With Speed Control Patents (Class 318/779)
  • Patent number: 11428176
    Abstract: Disclosed is a method for controlling a speed of a vehicle combustion engine, the engine including at least one combustion chamber, into which a mixture of air and fuel is injected, and an air box, configured to inject the air into the combustion chamber and having an air flow rate controlled by a regulating butterfly valve, the regulating butterfly valve having a variable angular position, controlled by a predetermined position of an actuator. The method includes the steps of evaluating a so-called “load” resistant torque resulting from a plurality of external loads applied to the engine, determining, from the calculated load resistant torque, a position of the actuator, so as to determine an angular position of the regulating butterfly valve, and controlling the position of the actuator, so as to control the engine speed.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: August 30, 2022
    Assignee: VITESCO TECHNOLOGIES GMBH
    Inventor: Xavier Moine
  • Patent number: 11139649
    Abstract: A motor control system includes a motor switching assembly comprising a power converter positioned on a converter path, a first relay positioned on the converter path upstream of the power converter, a second relay positioned on a bypass path that is in parallel with the converter path, and a solid-state switching unit positioned upstream from the converter path and the bypass path. The motor control system also includes a control system that controls operation of the motor switching assembly, with the control system programmed to operate the solid-state switching unit in one of a conducting mode, a non-conducting mode, and a ramping mode, so as to selectively control and condition power flow therethrough. The control system is also programmed to control switching of the first and second relays between open and closed positions to selectively route power along the converter path or the bypass path.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 5, 2021
    Assignee: Eaton Intelligent Power Limited
    Inventors: Huaqiang Li, Joseph Paul Uphaus
  • Patent number: 11114962
    Abstract: The present disclosure starts up a three-phase motor in a stable manner. During a start-up operation of a brushless DC motor, a motor drive system detects the position of a particularly suitable rotor while the rotor is resting, and applies a drive current to two phases in accordance with the detected position of the rotor. A controller changes the time of drive current application in accordance with the magnitude of back electromotive force that is in a non-conducting phase and detected by a detector during drive current application.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: September 7, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Satoshi Narumi
  • Patent number: 10381931
    Abstract: In a control system of a boost converter and a control method of the control system, when a temperature of a current sensor of a boost converter is within a prescribed temperature range, an electronic control unit performs i) executing intermittent step-up control of the boost converter and learning of an offset value of the current sensor, and ii) controlling the boost converter using a corrected current value. The corrected current value is a value obtained by correcting a detected value of the current sensor using a correction value. The correction value is calculated using the learned offset value and the temperature of the current sensor.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 13, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyoshi Satoh, Yasuhiro Terao
  • Patent number: 10298167
    Abstract: A motor controller includes a rectifier for converting AC power supplied from an AC power supply into DC power and outputting the DC power; an AC voltage detector for detecting an AC voltage value of the AC power supply and outputting the AC voltage value as a detection value; a power failure detector for determining that a power failure is occurring, when a state in which the outputted detection value is equal to or lower than a regulation voltage has continued for a regulation time or more; and a power failure detection condition determiner for determining or modifying the regulation time.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: May 21, 2019
    Assignee: FANUC CORPORATION
    Inventors: Shunpei Tanaka, Kenta Yamamoto
  • Patent number: 10253742
    Abstract: A motor starter includes a control unit and a first current path, via which energy can be supplied to a downstream electrical motor. The first current path includes a semiconductor switch and an electromechanical switch element, the semiconductor switch and the switch element being connected in series. In order to provide a cost-effective, safe motor starter, according to an embodiment of the invention the control unit is designed such that, in order to produce an energy supply via the first current path in a first step, it ensures that the voltage currently connected via the switch element, in respect of a previous opening of the switch element, lies below the allowable maximum blocking voltage of the semiconductor switch. Subsequently in a second step, the switch element first closes and then switches the semiconductor switch to be conductive.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 9, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Dirk Hertz, Stephan Jonas, Johann Seitz
  • Patent number: 9935576
    Abstract: A controller and methods for hybrid operation control of an electric motor in an electric motor system are provided. The controller is configured to receive a speed command for operating the electric motor, measure available voltage on an inverter configured to provide conditioned AC voltage to the electric motor, and determine a winding phase angle difference based on the received speed command and the measured available inverter voltage. The controller is also configured to adjust a phase angle difference between winding voltage commands for the switches of the inverter using the determined winding phase angle difference, and apply the winding voltage commands including the adjusted phase angle difference to the inverter switches to control the electric motor.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: April 3, 2018
    Assignee: Regal Beloit America, Inc.
    Inventors: Ludovic Andre Chretien, Roger Carlos Becerra
  • Patent number: 9871476
    Abstract: A braking torque closed-loop control system and method for a switch reluctance motor. The closed-loop control system comprises a torque regulator, a mode selector, a current regulator, an angle optimization controller and a torque estimator. On the basis of the rotating speed of the motor, the mode selector implements a phase current soft chopper control in a low rotating speed region and an angle position control in a high rotating speed region. The current regulator performs soft chopper hysteretic current regulation. The angle optimization controller optimizes a turn-on angle and a turn-off angle of a power converter master switch to reduce torque pulsation and improve braking energy feedback efficiency. The torque estimator conducts an on-line estimation of an actual braking torque estimated value of the motor based on an actual phase voltage and current of the motor to achieve braking torque signal feedback.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 16, 2018
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY
    Inventors: Hao Chen, He Cheng, Zhou Yang, Qing Wang, Qianlong Wang, Xing Wang
  • Patent number: 9859933
    Abstract: A device for control by radiofrequency signals (22) of a domestic electrical appliance powered by an electrical power supply network comprising a first electrical conductor (26) and a second electrical conductor (27) for powering the device (22), a coupler (31), a radiofrequency unit (23) comprising an output and/or an input for the radiofrequency signals (28) which is linked electrically to a point of connection (33) of the coupler (31). The coupler (31) is formed by a printed transmission line (32) on a printed circuit board (29), a first end (34) of the line (32) being linked electrically to the first electrical conductor (26) of the device (22), and a second end (35) of the line (32) being linked electrically to a first reference voltage. And the point of connection (33) of the coupler (31) is disposed between the first and second ends (34, 35) of the printed transmission line (32).
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: January 2, 2018
    Assignee: SOMFY SAS
    Inventor: Michel Ramus
  • Patent number: 9564842
    Abstract: In a thyristor control device which converts a first AC voltage to a DC voltage and converts the DC voltage to a second AC voltage to be supplied to a synchronous motor, a DC voltage detector is configured to detect the DC voltage, and is provided with an AC voltage detector configured to detect the second AC voltage and an arithmetic circuit configured to determine the DC voltage on the basis of the second AC voltage detected by the AC voltage detector. As a result, there is no need to separately provide a DV voltage detector, which makes it possible to make the device compact in size and cheap in price.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 7, 2017
    Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Hiroshi Ogino, Akinobu Ando, Yasuhiko Hosokawa
  • Patent number: 9528212
    Abstract: A washing machine and a control method thereof, capable of reducing noise by performing a zero-current control during the braking of a motor, and checking whether a vibration sensor is installed on a tub in a weight detection state in the beginning of a spin-drying. The zero-current control is performed by driving a current regulator with a command current set to “0 A”, so that the current flowing at the motor decreases and thus noise is reduced. In a washing machine having a vibration sensor fixedly attached to a tub, a fixation state of the vibration sensor with respect to the tub is checked in advance by use of measurement data of the vibration sensor at a weight detection stage in the beginning of the spin drying so that the frame touch caused by an erroneous detection of vibration or a failure of vibration detection may be prevented.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: December 27, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Mo Lee, Kyo Soon Choi
  • Patent number: 9410728
    Abstract: A chiller system and a control method thereof includes a plurality of chiller modules in which a refrigeration cycle is performed to supply cold water, a main control device generating an operation signal to simultaneously or successively operate the plurality of chiller modules, a module control device provided in each of the plurality of chiller modules to control an operation of each of the plurality of chiller modules on the basis of the operation signal of the main control device, and a starting device communicably connected to the module control device to selectively apply power into the plurality of chiller modules.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: August 9, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Horim Lee, Seulki On, Jinhyuk Yu, Yoonjei Hwang, Hanyoung Park
  • Patent number: 9263880
    Abstract: An object is to obtain a low-frequency circuit breaker which has a simple configuration and a small size as a whole and is advantageous in view of costs. There is provided a low-frequency circuit breaker, in which a semiconductor switch and a mechanical switch are connected in parallel with each other. The semiconductor switch is configured by connecting a thyristor and a thyristor in anti-parallel with each other. These members are controlled by the circuit breaker control circuit.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 16, 2016
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems
    Inventors: Hiroyoshi Komatsu, Junichi Nomura, Manabu Souda
  • Patent number: 9263981
    Abstract: The invention relates to a drive device (100) for use in a laboratory device, having a stepping motor (10) having rotor and stator, and having a motor controller (20), which is designed for the purpose of activating the stepping motor (10). In one embodiment, the drive device (100) comprises an encoder (11), which supplies a respective current encoder signal (e(t)) in operation (ia, ib), which reflects the current rotor position of the rotor, and phase terminals (14, 27), to tap the currently flowing motor phase currents (ia, ib). The motor controller (20) comprises a transformation module (13), in order to decompose the currently flowing motor phase currents (ia, ib) using a transformation method into a slip component (ix) and a torque component (iy).
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 16, 2016
    Assignee: TECAN TRADING AG
    Inventor: Remo Kälin
  • Patent number: 9252698
    Abstract: An inverter device includes a power supply unit and a switch controller. The power supply unit supplies AC power to an AC motor whose electric characteristics in response to a rotation speed are switchable between low speed characteristics and high speed characteristics. The switch controller switches the electric characteristics of the AC motor. The switch controller executes switching control that alternately switches the electric characteristics of the AC motor between the low speed characteristics and the high speed characteristics on the basis of the rotation speed of the AC motor.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: February 2, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Tsuneo Kume, Hidenori Hara, Koji Higashikawa
  • Patent number: 9136789
    Abstract: A control apparatus includes, a first calculating unit which calculates first d-phase and q-phase current limit candidate values, a second calculating unit which calculates second d-phase and q-phase current limit candidate values, a q-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first q-phase current limit candidate value as a q-phase current limit value, but otherwise sets the second q-phase current limit candidate value as the q-phase current limit value, and a d-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first d-phase current limit candidate value as a d-phase current limit value, but otherwise sets the second d-phase current limit candidate value as the d-phase current limit value.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: September 15, 2015
    Assignee: FANUC CORPORATION
    Inventors: Hidetoshi Uematsu, SeungJun Lee
  • Patent number: 9130494
    Abstract: A method and apparatus for controlling an electric motor. A controller is configured to identify a start time for a signal based on a back electromotive force present in an electric motor during operation of the electric motor. The start time is for a position of a rotor relative to a group of coils. The controller is further configured to send the signal to the group of coils using the start time identified. An effect of the back electromotive force on the signal is reduced.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: September 8, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Christopher Pete Benson, Douglas C. Cameron
  • Patent number: 9054588
    Abstract: A three-phase AC to DC converter includes a three-phase AC power supply, a three-phase rectifier bridge circuit that is connected to the three-phase AC power supply and includes rectifying devices which are connected in a bridge configuration, a three-phase full-bridge circuit that includes two serially-connected switching devices for each of three phases, the two serially-connected switching devices being connected at an output side of the three-phase rectifier bridge circuit, and includes reverse blocking diodes which are connected in parallel to the respective switching devices, a reactor that connects the three-phase full-bridge circuit to the three-phase AC power supply, a smoothing capacitor connected to an output side of the three-phase full-bridge circuit, DC voltage detection means that detects an output voltage, power supply phase detection means that detects a power supply phase of the three-phase AC power supply, and pulse width modulator that outputs PWM signals which control the switching device
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: June 9, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Takata, Shigeo Takata
  • Patent number: 9024568
    Abstract: A motor speed controller controls a motor speed to generate a phase reference pulse; generates a FG pulse per rotary angle of the motor; detects a difference between the number of phase reference pulses and the number of FG pulses for output as an integer number phase difference; detects and measures a time difference between an edge of the phase-reference pulse and an edge of the FG pulse in units of the reference clock for output as a decimal fraction phase difference; adds the integer number phase difference to the decimal fraction phase difference at a predetermined ratio for output as a phase difference; and controls driving of the motor in accordance with the phase difference.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: May 5, 2015
    Assignee: Ricoh Company, Ltd.
    Inventor: Haruyuki Suzuki
  • Patent number: 9000710
    Abstract: A system for determining motor speed of a brush DC motor in an apparatus, including a first filter for receiving a substantially DC component of the motor current and parameters corresponding to the brush DC motor, for calculating a speed estimate thereof; an adaptive bandpass filter having a center frequency corresponding to the speed estimate of the first filter, for receiving the motor current and substantially isolating a periodic current fluctuation thereof; a block for determining a frequency of the periodic current fluctuation, the current fluctuation corresponding to motor speed of the brush DC motor. The adaptive bandpass filter uses debounce filtering to reduce rapid filter passband switching, and a run-in period prior to passband switching to obviate transient effects of filter switching.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Lexmark International, Inc.
    Inventor: Stefan Mark Atay
  • Patent number: 9000708
    Abstract: To provide a motor control circuit that variably controls the speed of a motor, in which an appropriate control gain corresponding to the speed of the motor that is set can be automatically set. The motor control circuit includes a period error signal output means, a speed error signal output means and a gain correction means.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 7, 2015
    Assignees: Minebea Co., Ltd., Panasonic Corporation
    Inventors: Tomohiro Inoue, Kenichi Kishimoto, Yuji Hamada
  • Patent number: 8947035
    Abstract: A rotation speed control circuit is disclosed. The rotation speed control circuit includes a temperature-controlled voltage duty generator, a pulse-width signal duty generator, a multiplier and a rotation speed signal generator. The temperature-controlled voltage duty generator converts temperature-controlled voltage to digital temperature-controlled voltage and executes linear interpolation operation according to a first setting data so as to output temperature-controlled voltage duty signal. The pulse-width signal duty generator coverts pulse-width input signal to a digital pulse-width input signal and executes linear interpolation operation according to a second setting data so as to output a pulse-width duty signal. The temperature-controlled voltage duty signal and the pulse-width duty signal are executed for multiplication by the multiplier so as to output mixing-duty signal.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Anpec Electronics Corporation
    Inventors: Ching-Sheng Li, Shen-Min Lo, Kun-Min Chen, Chia-Tai Yang, Ming-Jung Tsai
  • Patent number: 8922155
    Abstract: In various implementations, a condition of a motor may be monitored based at least partially on time required to achieve a change in speed. A notification may be transmitted based on the condition of the motor.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Lennox Industries Inc.
    Inventors: Joe Powell, Randall L. Lisbona
  • Patent number: 8890449
    Abstract: A lock state occurrence determination apparatus includes a counter, a reset device, a reference time changing device, a lock state determination device, and an invalidation device. The invalidation device performs, in a case where a false determination of occurrence of a lock state of a motor is caused by the lock state determination device due to an operation input to operate a rotation speed of the motor, at least one of a first invalidation operation to invalidate the lock state determination device and a second invalidation operation to invalidate continuation of a counting operation by the counter.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Makita Corporation
    Inventors: Jiro Suzuki, Takuya Kusakawa
  • Patent number: 8890451
    Abstract: A command rotation speed is set to an initial rotation speed, and a forced commutation mode is started. In the forced commutation mode, a rotation speed is increased by a predetermined increase amount each time and forced commutation is executed until the rotation speed reaches a set rotation speed. Then, a switchover to the sensorless control mode is made when the rotation speed reaches the set rotation speed (S4) and a rotor position becomes detectable.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 18, 2014
    Assignee: JTEKT Corporation
    Inventors: Yuichi Miura, Yuki Shishihara, Daisuke Ozaki
  • Patent number: 8847537
    Abstract: A motor driving device and a driving method thereof is disclosed herein and comprises a PWM converting circuit, an oscillator, a comparator, a controlling unit. The PWM converting circuit converts an analog signal according to an adjustable the highest setting voltage, an adjustable the lowest setting voltage and a controlling signal. The analog signal and a triangular signal generated by the oscillator are inputted to the comparator to compare to output a drive signal to the controlling unit so as to control the motor speed. The motor driving device in the present invention can adjust the motor rotating speed curve to set the lowest rotating speed of the motor so as to achieve the function of changing the motor rotating speed and maintain the lowest torque of the motor to increase the flexibility of the motor speed control.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: September 30, 2014
    Assignee: AMtek SEMICONDUCTOR Co., Ltd.
    Inventors: Teng-Hui Lee, Kuo-Yung Yu
  • Patent number: 8803464
    Abstract: A fan speed control circuit is provided. The circuit includes a control chip. The control chip stores a relationship table recording a number of duty cycle intervals and a number of rotational speeds of a fan. Each duty cycle interval corresponds to one rotational speed of the fan. The control chip obtains a preset number of PWM signals outputted by a processing chip; determines the average value according to the duty cycle of the obtained preset number of PWM signals; determines which duty cycle interval the average value is in, according to the relationship table; determines the rotational speed of the fan corresponding to the determined duty cycle interval according to the relationship table; and controls the fan to rotate according to the determined rotational speed.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 12, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chih-Yuan Hsu, Ming-Yu Liao
  • Patent number: 8796979
    Abstract: Disclosed is an apparatus for driving a BLDC motor, the apparatus including: a BLDC motor having a single sensing coil therein; a position/speed calculation unit for calculating a current position and a current speed of a rotor by using voltages at both ends of the sensing coil; a control unit for comparing the current speed of the rotor calculated by the position/speed calculation unit with a command speed and then outputting a control signal through a Proportional Integral (PI) control; a motor driving unit for generating a PWM signal based on the current position of the rotor calculated by the position/speed calculation unit and the control signal output by the control unit; and a power device unit for controlling the BLDC motor according to the PWM signal generated by the motor driving unit.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 5, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jimin Oh
  • Patent number: 8760089
    Abstract: This disclosure relates to a control system for driving a motor. The motor may include a cut-out circuit. The control system may include a buck-boost circuit to limit the rate of change of an output voltage before the output voltage is applied to operate the motor.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: June 24, 2014
    Assignee: Franklin Electric Company, Inc.
    Inventor: Robert C. Smith
  • Patent number: 8704467
    Abstract: An inverter device provided on a washing machine for controlling a permanent magnet motor being provided with a rotor magnet including a first permanent magnet and a second permanent magnet having a level of coercivity smaller than the first permanent magnet. An excitation current is produced to vary the amount of magnetism of the second permanent magnet to execute a dehydrate operation with a magnetic flux of the rotor magnet reduced and to execute an operation being specified to operate at a lower maximum rotation count compared to the dehydrate operation with the magnetic flux of the rotor magnet increased. When the amount of magnetism of the second permanent magnet is varied while rotation of the permanent magnet motor is stopped, a phase of the excitation current for varying the amount of magnetism is switched depending on a rotation stop position of the rotor.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: April 22, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Consumer Electronics Holdings Corporation, Toshiba Home Appliances
    Inventors: Tsuyoshi Hosoito, Isamu Nitta
  • Patent number: 8698445
    Abstract: The method for activating an asynchronous motor comprising at least two windings is provided, in order, for the purpose of a change in the rotational speed, to connect a first winding and at least one second winding by way of at least two electronic switches. On switching, both switches are opened for one or more time intervals in order to avoid current peaks.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 15, 2014
    Assignee: Grundfos Management a/s
    Inventors: Jan Caroe Aarestrup, Jens Engen Soerensen, Klaus Sloth Jensen
  • Patent number: 8674650
    Abstract: A method is provided for controlling of an AC induction motor by starters realizing transient conditions of desired quality nevertheless changing conditions of a power supply and a motor charge. The method for controlling a starting and stopping is based on step-by-step changing of a power consumption of the motor in a moment, defined on every step. When transient conditions of now in use step reach near equilibrium conditions or impermissible transient conditions, it is the moment for changing characteristics of current supplied to the motor. The method for controlling the starting and the stopping is used for controlling a rotation speed of the motor. A regulator, which produces its control signal with accordance to an algorithm control of the rotation speed, defines direction of changing motor power consumption. Addition conditions prevent negative interaction of the speed control and the starting or stopping control.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 18, 2014
    Inventor: Ilya Rabinovich
  • Patent number: 8664898
    Abstract: Provided are a device and method of stopping an induction motor. The includes: a frequency commanding unit for generating an operating frequency corresponding to a rotational speed command of the induction motor; a q-axis and d-axis V/F converter for outputting a first q-axis voltage (Vq1) proportional to the generated operating frequency and a first d-axis voltage (Vd1) proportional to a 0 frequency; a q-axis PI current controller for outputting a second q-axis voltage (Vq2) for stopping the induction motor when the operating frequency reaches a stopping frequency; a d-axis PI current controller for outputting a second d-axis voltage (Vd2) for stopping the induction motor when the operating frequency reaches the stopping frequency; and a selection unit for selecting and outputting the first q-axis and d-axis voltages (Vq1 and Vd1) or the second q-axis and d-axis voltages (Vq2 and Vd2) according to the operating frequency generated by the frequency commanding unit.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 4, 2014
    Assignee: LSIS Co., Ltd.
    Inventor: Kwang Yeon Kim
  • Patent number: 8638059
    Abstract: A method for controlling operation of a multi-phase induction motor may include transmitting a high-speed operation signal by a master computer for high-speed operation of the motor; receiving the signal by a control signal board, and in response to the signal, the control signal board may sense that the master computer is not simultaneously transmitting a low-speed operation signal, and in response to receiving the high-speed operation signal and not simultaneously receiving the low-speed operation signal, closing delta-to-wye contactors and closing contactors in a power section to transmit power to the motor for high-speed operation, whereby the motor is connected to a source of multi-phase power and operates at high-speed; and the control signal board transmitting a first feedback signal to the master computer that the motor is connected to the source of multi-phase power and is running at high speed.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: January 28, 2014
    Assignee: Dayton-Phoenix Group, Inc.
    Inventors: Joseph A. Zahora, Xung T. Bui, Brad S. Bryant
  • Patent number: 8629645
    Abstract: A system and a method for energizing an auxiliary winding of a capacitor-start single-phase induction motor for reducing the voltage level in the bidirectional switches during the blocking of said switches and for providing smooth switching of the electromechanical bidirectional switch. This is achieved by a system for energizing an auxiliary winding of an electric motor, the auxiliary winding being connectable in series with a voltage network, the system including a start capacitor and an electromechanical switch connected in series with the auxiliary winding, the system including an electronic switch connected in parallel with the series association of the electromechanical switch and the start capacitor, the electronic switch and the electromechanical switch being used to turn on the auxiliary winding, the system configured so that the electronic switch can be turned on simultaneously with the electromechanical switch and kept on simultaneously with the electromechanical switch for a stabilization time.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 14, 2014
    Assignee: Whirlpool S.A.
    Inventors: Douglas Pereira da Silva, Carlos Alberto Teixeira
  • Patent number: 8593094
    Abstract: A power conversion apparatus of an electric vehicle includes: a power converter for driving an induction machine based on arbitrary d- and q-axis voltage commands Vd* and Vq*, and a control unit for controlling the power converter based on a power running command P and a brake command B from outside.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 26, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Kono, Keita Hatanaka
  • Patent number: 8575881
    Abstract: An energy saver delay circuit for an induction motor is disclosed. The energy saver delay circuit includes a power factor control circuit including an integrator, the integrator having a negative summing junction and a current injection circuit electrically connected to the negative summing junction, the current injection circuit configured for injecting an offset current into the negative summing junction to cause about the maximum available voltage from a power source to be supplied to the motor for a predetermined amount of time. Current injection may be triggered by voltage being applied to the motor, wherein the voltage exceeds a predetermined value. Alternatively, current injection may be triggered by current flowing through the motor, responsive to the current exceeding a predetermined threshold current. Alternatively, current injection may be triggered by voltage across the power factor control circuit, responsive to the voltage exceeding a predetermined threshold voltage.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: November 5, 2013
    Assignee: Energy Innovative Products, Inc.
    Inventor: Gordon E. Hiltbold
  • Patent number: 8547050
    Abstract: Systems, methods, and devices are disclosed, including an induction-motor controller having a phase path; a solid-state switch interposed on the phase path; and a controller coupled to the solid-state switch. In certain embodiments, the controller is configured to switch the solid-state switch so that the solid-state switch is conductive during a conduction angle of a cycle of an incoming AC power waveform conveyed by the phase path, calculate the conduction angle based on a generally sinusoidal reference value that has a frequency lower than a frequency of the incoming AC power waveform, and adjust the generally sinusoidal reference value based on a value indicative of flux in a load coupled to the phase path.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 1, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Haihui Lu, David M. Messersmith, Thomas A. Nondahl
  • Patent number: 8536811
    Abstract: A mechanism for a motor controller for engaging a spinning motor is provided. A power section is configured to provide power to the motor. A control is configured to control the power section. The control is configured to search for a motor frequency of the motor by applying a small excitation voltage to the motor, and the excitation voltage is initially applied at a voltage frequency which is a maximum frequency. The control is configured to track the motor frequency until the motor frequency is below an equivalent speed command and engage the motor by applying a higher voltage to the motor.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 17, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: James J. Wrobel, Gary L. Miles
  • Patent number: 8421397
    Abstract: A system for controlling operation of a motor drive during fast start-up of an induction motor is disclosed. The system includes an AC motor drive having a PWM inverter and a control system to generate a command signal to cause the PWM inverter to control an output of the AC motor drive. The control system includes a start-up modulator that is selectively operable during start-up acceleration of the AC motor, the start-up modulator programmed to determine a motor current applied to the AC motor and a voltage of a DC bus, generate a first frequency offset that causes a frequency reference of the command signal to be decreased when the motor current is greater than a reference current threshold, and generate a second frequency offset that causes the frequency reference of the command signal to be increased when the DC bus voltage is greater than a reference voltage threshold.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 16, 2013
    Assignee: Eaton Corporation
    Inventors: Anbo Yu, Lei Zhang, Kevin Lee
  • Patent number: 8421390
    Abstract: A fan motor control device for controlling the soft start of a fan motor is disclosed. The fan motor control device comprises a converter, a starting capacitor, and a controller. The converter sends out a control signal to the controller based on an input pulse-width modulation signal. The starting capacitor is coupled between a voltage source terminal and a controlled terminal of the controller. Thereby, based on an input voltage to the controlled terminal, the controller controls the soft start of the fan motor. For the soft start period, the magnitude of the input voltage is determined by the base working voltage outputted via the voltage source terminal. While for normal operation, based on the input voltage to the controlled terminal, the controller controls the speed of the fan motor, with the magnitude of the input voltage determined by the control voltage outputted by the converter.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 16, 2013
    Assignee: Cooler Master Co., Ltd.
    Inventor: HaiJun He
  • Patent number: 8415907
    Abstract: A motor control apparatus and a motor control method determine whether the motor is in a back-pressure area so as to provide different rotation-speed control signals. When the fan is in the low duty cycle, a first circuit loop is switched on, so that the fan has more accurate rotation speed. When the fan is in the high duty cycle, a second circuit loop is switched on, so that the rotation speed of fan does not be limited to a constant rotation-speed as the fan enters the back-pressure area. Thus, the fan has larger airflow quantity and higher airflow pressure.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 9, 2013
    Assignee: Delta Electronics, Inc.
    Inventors: Chun-Lung Chiu, Ming-Shi Tsai, Po-Tsun Kuo, Chung-Hung Tang
  • Patent number: 8410743
    Abstract: A pulse generating device includes a rotatable disc having a plurality of patterns that are formed on a surface of the rotatable disc in a circumferential direction of the rotatable disc, and three pulse generators to each detect the plurality of patterns formed on the rotatable disc and to respectively generate three pulse signals each corresponding to a rotational speed of the rotatable disc based on the detected patterns. The three pulse generators are evenly spaced at intervals of 120 degrees of angle with respect to a rotational axis of the rotatable disc in the circumferential direction of the rotatable disc.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 2, 2013
    Assignee: Ricoh Company, Limited
    Inventor: Tatsuya Watahiki
  • Patent number: 8378618
    Abstract: A method for controlling a motor is described. The method includes configuring a current sensor to sense a current supplied to the motor from at least one of a plurality of power lines and to generate at least one current signal indicative of the sensed current. The method also includes coupling a processing device to the current sensor such that the processing device receives the current signal. The method also includes configuring the processing device to determine which of the plurality of power lines is active based at least partially on the current signal and generate a motor speed control signal that directs the motor to operate at the motor speed that corresponds to the active power line.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 19, 2013
    Assignee: SNTECH, Inc.
    Inventors: Stephen A. Zavodny, Luis D. Morales, Jared D. Zumstein
  • Patent number: 8373371
    Abstract: A method of controlling an electric machine that includes sequentially exciting and freewheeling a winding of the electric machine. The winding is excited in advance of zero-crossings of back emf in the winding by an advance angle, and the winding is freewheeled over a freewheel angle. The method then includes varying the advance angle and the freewheel angle in response to changes in the voltage used to excite the winding. Additionally, a control system for an electric machine, and a product incorporating the control system and electric machine.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: February 12, 2013
    Assignee: Dyson Technology Limited
    Inventors: Andrew Charlton Clothier, Tuncay Celik
  • Patent number: 8373378
    Abstract: In various embodiments, the present disclosure provides a speed control system for a motor that includes a fixed speed control portion and a variable speed control portion. The fixed speed control portion is operable to control a speed of a motor in a fixed speed mode wherein the motor is operated at a preselected fixed speed below a predetermined fixed speed mode threshold speed. The variable speed control portion is operable to control the motor in a variable speed mode wherein the motor is operated such that a speed of the motor can be selectively varied within a range between the fixed speed mode threshold speed and a maximum motor speed. The system additionally includes a switching device structured and operable to selectively switch the speed control system between the fixed speed mode and the variable speed mode.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: February 12, 2013
    Inventor: Robert E. Steiner
  • Patent number: 8334667
    Abstract: A permanent magnet rotating electrical machine capable of conducting a variable speed operation at high output in a wide range from low speed to high speed and improving efficiency and reliability in a wide operating range. Two kinds of permanent magnets having different shapes or different magnetic characteristics are embedded in a rotor core, to form a magnetic pole. The permanent magnets arranged at the magnetic pole include a permanent magnet whose product of coercive force and thickness along a magnetizing direction is small and a permanent magnet whose product of coercive force and thickness along the magnetizing direction is large. A magnetic field created by passing a current to an armature coil for a short time is used to irreversibly magnetize the permanent magnet whose product of coercive force and thickness along magnetizing direction is small, thereby changing a total linkage flux amount, and a positive d-axis current is passed when torque is large.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Sakai, Kazuaki Yuuki
  • Patent number: 8294411
    Abstract: A sensorless induction motor control device with a function of correcting a slip frequency wherein a slip frequency estimation unit estimates the slip frequency from at least one kind of current flowing through the motor. A voltage command value calculation unit calculates a D-phase voltage command value and a Q-phase voltage command value which are used for controlling a voltage applied to the motor using a Q-phase current command value calculated based on a difference between a speed estimation value, which is calculated using an estimation value of the slip frequency, and an externally supplied speed command value. An ideal voltage command value determination unit determines an ideal voltage command value using the speed command value and the Q-phase current command value. An actual voltage command value calculation unit calculates an actual voltage command value using the D-phase voltage command value and the Q-phase voltage command value.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 23, 2012
    Assignee: Fanuc Corporation
    Inventors: Tadashi Okita, Takahiro Akiyama, Tomohisa Tsutsumi
  • Patent number: 8294409
    Abstract: A ram air fan control system includes a ram air fan motor, the ram air fan motor being a pole-change induction motor with at least two pole-count configurations, a ram air fan contactor in operative communication with a first pole-count configuration of the ram air fan motor over a ram air fan conductor bus, a ram air fan power controller in operative communication with the ram air fan contactor, a common contactor in operative communication a second pole-count configuration of the ram air fan motor over a common conductor bus, the common conductor bus being separate and electrically isolated from the ram air fan conductor bus, and a common power controller in operative communication with the common contactor.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: October 23, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Waleed Said, Huazhen Chai
  • Publication number: 20120256580
    Abstract: A system for controlling operation of a motor drive during fast start-up of an induction motor is disclosed. The system includes an AC motor drive having a PWM inverter and a control system to generate a command signal to cause the PWM inverter to control an output of the AC motor drive. The control system includes a start-up modulator that is selectively operable during start-up acceleration of the AC motor, the start-up modulator programmed to determine a motor current applied to the AC motor and a voltage of a DC bus, generate a first frequency offset that causes a frequency reference of the command signal to be decreased when the motor current is greater than a reference current threshold, and generate a second frequency offset that causes the frequency reference of the command signal to be increased when the DC bus voltage is greater than a reference voltage threshold.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Inventors: Anbo Yu, Lei Zhang, Kevin Lee