Responsive To Rotor Shaft Position Or Speed Patents (Class 318/721)
  • Patent number: 9184687
    Abstract: A motor control apparatus includes a calculator, a determinator, and a selector. The calculator calculates a zero vector current predicted to flow through a three-phase AC motor when an inverter operates in a first mode for applying no voltage to the motor. The determinator determines whether a difference between the zero vector current and a command current on a ?? stationary coordinate system falls within an allowable range. The selector selects the first mode as a switching mode of the inverter when the difference falls within the allowable range, and selects a second mode as the switching mode of the inverter upon determination that the difference falls outside the allowable range. The second mode corresponds to a non-zero current vector closest to the command current among six non-zero current vectors defined in fixed directions with respect to the zero vector current on the ?? stationary coordinate system.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: November 10, 2015
    Assignee: DENSO CORPORATION
    Inventor: Go Handa
  • Patent number: 9178458
    Abstract: A controller of an AC motor includes a d-axis voltage command section to generate a d-axis voltage command on a d axis of a d-q coordinate system. A d-axis non-interactive control section removes, from the d-axis voltage command, an interference component resulting from a current on a q axis of the system. A first current deviation arithmetic section obtains a deviation between a current command on the q axis and the current on the q axis flowing through the AC motor. A q-axis integral control section outputs an integral value of the deviation. A q-axis voltage command section generates a q-axis voltage command based on the deviation. A constant output control section outputs a correction voltage command based on the integral value. A d-axis voltage command correction section subtracts the correction voltage command from the d-axis voltage command after non-interactive control to correct the d-axis voltage command.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: November 3, 2015
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Akira Yamazaki, Hideaki Iura
  • Patent number: 9178463
    Abstract: An inverter control device is equipped with an inverter and a command value calculation unit calculates command values for the alternating current voltage output from the inverter. A phase compensation unit compensates the phase of the command values or the phase of the detected values. An inverter control unit controls the inverter on the basis of the command values or detected values that have been compensated by the phase compensation unit. A motor rotational velocity detector detects the rotational velocity of a motor. The phase compensation unit calculates the phase lead amount on the basis of a phase compensation time that is set for the purpose of obtaining a prescribed phase margin and on the basis of the rotational velocity and, in accordance with the phase lead amount, compensates the phase that is based on the specific characteristics of the motor.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: November 3, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Mitsuhiro Shouji
  • Patent number: 9093941
    Abstract: A system is disclosed for controlling motor switching in a sensorless BLDC motor having a set of three stator windings. A controller unit includes a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage having a plurality of switches receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with an asymmetric pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit also communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 28, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Marc John Kobayashi, Stephen James Sanchez, John L. Melanson, Miroslav Olijaca
  • Patent number: 9093215
    Abstract: This disclosure provides systems, methods, and apparatus for transferring power wirelessly via a wireless power transmitter. In one aspect, the transmitter comprises a first circuit configured to generate a first signal, where the first circuit includes a first inductor. The transmitter further comprises a second circuit configured to generate a second signal out of phase with the first signal. The second circuit includes a second inductor inductively coupled with the first inductor. The first inductor and the second inductor may have a leakage inductance of at least a minimum value so as to not produce a substantially square waveform at an output of the first circuit and an output of the second circuit. The transmitter further comprises a filter circuit configured to filter the first signal and the second signal.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: July 28, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Zhen Ning Low, Scott C Hooten, Ngo Van Nguyen
  • Patent number: 9074866
    Abstract: Rotational angle measurement apparatus measuring magnetic-field angle or rotational angle with sufficient accuracy wherein a non-magnetic conductor is arranged in the vicinity of the magnetic flux generator or the magnetic sensor, even when the magnetic flux generator rotates at high speed. The rotational angle measurement apparatus is configured with a magnetic sensor 70 which responds to a magnetic-field angle and a detection unit 302 which inputs an output of the magnetic sensor. The rotational angle measurement apparatus is employed with a rotatable body 121 provided with a magnetic flux generator 202. The output of the magnetic sensor is a raw-angle signal set 155 corresponding to the magnetic-field angle. The detection unit outputs a corrected angle after a non-magnetic conductor in the vicinity of the magnetic sensor is corrected, using a correction value outputted by a correction function with rotational velocity of the rotatable body as an argument.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 7, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Mutsumi Suzuki
  • Patent number: 9059654
    Abstract: There is provided a motor driving device including: a speed detection unit detecting a speed of a motor; a comparison unit comparing the speed of the motor detected by the speed detection unit with an external input speed; and a speed control unit outputting the reference speed as a control signal when the speed of the motor is equal to a reference speed or less and outputting a motor control signal generated based on a comparative value of the comparison unit when the speed of the motor exceeds the reference speed.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: June 16, 2015
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Bon Young Gu
  • Patent number: 9054574
    Abstract: A method determines the value of a characteristic quantity (U1dc, U2dc) of a system for powering a load which includes M DC-DC converters, connected in series to the terminals of the load and at the output of a DC current power supply, and at least one storage capacitor and includes the measurement of a plurality of values of a first characteristic quantity (Ic) with a first high resolution, the measurement with a low resolution of a value of a second characteristic quantity (U1dc, U2dc), and a determination with a second high resolution of a value of the second characteristic quantity (U1dc, U2dc) from the plurality of values measured with the first high resolution of the first characteristic quantity (Ic) and from the value with the low resolution of the second characteristic quantity (U1dc, U2dc). The first and second high resolutions are at least 10 times greater than the low resolution.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: June 9, 2015
    Assignee: GE Energy Power Conversion Technology Ltd.
    Inventors: Bernard Gollentz, Régis Peron, Daniel Girod
  • Patent number: 9041330
    Abstract: A sensorless brushless motor control device includes a first amplification module common to all motor phases and generating an intermediary voltage signal, a voltage divider between each motor phase and a node on which the intermediary voltage signal is generated, and a computation unit. Each voltage divider generates a first corrected electromotive force with a predetermined average value. The computation unit controls the motor on the basis of the first corrected electromotive forces. By using only hardware components, the control device maintains the average of the corrected electromotive forces at the center of the analog acquisition zone of the computation unit.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 26, 2015
    Assignee: DASSYM SA
    Inventor: Jean-Pierre Voillat
  • Patent number: 9041326
    Abstract: A method for operating a brushless electric motor, the windings being energized by an inverter with the aid of six switches. A detection unit for detecting defective switches, a unit for measuring voltage at the outputs of the inverter, and a microcontroller for controlling the switch and for generating a pulse width modulated voltage supply for the windings are provided. A short-circuited switch causes a torque in the electric motor opposite the actuating direction of the electric motor. The method proposes that after detecting a short-circuited switch, the windings (U. V. W) are energized to generate a motor torque that is, on the whole, positive. An actuating period of the electric motor is divided into a plurality of sectors, wherein, in accordance with the defective switch, individual sectors are deactivated for the actuation of the windings (U, V, W), while other sectors are used to actuate the windings (V, W).
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 26, 2015
    Assignee: Continental Automotive GmbH
    Inventors: Christian Gunselmann, Mathias Fernengel, Nicolas Bruyant, Lionel Guichard, Michel Parette
  • Patent number: 9030141
    Abstract: There is provided a motor controlling circuit including: a hall signal level detecting unit detecting a hall signal from a hall sensor; and a signal generating unit sensing a change in a level of the hall signal to generate a motor controlling signal according to the change in the level of the hall signal, wherein the signal generating unit determines that the hall signal is maintained at a high level in a case in which a high level maintaining time of the hall signal is equal to or shorter than a preset time.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 12, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Bon Young Gu
  • Patent number: 9030138
    Abstract: A circuit configuration for driving an electric motor includes a signal evaluation module, which stores a number of output patterns. An input pattern is specified, and as a function of the input pattern, one of the output patterns is output, by which the electric motor is driven.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 12, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Wagner, Dieter Thoss, Andreas Merker
  • Patent number: 9018872
    Abstract: To provide a motor control circuit that variably controls the speed of a motor, in which an appropriate advance angle value corresponding to the speed of the motor that is set can be automatically set. The motor control circuit according to the present invention includes an advance angle setting means that adds a reference advance angle value to an advance angle correction value obtained by multiplying a proportional coefficient by a correction amount and outputs an advance angle setting signal, and an advance angle setting correction means that uses a ratio of a correction reference period relative to a period of a reference signal input from the outside as a correction amount and corrects the reference advance angle value by an advance angle correction value obtained by multiplying the correction amount by a predetermined proportional coefficient of the advance angle setting means.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 28, 2015
    Assignees: Minebea Co., Ltd., Panasonic Corporation
    Inventors: Tomohiro Inoue, Yuji Hamada
  • Patent number: 9007013
    Abstract: Disclosed is an inverter control system and method for an eco-friendly vehicle, by which overall improvements can be obtained in terms of switching loss, electromagnetic performance, noise-vibration-harshness (NVH) performance, control stability, and so forth, when compared to a conventional case in which one fixed switching frequency and one fixed sampling frequency are used over the entire operation area. To this end, the inverter control method for an eco-friendly vehicle which generates a pulse width modulation (PWM) signal according to a switching frequency and a sampling frequency and controls ON/OFF driving of a switching element, in which a controller changes and sets the switching frequency according to a current motor speed, changes and sets a sampling frequency according to the switching frequency, and controls on/off driving of a switching element according to the switching frequency corresponding to the motor speed and the sampling frequency.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 14, 2015
    Assignee: Hyundai Motor Company
    Inventors: Su Hyun Bae, Won Kyoung Choi, Sung Kyu Kim, Mu Shin Kwak
  • Publication number: 20150097510
    Abstract: A motor driving device includes a control unit which outputs a pre-driving signal to control a motor based on command information of an input target number of rotations and detection information of a number of rotations of the motor, and a motor driving unit which drives the motor based on the pre-driving signal. The control unit includes a speed control circuit which outputs speed command information based on the command information of the target number of rotations and the detection information, a stop control circuit which when an input of the command information of the target number of rotations is stopped, outputs stop command information after a predetermined time elapses from detection of stop of the motor, and a driving signal generation circuit which generates a control signal based on the stop command information and the speed command information.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 9, 2015
    Inventors: Keiichi KATAYAMA, Tomohiro INOUE, Shuhei NISHI
  • Patent number: 9000695
    Abstract: A sensorless control apparatus may include: a speed command unit configured to output a speed command to an electric motor; a current detector unit configured to detect electric current flowing through the electric motor if a voltage being output according to the speed command is supplied to the electric motor; a rotor angle calculation unit configured to calculate a magnetic flux of a rotor of the electric motor based on the detected electric current and the voltage being output according to the speed command, and to calculate an angle of the rotor from the calculated magnetic flux; and/or an out-of-step sensing unit configured to sense an out-of-step of the rotor according to a comparison of the calculated angle of the rotor with an angle of the rotor estimated based on a sensorless control algorithm.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Oh Hyuk Kwon, Young Doo Yoon, Ho Sun Yoo, So Hee Han
  • Patent number: 9000706
    Abstract: A system comprising an actuator and a controller configured to drive the actuator with a pulse width modulated (PWM) signal. The controller is configured to limit a duty cycle of the PWM signal in response to a current supplied by the PWM signal.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 7, 2015
    Assignee: Cummins Inc.
    Inventors: Ramakrishna Dontha, Daniel E. Boewe, Niraj Desai, Hari Donepudi, Mike Menkedick
  • Publication number: 20150084574
    Abstract: A control system included in a speed selector connected by output phases to a synchronous electric motor, the synchronous electric motor being controlled according to a control law implemented by the speed selector. A first speed of the synchronous electric motor is determined by a first speed estimator. A second speed estimator is used to determine a second speed of the synchronous electric motor. The system includes a signal generator module configured to apply, to the output phases, voltages taking account of a non-constant current signal. The second speed estimator is configured to recover the current response on the output phases, to deduce therefrom the second speed of the synchronous electric motor.
    Type: Application
    Filed: June 6, 2013
    Publication date: March 26, 2015
    Applicant: Schneider Toshiba Inverter Europe SAS
    Inventors: Olivier Defaix, Thomas Devos
  • Patent number: 8988021
    Abstract: A method of controlling a brushless motor that includes rectifying an alternating voltage to provide a rectified voltage having a ripple of at least 50%, exciting a winding of the motor with the rectified voltage, and performing a first process or a second process in response to current in the winding exceeding a threshold that is proportional to the rectified voltage. The first process includes freewheeling the winding, while the second process includes continuing to excite the winding for an overrun period and freewheeling the winding at the end of the overrun period. Additionally, a control system that implements the method, and a motor system that incorporates the control system.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: March 24, 2015
    Assignee: Dyson Technology Limited
    Inventors: Andrew Charlton Clothier, Stephen Greetham, Nicholas Dalibor Tuftnell
  • Patent number: 8988027
    Abstract: A motor control apparatus according to the embodiment includes a rotational position estimating unit, a change amount estimating unit, and an inductance estimating unit. The rotational position estimating unit estimates a rotational position of a rotor from a motor parameter including a q-axis inductance of a motor on a basis of an output current to the motor and a voltage reference. The change amount estimating unit estimates a change amount of an output torque with respect to a current phase change of the motor corresponding to a high frequency signal whose frequency is higher than a drive frequency of the motor. The inductance estimating unit estimates an inductance value that obtains a maximum torque on a basis of the change amount as the q-axis inductance.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Shingo Fukumaru, Shinya Morimoto, Hideaki Iura, Akira Yamazaki
  • Patent number: 8981703
    Abstract: A system for operating an electric machine includes: a rotor position sensor to provide a rotor position indication as a function of a rotor position angular range which indicates the position of a rotor of the electric machine; a control unit designed to associate in each case a commutation angular range, which indicates a certain control state for the stator coils, with one or more of the rotor position indications, so that a change in the commutation angular range is triggered by a change in the rotor position indication, and to change an association scheme of the associations between the rotor position indications and the respective commutation ranges as a function of a predefined rotational direction indication which indicates the desired rotational direction.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: March 17, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Volker Bosch
  • Patent number: 8975850
    Abstract: There is provided a driving control device of an opening and closing body, which drives the opening and closing body in a closed state by a motor through an idling section thereof. The device includes a calculation section for calculating a rotation speed difference between a rotation speed of the motor in the idling section and a current rotation speed of the motor; and an insertion detection section for detecting insertion of a foreign member based on the calculated rotation speed difference and a predetermined threshold value. The threshold value monotonously decreases according to an increase in the rotation amount of the motor to coincide with a fully-closed state threshold value at a predetermined rotation amount of the motor within an error range of the rotation amount corresponding to the fully-closed state, and to maintain the fully-closed state threshold value to a maximum rotation amount in the error range.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 10, 2015
    Assignees: Aisin Seiki Kabushiki Kaisha, Toytota Jidosha Kabushiki Kaisha
    Inventors: Koichi Hirota, Nobuyasu Bessho, Masato Yamada, Shinichiro Noda, Tomomasa Inoue, Yoshiki Ishikawa, Tomoharu Tamaya
  • Patent number: 8975856
    Abstract: An electric motor (40) has a permanent-magnet rotor (46) and an apparatus for generating a three-phase sinusoidal current (i202, i204, i206) for supplying current to said motor (40), also a microprocessor (95) for executing the following steps: while the motor (40) is running at a substantially constant load, the motor is operated firstly at a predetermined operating voltage (U), and an amplitude of a current flowing to the motor is iteratively sampled, stored, and compared as applied voltage is decreased. If it is found, in this context, that the current flowing to the motor has not decreased as a result of reduction in the voltage amplitude, the motor (40) is operated at that current. If, however, it is found that the current flowing to the motor has decreased as a result of the reduction in the voltage delivered to the motor (40), the measurements and the comparison are repeated, optionally multiple times, in order to identify values for optimized efficiency.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 10, 2015
    Assignee: EBM-PAPST St. Georgen GmbH & Co. KG
    Inventor: Markus Hirt
  • Publication number: 20150061566
    Abstract: A control circuit for driving a motor and a method for controlling a speed of a motor are provided. The control circuit comprises a microcontroller and a drive circuit. The microcontroller has a memory. The drive circuit is configured to drive the BLDC motor according to a control of the microcontroller. The memory include a RPM table, and the microcontroller sends a duty signal to the drive circuit to change a speed of the motor according to the RPM table.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Ta-Yung Yang, Yu-Cheng Kang, Yung-Sheng Wu, Pei-Yu Chiang
  • Patent number: 8970156
    Abstract: A path display apparatus includes a first position command acquiring unit that acquires first position command for motors, a first position feedback acquiring unit that acquires first position feedback of each of the motors, a correction data acquiring unit that acquires correction data generated for each of the motors, a second position command calculating unit that subtracts the correction data from the first position command to calculate a second position command, a second position feedback calculating unit that subtracts the correction data from the first position feedback to calculate second position feedback, a command path display unit that displays a command path of the tip point of the tool, based on the second position command; and a feedback path display unit that displays a feedback path of the tip point of the tool, based on the second position feedback.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: March 3, 2015
    Assignee: FANUC Corporation
    Inventors: Junichi Tezuka, Hajime Ogawa
  • Patent number: 8963460
    Abstract: A method for controlling a motor is provided. The method comprises obtaining electrical signals of the motor with a signal unit, the electrical signals comprising a motor torque and an angular velocity, calculating a voltage phase angle of a voltage vector with a calculating component, wherein a command torque, the motor torque, the angular velocity and a voltage amplitude of the voltage vector are inputs of the calculating component, and wherein the voltage phase angle is a variable and the voltage amplitude is a constant. The method further comprises modulating the voltage phase angle and the voltage amplitude to a switching signal for controlling an inverter; converting a direct current voltage to the voltage vector according to the switching signal, and applying the voltage vector to the motor.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Yong Li, Pengju Kang, Ronghui Zhou, Xiangming Shen, Xiao Chen, Zili Cai, Tong Zhao
  • Patent number: 8947024
    Abstract: An electric motor includes an arrangement of windings provided for driving the rotor, with the windings being connected to an energy source to develop torque which drives the rotor. The electric circuits of corresponding ones of the windings each have a potential point, the voltage (UL, UG) of which is supplied to an evaluation unit via an adaptation device. The adaptation device can be operated in two switchable adaptation stages and is connected to a drive circuit that operates in dependence upon the rotational position of the rotor. The drive circuit switches the adaptation device into the first stage having a high sensitivity or into the second stage having a low sensitivity in dependence upon the rotational position of the rotor of the motor, such that the number of required analog inputs at a microprocessor in the evaluation unit can be kept low.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 3, 2015
    Assignee: Andreas Stihl AG & Co. KG
    Inventors: Rene Wichert, Gernot Liebhard, Rudolf Saemann
  • Patent number: 8947032
    Abstract: A system for estimating a rotor position may include a synchronous machine, including at least one stator winding pair configured to create a magnetic field when an input voltage is applied and a rotor having a field winding and configured to rotate within the magnetic field created by the at least one stator winding pair. The system may include a phase detector configured to determine a phase difference between the input voltage and a field voltage induced in the field winding of the rotor. The system may also include a processor configured to receive a signal from the phase detector indicative of the phase difference between the input voltage and the field voltage, and to estimate the rotor position based on the phase difference.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 3, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Brett Michael Nee, Garrett Tyler Nielson
  • Patent number: 8941342
    Abstract: An integrated servo system and a method of controlling a motor is provided. The integrated servo system includes a position detector which determines original position data of a motor and a position signal processor which determines a position of the motor based on the determined position data. The integrated servo system further includes a servo controller circuit which controls the motor based on the determined position data and a parallel bus through which the determined position data is transmitted from the position signal processor to the servo controller circuit.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: January 27, 2015
    Assignee: Mitsubishi Electric Corp.
    Inventor: Kei Terada
  • Publication number: 20150023801
    Abstract: A rotation speed control circuit with function of auto-calibrating rotation speed error is disclosed. The rotation speed control circuit includes a first multiplexer, a second multiplexer, an error amplifier and a current compensation circuit. In calibration mode, the rotation speed control circuit selects a calibration clock signal and a calibration voltage through the first multiplexer and the second multiplexer correspondingly according to a mode switch signal, and adjusts current value of a first current accordingly. In other words, the rotation speed control circuit utilizes the first current to compensate error of the external capacitor through the calibration clock signal fixed and the calibration voltage fixed in the duration of calibration mode, so as to avoid that aging of the external capacitor leads to rotation speed error and then affects the whole operation.
    Type: Application
    Filed: October 31, 2013
    Publication date: January 22, 2015
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: MING-JUNG TSAI, CHING-SHENG LI, KUN-MIN CHEN, CHIEN-CHENG CHEN
  • Patent number: 8933655
    Abstract: An apparatus for measuring an error in a resolver includes a first calculator that perform an inverse Park transform based on voltages Uq and Ud at an output of PI current regulators, and delivers voltage setpoint signals PWMA, PWMB, PWMC to a power stage via a line on which a DC voltage Ubus-dc is available. The power stage generates a three-phase system of voltages UA, UB, UC for energizing an electric machine. The apparatus also includes a signal processor that provides an angle measurement ?m. Based on currents MesIA, MesIB, MesIC of the three phases, and on a rotor angle ?r, a second calculator of the device delivers values MesId, MesIq used by the first calculator. A PI voltage regulator delivers an angle ?c for correcting the error by regulating a setpoint value for the voltage Ud.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 13, 2015
    Assignees: Compagnie Generale des Establissements Michelin, Michelin Recherche et Technique S.A.
    Inventors: Cédric Savio, Jean-Louis Linda, Bertrand Vedy
  • Patent number: 8928271
    Abstract: An apparatus or method which accepts a burst of pulses at a frequency which may not be tightly controlled and converts this into a trajectory command that is a suitable motion profile for an incremental motor control application. The output of the invention can be a pulse stream that can be fed to an existing incremental pulse input motor drive or the invention can be embedded into a motor drive where its output is a numerical sequence that defines a physically realizable trajectory to be fed to the control circuits and software within the motor drive.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 6, 2015
    Assignee: Teknic, Inc.
    Inventors: Thomas John Bucella, David W. Sewhuk, Scott M. Mayne
  • Publication number: 20150002070
    Abstract: An electric power tool includes a motor with a rotor having a permanent magnet; a control unit that sets a control amount of the motor in accordance with operation of an operation portion and that drive-controls the motor based on the control amount; and a number-of-rotations detection unit that detects the number of rotations of the motor. During driving of the motor, when the number of rotations detected by the number-of-rotations detection unit has reached an upper limit number of rotations set in advance, the control unit shifts drive control of the motor to rotation control, in which the control amount is made to be increased or decreased so that the number of rotations of the motor becomes a predetermined target number of rotations.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 1, 2015
    Inventors: Goshi ISHIKAWA, Takuya KUSAKAWA
  • Patent number: 8922144
    Abstract: Methods and systems of processing sensor signals to determine motion of a motor shaft are disclosed. This disclosure relates to the processing of sequences of pulses from a sensor for computing the motion of an electric motor output shaft. Furthermore, this disclosure relates to the processing of two sequences of pulses from sensor outputs, which may be separated by only a few electrical degrees, to compute the motion of an electrical motor output shaft while using a limited bandwidth controller. Motor shaft direction, displacement, speed, phase, and phase offset may be determined from processing the sensor signals.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 30, 2014
    Assignee: Chrysler Group LLC
    Inventors: Feisel Weslati, Behrouz Ashrafi, Chandan Lakshmanaiah
  • Patent number: 8912739
    Abstract: A synchronous machine control apparatus is characterized by including a magnet condition estimation unit (7, 7a) that estimates the temperature or the magnetic flux of a permanent magnet that forms the magnetic field of a synchronous machine (1), and is characterized in that the magnet condition estimation unit (7, 7a) coordinate-converts an armature current into currents on the ?-? axis consisting of the ? axis and the ? axis that is perpendicular to the ? axis, based on the rotor position and the estimated ? axis, and estimates the temperature or the magnetic flux of the permanent magnet, based on the control command for the synchronous machine (1) and the ?-? axis currents.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 16, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takahiko Kobayashi, Kiyoharu Anzai, Noriyuki Wada, Daiki Matsuura
  • Patent number: 8907606
    Abstract: A method for determining a rotor position of a two-phase synchronous machine including two strands. The method is useful for electronically commuting the synchronous machine. The method includes alternately actuating each of the strands in a first actuating time window with an actuating value of positive polarity and in a second actuating time window with an actuating value of negative polarity, where the first and the second actuating time window alternately follow each other. The method further includes applying an actuating value of 0 during a measuring time window which is provided within at least one of the actuating time windows of a strand. The method further includes applying a measuring pulse to the corresponding strand within the measuring time window in order to measure the inductance of the corresponding strand as an indication of the rotor position. In general, the strand inductance is dependent on the rotor position.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Torsten Wilharm
  • Patent number: 8896258
    Abstract: A method for starting an electric motor having a rotor, comprising the following steps:—driving the rotor with a first torque in a first rotational direction, wherein a maximum value of the first torque is not higher than a maximum countertorque acting counter to the rotation of the rotor, so that the rotor comes to a standstill in a first stationary position;—driving the rotor starting from the first stationary position in a second rotational direction that is counter to the first rotational direction until the rotor comes to a standstill in a predefined second stationary position; and—starting from the rotor in the first rotational direction starting from the second stationary position.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 25, 2014
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Falko Abel, Eberhard Weidner
  • Patent number: 8890449
    Abstract: A lock state occurrence determination apparatus includes a counter, a reset device, a reference time changing device, a lock state determination device, and an invalidation device. The invalidation device performs, in a case where a false determination of occurrence of a lock state of a motor is caused by the lock state determination device due to an operation input to operate a rotation speed of the motor, at least one of a first invalidation operation to invalidate the lock state determination device and a second invalidation operation to invalidate continuation of a counting operation by the counter.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Makita Corporation
    Inventors: Jiro Suzuki, Takuya Kusakawa
  • Patent number: 8890460
    Abstract: A servo control device includes a follow-up control unit that controls a control target that drives a mechanical system by a motor, a command function unit that has input therein a phase signal ? indicating a phase of a cyclic operation performed by the control target, and that calculates a machine motion command according to the phase signal ? by a preset first function, a second derivative unit that uses a second function obtained by second-order differentiating the first function with respect to the phase signal to calculate a value of the second function according to the phase signal as a second-order differential base signal, a correction-value computation unit that computes a first command correction value for correcting the motor motion command by using a product of a square value of the phase velocity, the second-order differential base signal, and a first constant, and a correction-value addition unit that calculates the motor motion command based on an added value of the first command correction val
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Ikeda, Yoshihiro Marushita, Koji Mahara, Kiyoshi Hasegawa, Hidemasa Ogi
  • Patent number: 8884567
    Abstract: In a system for controlling a rotary machine, a circuit outputs an AC voltage to be applied to a rotary machine. A storage stores therein measurement-error information indicative of a measurement error of the measuring unit. A torque-feedback adjuster manipulates a phase of the output voltage of the circuit based on the rotational angle of the rotary machine measured by a measuring unit and the measurement-error information to adjust a torque of the rotary machine to a request torque. The phase is obtained from information fed back from the rotary machine. An abnormality determiner determines whether there is an abnormality to disable using accurate measurement-error information. A limiter limits adjustment of the torque of the rotary machine to the request torque by the torque-feedback adjuster when it is determined that there is an abnormality to disable using accurate measurement-error information.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 11, 2014
    Assignee: Denso Corporation
    Inventors: Tomohiro Senkou, Hiroshi Inamura, Koichi Nishibata
  • Patent number: 8878480
    Abstract: In sequentially selecting and driving two phases of the three-phase stator windings of a synchronous motor, detect a speed electromotive voltage of a de-energized phase, relate the speed electromotive voltage to rotor position information beforehand, then count rotor position information backward based on the detected the speed electromotive voltage to estimate rotor position; and then detect rotation speed from the change rate of the rotor position information so as to achieve highly accurate position and speed control.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari, Ryoichi Takahata, Masaki Hano
  • Patent number: 8872466
    Abstract: A synchronous-machine starting device includes an electric power conversion unit for converting supplied electric power into AC power for supply to the armature of the synchronous machine, a rotor position detection unit for detecting a position of the rotor of the synchronous machine based on an AC voltage in the armature of the synchronous machine detected by an AC voltage detection unit, an electric power conversion control unit for controlling the electric power conversion unit based on the position of the rotor detected by the rotor position detection unit, and an abnormality detection unit detecting a rotation abnormality of the synchronous machine based on the AC voltage detected by the AC voltage detection unit after supply of the field current to the rotor of the synchronous machine is started.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 28, 2014
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Shinzo Tamai, Hisanori Taguchi, Akinobu Ando, Yasuhiko Hosokawa
  • Patent number: 8872463
    Abstract: A sinusoidal command is added to a torque command of a controller to acquire a velocity and a current value of an electric motor. An estimated coupling torque value is calculated by calculating an input torque value from the current value and a torque constant of the electric motor and further calculating a coupling torque value from a velocity difference, motor inertia, and the input torque. An estimated torque error is then calculated from the estimated coupling torque value and the coupling torque value, and inertia, friction, and a spring constant are estimated from the estimated torque error, the velocity, and the coupling torque value.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: October 28, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yukio Toyozawa
  • Patent number: 8866433
    Abstract: A method of estimating an initial rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may comprise the steps of driving a phase current in each of a plurality of phases of the SR machine to a predefined limit, performing an integration of a common bus voltage associated with each phase, determining a flux value for each phase based on the integrations, and determining the initial rotor position based on the flux values.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Caterpillar Inc.
    Inventors: Jesse Gerdes, Jackson Wai, Mark Hartman, Ahmed Khalil, Carlos Nino Baron
  • Patent number: 8866422
    Abstract: An inverter and a control unit that has a command signal processing unit and a PWM frequency control unit and performs pulse width modulation control are provided. If the command signal processing unit has received a first PWM frequency command signal, it outputs a low PWM frequency command signal so that synchronous or asynchronous PWM control is performed at a PWM frequency in a predetermined frequency range. The command signal processing unit outputs a high PWM frequency command signal so that synchronous or asynchronous PWM control is performed at a higher frequency than the above-mentioned frequency if the command signal processing unit has received a second PWM frequency command signal and until a predetermined time period elapses. The command signal processing unit outputs a low PWM frequency command signal if it has received the second PWM frequency command signal and after the predetermined time period elapsed.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: October 21, 2014
    Assignee: NABTESCO Corporation
    Inventors: Shingo Nakagawa, Atsushi Mori
  • Patent number: 8866434
    Abstract: A control system for a turbine blade, including: an operational control element for generating and outputting an operational control signal, the operational control signal for non-emergency operation of a motor for controlling pitch of the turbine blade; an emergency control element, separate from and different from the operational control element, for generating and outputting an emergency control signal for emergency operation of the motor; and, an output stage element for receiving the operational and emergency control signals and for selecting one of the operational or emergency control signals, and with a means for receiving power for operation of the motor and with a means for providing the received power to the motor according to the selected operational or emergency control signal.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 21, 2014
    Assignee: Windurance LLC
    Inventors: Stephen P. Jones, Alan Duane Cleland, Paul John Rowan
  • Patent number: 8853974
    Abstract: A method for connecting a second motor to a variable speed drive in parallel with at least one existing motor under load and controlled by the variable speed drive is provided. The method disconnects the existing motor from the variable speed drive and a state estimator calculates transient state of the existing motor including at least the speed of the existing motor based on a previously established load model. The method then connects the second motor to the variable speed drive and the second motor is operated using a suitable directive until the actual state of the second motor attains the calculated transient state of the existing motor at a given time. Upon attaining the calculated transient state, the existing motor is reconnected to the variable speed drive such that no current spike is generated in the aforementioned process.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 7, 2014
    Assignee: Schneider Toshiba Inverter Europe SAS
    Inventors: Thomas Devos, François Malrait
  • Patent number: 8853983
    Abstract: A unit of absolute rotary position encoding, where the angular range of encoding is matched to the number of poles of an electrical motor it is intended that the encoder is to be attached to. The electrical motor is suitably a brushless DC motor. This provides unique rotational position values only through an angle corresponding to an angle between two consecutive poles to enable control/drive electronics to accurately and smoothly turn the rotor from standstill and at low speeds with varying loads applied to the motor.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 7, 2014
    Assignee: Aktiebolaget SKF
    Inventor: Jan Doornenbal
  • Patent number: 8847541
    Abstract: A motor inverter is provided with switching elements for each phase of a 3-phase motor, and driving the motor by turning on and off the switching elements. In an example of a control device of the motor inverter, the control device includes: a stationary phase determination unit for defining a phase in a plurality of phases provided with switching elements for each area as a stationary phase in which a switching operation is not performed, based on current command value of each phase acquired from d-axis current command value and q-axis current command value of the motor, with one rotation in electrical angle of a rotor of the motor divided into a plurality of areas; and a drive unit for performing the switching operation of switching elements of the phases other than the stationary phase determined for each area to perform, and realizing 2-phase modulation control.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 30, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Daiki Mizuguchi, Shigeki Ikeda, Seiki Sakata
  • Patent number: RE45388
    Abstract: A compact field programmable gate array (FPGA)-based digital motor controller (102), a method, and a design structure are provided. The compact FPGA-based digital motor controller (102) includes a sensor interface (206) configured to receive sensor data from one or more sensors (104) and generate conditioned sensor data. The one or more sensors (104) provide position information for a DC brushless motor (108). The compact FPGA-based digital motor controller (102) also includes a commutation control (210) configured to create switching commands to control commutation for the DC brushless motor (108). The commutation control (210) generates commutation pulses from the conditioned sensor data of the sensor interface (206). The compact FPGA-based digital motor controller (102) also includes a time inverter (208) configured to receive the commutation pulses.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Robert Wichowski, Harold J. Hansen, Kevin G. Hawes