Including Display Device Patents (Class 318/568.25)
  • Patent number: 6832131
    Abstract: A legged mobile robot possesses degrees of freedom which are provided at roll, pitch, and yaw axes at a trunk. By using these degrees of freedom which are provided at the trunk, the robot can smoothly get up from any fallen-down posture. In addition, by reducing the required torque and load on movable portions other than the trunk, and by spreading/averaging out the load between each of the movable portions, concentration of a load on a particular member is prevented from occurring. As a result, the robot is operated more reliably, and energy is used with greater efficiency during a getting-up operation. The robot independently, reliably, and smoothly gets up from various fallen-down postures such as a lying-on-the-face posture, a lying-on-the-back posture, and a lying sideways posture.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 14, 2004
    Assignees: Sony Corporation
    Inventors: Yuichi Hattori, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 6788018
    Abstract: The present invention generally relates to surgical devices, systems, and methods, especially for minimally invasive surgery, and more particularly provides structures and techniques for aligning a robotic surgery system with a desired surgical site. The present invention describes techniques for mounting, configuring and arranging set-up arms for the surgical manipulators and endoscope drive mechanisms of a telesurgical system within an operating theater. The various aspects of the invention improve and optimize space utilization in the conduct of a surgical procedure, especially in the telesurgical systems which provide for concurrent operation by two surgeons using multiple robotic arm assemblies. In one aspect, the invention includes a method and apparatus for ceiling-height mounting of surgical set-up arms, and in another aspect, the invention includes a method and apparatus for the mounting of surgical setup arms to the table pedestal or floor below an operating table.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: September 7, 2004
    Assignee: Intuitive Surgical, Inc.
    Inventor: Stephen J. Blumenkranz
  • Patent number: 6781606
    Abstract: A high resolution image and at least two low resolution images are combined to produce a single image, partially high resolution, partially low resolution on a display. The high resolution image at least partially overlaps at least one of the low resolution images. This method of displaying images is referred to as foveal video. In another aspect of the invention, in a robotic telepresence system, a user station displays information received from a robot using foveal video.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: August 24, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Norman P. Jouppi
  • Patent number: 6717382
    Abstract: The invention relates to a method of connecting a mobile, electronic control and/or monitoring unit (9) to at least one machine or at least one machine component in a group or a plurality of machines (2) or machine components to be controlled and/or monitored. During a connection or log-on procedure between the control and/or monitoring unit (9) and a co-operating distant point on the respective machine (2), a clear link or log-on connection is set up either by means of interfaces (14, 15) to the selected, wireless direction-finder of the co-operating distant point or alternatively by means of transmitters and/or receivers (16, 17) tuned to a restricted, localized functional or operating range (21).
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: April 6, 2004
    Assignee: Keba AG
    Inventors: Dieter Graiger, Siegfried Richter
  • Patent number: 6618635
    Abstract: A programming apparatus having an arrangement for formulating an automating task to be performed in the form of a programming language for automating apparatuses is described, which simplifies a process error analysis for an analysis unit. For this purpose, the programming apparatus is provided with an arrangement that store operands (9; 27), marked to be monitored, in the order in which they appear in the network in a logic list. Furthermore, the programming apparatus has an arrangement that store the operands of this network in an operand list in the order in which they appear in the network. The lists can be transferred into the analysis unit for analysis.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: September 9, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans-Joachim Beck, Gabriele Mangler, Ingo Weber, Peter Hornung
  • Patent number: 6587750
    Abstract: An input device for robotic surgery mechanically transmits a grip signal across a first joint coupling a handle to a linkage supporting the handle. The handle is removable and replaceable, allows unlimited rotation about the joint, and may optionally include a touch sensor to inhibit movement of a surgical end effector when the hand of the surgeon is not in contact with the handle.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: July 1, 2003
    Assignee: Intuitive Surgical, Inc.
    Inventors: Craig Richard Gerbi, Eugene F. Duval, Don Minami, Bob Hager, J. Kenneth Salisbury, Akhil Madhani, John Stern, Gary S. Guthart
  • Patent number: 6507163
    Abstract: A bridge surface preparation, maintenance and painting system has a truck-mounted man lift with an extensible platform on which robot arms and cameras are mounted. Inflatable bags isolate the area of the bridge being worked on, and an apron catches debris such as from sand blasting. An operator sits at a remote control console on a truck, directs the man lift platform into position, controls the inflating of the barriers and operates and guides the robot arms through master-slave controls while watching video displays. The machine is used for surface preparation, undercoating, finish coat painting and bridge inspections.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: January 14, 2003
    Inventor: Mark A. Allen
  • Patent number: 6441577
    Abstract: Techniques and structures are provided for aligning robotic elements with an internal surgical site and each other. Manually positionable linkages support surgical instruments. These linkages maintain a fixed configuration until a brake system is released. While the brake is held in a released mode, the linkage allows the operating room personnel to manually move the linkage into alignment with the surgical site. Joints of the linkage translate the surgical instrument in three dimensions, and orient the surgical instrument about three axes of rotation. Sensors coupled to the joints allow a processor to perform coordinate transformations that can align displayed movements of robotically actuated surgical end effectors with a surgeon's hand inputs at a control station.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: August 27, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Steven J. Blumenkranz, David J. Rosa
  • Patent number: 6377012
    Abstract: A servo system controller which has a sequence controlling section 2 and a servo controlling section 3, employs not only a current position of a servo motor but also other servo control data or a sequencer device as comparison data, and executes a comparing process for compares whether or not respective comparison data are in respective detection ranges to then output respective comparison results, increase and variation of a response time can be prevented until the comparison results are output from the change of the comparison data. A comparing process table memory 14 is provided in the servo controlling section 3, and the comparing process is executed in synchronism with a calculation period of the servo controlling section 3, and a detection signal is output while the comparison data is within a detection range. In a machining apparatus utilizing the servo system controller, a tact time can be reduced without large increase of a cost.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: April 23, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Nobuyasu Takaki
  • Patent number: 6289265
    Abstract: The posture inclination of the robot is detected, a moment of compensating total floor reaction force about a desired total floor reaction force central point is determined therefrom to be distributed to each foot such that the position/posture of the feet are rotated by predetermined amounts about the desired total floor reaction force central point and a desired foot floor reaction force central points respectively. And by parallel-translating the feet in phase, the force component of the actual total floor reaction force is also controlled. In addition, the internal force components (which do not influence on the actual total floor reaction force) generated by the actual foot floor reaction force are controlled independently.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: September 11, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Tadaaki Hasegawa, Takashi Matsumoto
  • Patent number: 6246200
    Abstract: Techniques and structures are provided for aligning robotic elements with an internal surgical site and each other. Manually positionable linkages support surgical instruments. These linkages maintain a fixed configuration until a brake system is released. While the brake is held in a released mode, the linkage allows the operating room personnel to manually move the linkage into alignment with the surgical site. Joints of the linkage translate the surgical instrument in three dimensions, and orient the surgical instrument about three axes of rotation. Sensors coupled to the joints allow a processor to perform coordinate transformations that can align displayed movements of robotically actuated surgical end effectors with a surgeon's hand inputs at a control station.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: June 12, 2001
    Assignee: Intuitive Surgical, Inc.
    Inventors: Steven J. Blumenkranz, David J. Rosa