparatus.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Kone Corporation
    Inventors: Esa Putkinen, Antti Kallioniemi, Juha-Matti Nikander, Paavo Merilinna, Risto Komulainen
  • Patent number: 8884557
    Abstract: A method for operating a mains-operated electric motor for a power tool includes connecting a first side of an electric motor to a first mains and connecting a second side of the electric motor to a second mains using first and second switches, respectively, in particular semiconductor switches, and monitoring the operational reliability of the switches using an electronic controller for operating safety.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: November 11, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Hans Hermann Rottmerhusen
  • Patent number: 8878469
    Abstract: A process for electrical assistance to the braking of a vehicle with a motor system (M), whereby the motor system (M) includes at least one electric motor (10) whose output shaft (14) is coupled to a primary shaft (20) that drives at least one wheel (22) of the vehicle, at least one wheel (22) of the vehicle being equipped with a mechanical braking device that is activated by a hydraulic circuit, whereby the process is characterized in that it includes: collecting information in the hydraulic circuit of the primary braking circuit, and using the information as a set-point for a braking torque generated by the electric motor (10) and exerted on the primary drive shaft (20) of the wheels.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 4, 2014
    Assignee: Polaris Sales Europe SARL
    Inventors: Thierry Zerbato, Pascal Duclos
  • Patent number: 8872458
    Abstract: A motor control device has a drive circuit that drives an electric motor with a battery as a power supply, a switch element that is provided between the battery and the drive circuit, the switch element supplying a current from the battery to the drive circuit when being put into an on state, the switch element cutting off the current from the battery to the drive circuit when being put into an off state, a voltage detector that detects a voltage at the drive circuit, and a controller that operates the drive circuit to control the electric motor. The controller turns on the switch element when the voltage at the drive circuit, which is detected by the voltage detector, is greater than or equal to a first predetermined value during stopping of the control of the electric motor.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 28, 2014
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventors: Takayuki Fukuoka, Yoshiki Yamagishi, Satoshi Kido, Yasutaka Shirota
  • Patent number: 8857542
    Abstract: A drive system for a machine having an engine, a generator, a trolley drive arrangement, a motor, wheels and auxiliary devices is provided. The drive system includes an inverter circuit and an auxiliary driver both being operatively connected to the trolley drive arrangement. The inverter circuit may be coupled to each of the generator and the motor. The auxiliary driver may be coupled to each of the generator and the auxiliary devices. The inverter circuit and the auxiliary driver may be configured to automatically communicate power from the trolley drive arrangement and any power from the auxiliary devices to the motor in a trolley propel mode, and automatically communicate power from the motor to the engine, the trolley drive arrangement, and optionally to a hybrid system if applicable, in a dynamic braking mode, while attached to trolley lines so as to eliminate fuel consumption while attached to the trolley lines.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Caterpillar Inc.
    Inventors: Matthew Hendrickson, Donald Gilmore, Eric Ruth
  • Patent number: 8847524
    Abstract: Braking current generated by an electrical motor on mining equipment during a retard interval is switched through one or more grid resistors that are liquid cooled. Under low ambient temperatures, a heating current can be switched through the grid resistors when the electrical motor is not operating in a retard interval. An integrated cooling system can be used to cool grid resistors and power modules. Heat dissipated by the grid resistors and the power modules can be circulated through auxiliary heating loops to heat portions of the mining equipment under low ambient temperatures. Multiple liquid-cooled power modules, liquid-cooled grid resistors, auxiliary heating loops, control modules, radiators, and pumps can be coupled by a liquid distribution system with various combinations of parallel and serial branches. Temperature, pressure, and flow rate in each branch can be independently controlled. Operation of the integrated cooling system can be controlled by a computational system.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 30, 2014
    Assignee: Siemens Industry, Inc.
    Inventor: Joy Mazumdar
  • Patent number: 8836251
    Abstract: The present invention relates to a drive system with energy recovery for driving a machine, in particular for driving a crane, wherein the drive system includes at least one fuel cell unit, at least one capacitive energy storage unit and at least one drive motor, and wherein the fuel cell unit and the energy storage unit are connected in parallel and feed at least one drive motor. According to the invention, the capacitive energy storage unit is dimensioned such that the differential voltage occurring during operation between the fuel cell unit and the capacitive energy storage unit is minimized to such an extent that the current caused by the voltage within the parallel connection of fuel cell unit and energy storage unit does not exceed a defined safe limit value, wherein the fuel cell unit and the energy storage unit are directly coupled with each other and with the remaining drive components without DC/DC converter.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Liebherr-Components Biberach GmbH
    Inventor: Nejat Mahdavi Tabatabaei
  • Patent number: 8823298
    Abstract: A method of operating a laundry treating appliance to control a rotational speed of a drum to move the laundry within the drum according to a predetermined category of movement.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 2, 2014
    Assignee: Whirlpool Corporation
    Inventors: Biao He, Qiang Mei, Fabio E. Rosa
  • Patent number: 8798826
    Abstract: A lower limit value setting unit (52) variably sets a lower limit value (Vth) of a target voltage (Vh*) in a range of a voltage that is higher than the maximum value of voltages (Vb1, Vb2) of power storage devices and is not affected by a dead time provided for converters, based on temperatures (Tb1, Tb2) and required electric powers (Pb1*, Pb2*). A maximum value selection unit (53) sets the maximum value among the voltages (Vb1, Vb2) of the power storage devices and required voltages (Vm1*, Vm2*) of motor-generators, as the target voltage. A target voltage limiting unit (54) compares the target voltage with the lower limit value (Vth), and if the target voltage is lower than the lower limit value (Vth), the target voltage limiting unit (54) sets the lower limit value (Vth) as the target voltage (Vh*).
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinji Ichikawa
  • Publication number: 20140210383
    Abstract: An electric motor control system includes a motor control circuit for generating a motor control signal and a braking mechanism for adjusting the motor control signal to augment motor losses when the motor control circuit is in a braking mode. The braking mechanism includes a difference component for receiving a first signal containing motor reference speed information, for receiving a second signal containing actual speed information, and for generating a third signal containing information indicating a difference between the reference speed and the actual speed. An integrating component integrates the third signal and generates a fourth signal representing the integrated third signal. The fourth signal may augment a voltage control signal in a voltage-based control circuit or may augment a flux-producing component of a current control signal in a current-based control circuit. The electric motor control circuit may include multiple braking mechanisms for use in different modes of operation.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: Darko Marcetic, Mile Bozic
  • Publication number: 20140203740
    Abstract: A power conversion device for driving a load, including a power conversion device main body configured to receive an input of a power supply voltage and to drive the load, and a brake circuit configured to protect the power conversion device main body from overvoltage applied thereto. The brake circuit includes a Zener diode that becomes conductive when the voltage applied to the power conversion device main body exceeds a predetermined value, to thereby suppress the voltage.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 24, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Shogo OGAWA
  • Patent number: 8749181
    Abstract: A bicycle regenerative brake control device is provided for controlling a motor, in relation to a brake mechanism that can be mounted on an electric bicycle in which human-powered driving is assisted by the motor. The bicycle regenerative brake control device basically includes a first control part, a second control part and a switch control part. The first control part controls the motor so as to generate a uniform first regenerative braking force. The second control part controls the motor so as to generate a gradually increasing second regenerative braking force upon determining the brake mechanism shifts from an initial state to a braking state. The switch control part switches to a control performed by the second control part in response to the brake mechanism shifting from the initial state to the braking state while control is being performed by the first control part.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 10, 2014
    Assignee: Shimano Inc.
    Inventor: Takao Saida
  • Patent number: 8742706
    Abstract: The invention relates to an electronically commutated electric motor. The electric motor comprises a stator, and a rotor, in particular a permanent-magnetic rotor. The electric motor further comprises a control unit connected to the stator. The control unit is designed to actuate the stator such that the stator can generate a magnetic rotating field for rotationally moving the rotor. According to the invention, the control unit of the electric motor is provided with a power output stage having semiconductor switches. Subject to the low-resistance, or short-circuited, semiconductor switch of the power output stage, in particular as a result of defect, the control unit is designed to actuate the stator for generating the rotating field such that during a complete rotor revolution, the rotor can provide a mechanical output, or in the operational mode, a braking torque of the electric motor caused by the defect is reduced, or completely neutralized, by the low-resistance, or short-circuited, semiconductor switch.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 3, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Henke, Oliver Wackerl, Ulrich Vollmer, Dirk Lamprecht
  • Patent number: 8736219
    Abstract: The invention relates to an industrial robot having a robotic arm. The robotic arm has several axes (A1-A6) and at least one electric drive, which comprises an electric motor (7-12) and power electronics (16) actuating the electric motor (7-12) and is equipped to move the relevant axis (A1-A6). The industrial robot (1) is equipped to short-circuit the electric motor (7-12) in the event of emergency braking simultaneously by means of two independent electric current paths.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: May 27, 2014
    Assignee: KUKA Laboratories GmbH
    Inventors: Josef Hofmann, Richard Schwarz, Sönke Marx
  • Patent number: 8736205
    Abstract: A switching device and method are disclosed for terminating a braking process of a three-phase AC motor. The braking process of the AC motor is performed by way of a first and second thyristor. During the braking process of the AC motor, in a first step the first thyristor is actuated in such a way that a braking current is fed to the AC motor, and therefore a torque which brakes the AC motor is produced. In a second step the second thyristor is actuated in such a way that, when the first thyristor is quenched, the braking current is taken on by the second thyristor and the braking torque is maintained. The two steps are repeated during the braking process; wherein the second step is suppressed during the braking process after a last actuation of the first thyristor.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 27, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dirk Hertz, Johann Seitz, Stefan Zitzler
  • Patent number: 8736204
    Abstract: Apparatus for transferring power between an electricity network (UP) operating on alternating-current electricity and a multiphase electric machine (M2, M3), which apparatus comprises low-voltage power cells (CS, C11 . . . CN6) operating on a cascade principle, which power cells comprise a single-phase output connector (OUT), and at least one transformer (TA, T1 . . . TN), comprising for each power cell connected to it a single-phase or multiphase winding dedicated to the specific power cell, which transformer comprises at least one additional winding (WA, WB1 . . . WBN) connected to the same magnetic circuit as the other windings for the purpose of at least one auxiliary circuit, which can be connected to the aforementioned additional winding.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: May 27, 2014
    Assignee: Vacon Oyj
    Inventors: Nicklas Södö, Risto Komulainen
  • Publication number: 20140139151
    Abstract: A motor controller for an electric motor having a stator and a rotor. The motor controller includes a power input for receiving AC power from a power source; a control input for receiving a control signal from a control; and circuitry for switching power from the power source to the electric motor in response to the control signal. The circuitry is operable to: apply a driving waveform to the stator to cause rotation of the rotor; remove the driving waveform from the stator to cause the rotor to coast and eventually stop; apply a stop detection waveform to the stator while the rotor is coasting, wherein the stop detection waveform induces a waveform on the rotor which in turn induces a waveform back to the stator while the rotor is rotating; and monitor the stator to detect a characteristic of the waveform induced back to the stator to detect when the rotor has substantially stopped rotating.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: Nidec Motor Corporation
    Inventor: Thomas J. Sheahan
  • Patent number: 8729764
    Abstract: A damper circuit for damping a synchronous servo-motor having at least one winding, at least one main damper resistor, connection means for connecting the main damper resistor in series with the winding, and at least one additional damper cell including at least one additional damper resistor connected in parallel with the main damper resistor via a static switch connected to a control module for controlling the switch as a function of a voltage of the winding. The control module has a shunt in parallel with the main damper resistor. The shunt has an output connected to the control input of the switch and a divider bridge connected to the shunt to form a comparator between the voltage of the winding and a conduction voltage of the shunt.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: May 20, 2014
    Assignee: Sagem Defense Securite
    Inventors: Tony Fourmont, Franck Delnaud, Jérôme Piaton, Roland Casimir
  • Patent number: 8710774
    Abstract: A drive control device for an electric train comprises a switch for connecting or opening direct-current power, a power converter into which the direct-current power is input via the switch between two terminals on an input side and which converts the direct-current power into alternating-current power through a switching action and drives an alternating current rotating machine connected on an output side, and a voltage detector for detecting the voltage between the two terminals. In addition, a power controller is provided that controls the power converter such that when the detected voltage of the voltage detector exceeds a predetermined open-circuit voltage, the switch is opened and the regenerative brake force is reduced by the alternating current rotating machine under a predetermined reduction pattern having a ramp reduction time longer than 0.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 29, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kenichi Kusano
  • Publication number: 20140111124
    Abstract: A motor controller for an electric motor having a stator and a rotor. The motor controller includes a power input for receiving AC power from a power source; a control input for receiving a control signal from a control; and circuitry for switching power from the power source to the electric motor in response to the control signal. The circuitry is operable to: apply a braking waveform to the stator while the rotor is rotating; monitor a reactive power of the stator; detect an increase in the reactive power of the stator to determine the rotor has substantially stopped rotating; and remove the braking waveform from the stator in response to detecting the increase in the reactive power.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: Nidec Motor Corporation
    Inventors: Darko Marcetic, Thomas J. Sheahan
  • Patent number: 8692489
    Abstract: A control system for controlling an electrical device of a nacelle, the device having at least one element that is movable to a closed position and an open position. The control system includes at least one electromechanical member for actuating the movable element, a unit for electrically driving the electromechanical actuation member, and a controlling and monitoring unit for controlling the electrical drive unit so as to move the movable element to the closed and/or open position. The control system further includes a system for recovering braking power from the electrical drive unit during the movement of the movable element to the closed and/or open position.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 8, 2014
    Assignee: Aircelle
    Inventor: Hakim Maalioune
  • Publication number: 20140084819
    Abstract: A controller for driving a motor has: an input part that receives, from each of two brake sensors, a signal indicating a corresponding brake is in an ON state or a signal indicating that the brake is in an OFF state; a control coefficient computing part that increases a control coefficient relative to a regeneration target value along a first slope when a first signal indicating only one of the brakes is in an ON state is received from the input part, the control coefficient computing part increasing the control coefficient along a second slope when a second signal indicating both brakes are in an ON state is received from the input part, the second slope rising faster than the first slope; and a control part controlling driving of the motor in accordance with the regeneration target value and the control coefficient computed by the control coefficient computing part.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 27, 2014
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Yasuo HOSAKA, Satoru SHIMIZU, Kazuo ASANUMA
  • Patent number: 8669733
    Abstract: A power supply circuit for an electric motor, the circuit comprising a plurality of inverter bridge arms, each having means for connection to a respective winding of the motor, each inverter bridge arm comprising in series a first insulated gate bipolar transistor and a junction field effect transistor that are connected to a controller, the circuit including a second insulated gate bipolar transistor connected in series with each field effect transistor and connected to the controller, and a damping resistor connected in parallel with the second bipolar transistor. An aircraft flight control member including a movable airfoil associated with at least one drive motor connected to such a power supply circuit.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 11, 2014
    Assignee: Sagem Defense Securite
    Inventors: Roland Casimir, Tony Fourmont
  • Patent number: 8664897
    Abstract: A motor drive apparatus includes a rectifier which converts AC power to DC power and DC power to AC power, an inverter which converts the DC power output by the rectifier to AC power and supplies the AC power to a motor, and which converts regenerative power from the motor to DC power and returns the DC power to the rectifier, a DC voltage detection unit which detects a DC output voltage of the rectifier, an AC voltage detection unit which detects an AC output voltage of the rectifier, a frequency calculation unit which calculates the frequency of the AC voltage; a storage unit which stores as a reference value the DC voltage at the start of the regenerative operation, and a power failure detection unit which determines the presence or absence of a power failure by using the DC voltage, the reference value, and the AC voltage frequency.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 4, 2014
    Assignee: Fanuc Corporation
    Inventors: Yasusuke Iwashita, Tadashi Okita, Masakazu Niwa
  • Publication number: 20140021890
    Abstract: A comminuting machine includes a frame, a comminuting rotor coupled to the frame, and a rotary drive coupled to the rotor. The rotary drive including a controller, a multi-phase motor connected to the controller, a set of contactors disposed between the controller and the multi-phase motor for selectively providing driving motive force to the multi-phase motor, and at least one rheostat disposed between the controller and the multi-phase motor, in parallel with the first set of contactors, for selectively providing a stopping resistance to the multi-phase motor to effect frictionless braking of the comminuting rotor, wherein the controller is configured to operate the set of contactors and the at least one rheostat to single phase lines of the multi-phase motor for providing the stopping resistance.
    Type: Application
    Filed: April 16, 2013
    Publication date: January 23, 2014
    Applicant: Harris Waste Management Group, Inc.
    Inventor: Javier Herrera
  • Patent number: 8635000
    Abstract: A brake monitoring system for a machine has at least one traction motor coupled to drive wheels of the machine. An operator input device receives a requested retarding torque from an operator of the machine and sends a signal to a controller that is configured to compare the required retarding torque to a maximum retarding torque available at a particular speed of the traction motor. The controller selectively generates a warning signal based on a comparison of the required retarding torque to a maximum retarding torque available.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: January 21, 2014
    Assignee: Caterpillar Inc.
    Inventors: Matthew L. Hendrickson, Alexander C. Crosman, III, Bo Xie, Bradley S. Bailey
  • Patent number: 8614555
    Abstract: An actuator control system includes a controller and a buck-boost circuit. The controller is configured to direct power from a power source to an actuator. The actuator is coupled to a control device to apply a force related to operation of a vehicle. The buck-boost circuit is configured to direct excess power generated by the actuator to an energy storage device when an actuator power level satisfies an anticipated power level.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 24, 2013
    Assignee: The Boeing Company
    Inventors: James J. Sheahan, Jr., Thomas W. Omohundro, James L. Peck, Jr.
  • Patent number: 8606478
    Abstract: A system and a method are provided for controlling a foundation brake of a vehicle having at least one foundation brake device, wherein the usability of the foundation brake is limited to a predetermined total application-time of the foundation brake within a predetermined time interval.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 10, 2013
    Assignee: Volvo Lastvagnar AB
    Inventors: Jens Samsioe, Peter Lingman
  • Patent number: 8604728
    Abstract: A system and method are provided for controlling a locomotive such that the braking effort is maintained at its optimal maximum level throughout the extended range. The method comprises detecting a first reduction in speed of the locomotive; energizing at least one solid state device connected across one or more grid resistors for a first predetermined amount of time to divert current away from the one or more grid resistors for the first predetermined amount of time; and de-energizing the solid state device after the first predetermined amount of time. The solid state device may be an Isolated Gate Bipolar Transistor (IGBT) and a plurality of solid state devices are energized, each solid state device being connected across a corresponding resistor grid.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 10, 2013
    Assignee: Trac Rail Inc.
    Inventors: Aldo Liberatore, Viktor Gvelesiani
  • Patent number: 8581531
    Abstract: An electric power converting apparatus includes a switching circuit, a PWM controller, conducting PWM all phase shut-off and zero-vector outputting, a unit configured to detect or estimate current flowing through a motor, a unit configured to conduct a DC braking, and a current comparator configured to compare between a DC braking time maximum current setup value, and a current value obtained by the unit configured to detect or estimate current. The PWM all phase shut-off and zero-vector outputting are conducted, repetitively, by the PWM controller, if the current comparator determines that a current value, which is obtained by the unit configured to detect or estimate current, exceeds the DC braking time maximum current setup value, when conducting the DC braking to obtain a braking power by running current through the motor.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: November 12, 2013
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Yusaku Onuma, Yusuke Arao
  • Patent number: 8581535
    Abstract: A drive unit has a control power supply, a power source (1) producing direct current to one or more inverters (2), an energy storage (C) arranged at the power source (1) output, and a discharge circuit (8,10) for discharging the energy stored in the energy storage (C) and including a power resistor (8). Switches (5, 6) are arranged between the power source (1) and energy storage (C) and in default position when there is no control power in the drive unit. The power source (1) is disconnected and the energy storage (C) discharged through the power resistor (8) when the switches (5, 6) are in default position.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: November 12, 2013
    Assignee: ABB Technology Ltd
    Inventor: Yang Gao
  • Patent number: 8541963
    Abstract: The invention relates to an electrodynamic braking device and to a method for braking a universal motor having a field winding and an armature. The universal motor can be switched from a motor mode to a braking mode. In the motor mode, the armature and the field winding are supplied with an alternating current of a power grid. In the braking mode, the armature is short-circuited and the field winding continues to be supplied with an alternating current from the power grid. In a first phase of the braking mode, the field winding can be supplied with an alternating current having the frequency of the power grid. In a further phase of the braking mode, the field winding is supplied by the power grid with an alternating current having a frequency that is reduced with respect to the frequency of the power grid.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 24, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Hans Hermann Rottmerhusen
  • Patent number: 8531140
    Abstract: The performance of a power transducer is improved while efficiently using a power semiconductor also by managing the permissible duty factor of the power semiconductor in the regenerative braking circuit provided in the power transducer. The user is allowed to set, through an operation panel provided on the power transducer, the resistance value of the regenerative braking resistor for thermally consuming the rotational energy generated during motor deceleration. The power transducer performs the steps of: calculating the current which flows in the regenerative braking circuit from the resistance value setting; obtaining the generation loss of the power semiconductor in the regenerative braking circuit with the calculated current value; and determining the permissible duty factor of the power semiconductor from the obtained generation loss.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 10, 2013
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd
    Inventors: Satoshi Ibori, Yoshihiro Uchino, Hiroshi Watanabe, Masahiro Hiraga
  • Patent number: 8521350
    Abstract: A control device for a vehicle includes: a charge control portion that adjusts an upper limit of charging power to a battery to prevent a negative electrode potential of the battery from dropping to a lithium reference potential, based on a charge/discharge history of the battery; a braking control portion that detects a sharing ratio between hydraulic braking force by a braking device and regenerative braking force for desired braking force according to a brake pedal depression amount so that a motor generator generates a regenerative braking force within a range of the adjusted upper limit of charging power; and a setting portion that variably sets, according to the hydraulic response rate detected by the detection portion, a degree of limitation of the upper limit when restricting charging current to the battery by restricting the upper limit.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 27, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keiichi Minamiura
  • Publication number: 20130214707
    Abstract: In a method for predefining a generator-based braking power of an electric machine in a vehicle, a motor-based propulsion power is predefined as a function of the position of a first final control element, e.g., an accelerator pedal, and the generator-based braking power is predefined as a function of the position of the first final control element, the generator-based braking power assuming values which are unequal to zero, already at an actuated position of the first final control element.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 22, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Matthias SCHMIDT, Chrisoph BENZ
  • Publication number: 20130207578
    Abstract: A method is provided. A command to correspond to a target speed of a motor is received. A rotational speed of the motor is measured, and a brake-to-off ratio for a braking interval is calculated based at least in part on the rotation speed, the target speed, a braking parameter. An off state for an inverter that is coupled to motor is induced during an off portion of the braking interval, and a brake signal is applied to the inverter during a braking portion of the braking interval.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Kazunori Itoh, Yasushi Kitamura
  • Patent number: 8508170
    Abstract: A driving device for a hatch in a vehicle, with a housing tube connected to a base part or to a movable structural component part, a protective tube connected to the movable structural component part or to the base part, a spindle drive having a threaded spindle and a spindle nut arranged on the threaded spindle by which the housing tube and the protective tube are movable axially relative to one another. A rotary drive drives the spindle drive in rotation includes at least one electric motor. The driving device has a safety circuit that causes a braking effect on the rotary drive when the rotary drive is deactivated and when extraneous forces are introduced into the driving device from the outside.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 13, 2013
    Assignee: Stabilus GmbH
    Inventor: Marian Bochen
  • Patent number: 8508165
    Abstract: A rectifier connected with an AC source through a reactor, a plurality of capacitors connected in series between output terminals of the rectifier, first switching means connected between one input terminal of the rectifier and a connection point of a plurality of capacitors, second switching means connected between the other input terminal of the rectifier and the connection point of a plurality of capacitors, and a plurality of diodes connected with the plurality of capacitors in inverse-parallel are provided.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 13, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yosuke Shinomoto, Hideki Takahara, Masato Handa, Makoto Tanikawa, Mitsuo Kashima
  • Patent number: 8487560
    Abstract: An electric brake system for an electromechanical machine connected to output terminals of an inverter, input terminals of which are supplied by a DC voltage source. The system includes an electrical circuit connected between the input terminals of the inverter and including, connected in series: a mechanism dissipating electrical energy returned by the electromechanical machine to the input terminals of the inverter during a braking phase of the electromechanical machine, including an inductor wound around a magnetic circuit; and a switching mechanism to close the electrical circuit during a braking phase of the electromechanical machine and to open the electrical circuit in absence of a braking phase of the electromechanical machine.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: July 16, 2013
    Assignee: Hispano Suiza
    Inventor: Eric De Wergifosse
  • Patent number: 8487559
    Abstract: A diesel-electric drive system includes a generator having two multi-phase winding systems, a diesel engine, and a DC-link converter. Two self-commuted pulse power converters on the generator side are linked to the windings systems and to each other by a brake resistor on the alternating voltage side. The brake resistor is split into two series-connected resistors, each having half the resistance value of the brake resistor. An input of a bipolar switching device is connected to a connecting point of two series-connected resistors. The capacity of the diesel motor can then be checked in a self-load test with a controllable load torque of the diesel-electric drive system, while eliminating overloads of the power semiconductors of the self-commuted pulse power converters on the generator side.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: July 16, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Holweck, Olaf Körner
  • Patent number: 8482245
    Abstract: A power conversion device in which an inverter for controlling a load is connected to an alternating current power system, and arranged to perform an electric power assist by connecting a direct-current power assist device having a chopper and a charge device to a direct-current circuit of the inverter. The device including a setting section to set charge and discharge target values in accordance with a sensed value of the direct-current voltage of the inverter; a charge control section to perform a charge control based on the charge target value; a discharge control section to perform a discharge control based on the discharge target value; and an instantaneous-low high-speed-compensation section to estimate an electric power corresponding to a direct-current sensed voltage of the inverter, and to output a value to the discharge control section which is obtained by dividing the estimated value by the direct-current sensed voltage.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 9, 2013
    Assignee: Meidensha Corporation
    Inventors: Takeshi Kondo, Katsutoshi Miyazaki
  • Patent number: 8466641
    Abstract: The invention relates to a method for decelerating a drive movement of a power tool and to a power tool suitable for carrying out the method, having a drive driven by a motor, an energy supply device for the provision of electrical energy, a controller having a motor controller for activating the motor and an operating-state recognition module which is to detect at least one operating-state variable and, as a function of this, to output a brake signal, the controller being designed to initiate, as a function of the brake signal, a braking procedure in which brake cycles are provided which have a first time segment, in which the motor is short-circuited, and a second time segment in which current is fed to the motor opposite to its original direction of rotation.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 18, 2013
    Assignee: C. & E. Fein GmbH
    Inventors: Michael Kaufmann, Ulf Rinckleb
  • Publication number: 20130127380
    Abstract: An electric power converting apparatus includes a switching circuit, a PWM controller, conducting PWM all phase shut-off and zero-vector outputting, a unit configured to detect or estimate current flowing through a motor, a unit configured to conduct a DC braking, and a current comparator configured to compare between a DC braking time maximum current setup value, and a current value obtained by the unit configured to detect or estimate current. The PWM all phase shut-off and zero-vector outputting are conducted, repetitively, by the PWM controller, if the current comparator determines that a current value, which is obtained by the unit configured to detect or estimate current, exceeds the DC braking time maximum current setup value, when conducting the DC braking to obtain a braking power by running current through the motor.
    Type: Application
    Filed: January 16, 2013
    Publication date: May 23, 2013
    Inventors: Yusaku Onuma, Yusuke Arao
  • Publication number: 20130119899
    Abstract: A process for electrical assistance to the braking of a vehicle with a motor system (M), whereby the motor system (M) includes at least one electric motor (10) whose output shaft (14) is coupled to a primary shaft (20) that drives at least one wheel (22) of the vehicle, at least one wheel (22) of the vehicle being equipped with a mechanical braking device that is activated by a hydraulic circuit, whereby the process is characterized in that it includes: collecting information in the hydraulic circuit of the primary braking circuit, and using the information as a set-point for a braking torque generated by the electric motor (10) and exerted on the primary drive shaft (20) of the wheels.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Inventors: Thierry ZERBATO, Pascal DUCLOS
  • Patent number: 8441218
    Abstract: This invention relates to an electrical regenerative brake (100) with a rotating brake coil (10) which is mounted on a wheel (14) of a vehicle, whereby a magnetic field (18) is fed in the coil (10). In order to allow effective regenerative braking (100) at low speeds and to provide a significant increase in power saving, this invention proposes that the permanent magnet (13) producing the magnetic field (18) is placed in the inner space of at least one additional coil (11, 12), whereby the brake has an electric circuit (22) which contains the rotating brake coil (10) and the additional coil (11, 12) as elements.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 14, 2013
    Assignee: NXP B.V.
    Inventor: Anirban Lahiri