Having Solid-state Control Device Patents (Class 320/163)
  • Patent number: 8493035
    Abstract: The present invention relates to a charging circuit and method for generating a charging current supplied to an output terminal (15) to which a battery (40) to be charged is connected. The charging current is indirectly sensed to generate a sensing current having a predetermined relation to the charging current. This sensing current is then compared to a generated predetermined reference current, wherein the charging current is controlled in response to the result of the comparison. Thereby, accuracy, system costs and power efficiency can be increased as a low-ohmic precision resistor is no longer required in the charge current branch of the circuit. Furthermore, the proposed solution enables a simple implementation of the circuit as an integrated circuit.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: July 23, 2013
    Assignee: ST-Ericsson SA
    Inventors: Roland Albert Bertha Antheunis, Insun Van Loo, Robert Gerrit Hulshof
  • Patent number: 8487590
    Abstract: A cell controller capable of ensuring high safety even when a short occurs among voltage detecting lines without causing increased costs is provided. The cell controller 10 includes a unit cell voltage detecting section 7 to detect a voltage of each unit cell 1 constituting a battery group through each voltage detecting line and a SOC adjusting circuit for adjusting a SOC of each unit cell 1 having resistors 2 for SOC adjustment, switching elements 6, and a bypass control section 8 to exercise on/off control on the switching elements 6. Each resistor 2 is connected in series to each voltage detecting line and the unit cell voltage detecting section 7 to detect a voltage of each unit cell 1 through each of the resistors 2.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: July 16, 2013
    Assignee: Hitachi Vehicle Energy, Ltd
    Inventors: Akihiko Kudo, Masaki Nagaoka, Kenichiro Tsuru, Mutsumi Kikuchi, Tatsumi Yamauchi, Akihiko Emori
  • Publication number: 20130176002
    Abstract: A vehicle interface is contemplated to be operable with an Electronic Vehicle Supply Equipment (EVSE) system and a vehicle charging system to facilitate vehicle charging related operations. The vehicle interface may include one or more switches and a charger controller configured to facilitate communications between the EVSE system and the vehicle charging system. The vehicle interface may be configured to adapted to common mode interference and other influences resulting from connections between the vehicle interface and EVSE being referenced to earth ground and connections between the vehicle interface and other vehicle electronics being reference to a vehicle chassis ground.
    Type: Application
    Filed: February 14, 2012
    Publication date: July 11, 2013
    Applicant: LEAR CORPORATION
    Inventors: Youssef Ghabbour, Miguel Angel Aceña
  • Patent number: 8482262
    Abstract: A storage battery system includes a battery module including nonaqueous electrolyte secondary batteries. The storage battery system further includes a temperature sensor which measures a temperature of the battery module, a voltmeter which measures a voltage of each of the nonaqueous electrolyte secondary batteries and a charge control unit which controls a maximum end-of-charge voltage V1 (V) of the nonaqueous electrolyte secondary batteries to fall within the range defined in formula (1) given below when the temperature of the battery module is not lower than 45° C. and is not higher than 90° C.: 0.85×V0?V1?0.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takami, Hiroki Inagaki, Yoshinao Tatebayashi, Yuji Sato
  • Patent number: 8482230
    Abstract: The present invention relates to an electric device for driving mechanical equipment comprising an alternating current motor and an inverter, the said inverter comprising, for each phase of the said motor, an H bridge structure comprising four switching elements distributed over two branches connecting two terminals of the said H bridge structure and intended to supply the winding of the said at least one phase of the motor, the said winding being a winding with a mid point and the said electric device being characterized in that it also comprises, for each phase of the said motor, an energy storage unit, in particular a supercondenser, connected, on the one hand, to the mid point of the winding of the concerned phase of the motor and, on the other hand, to a terminal of the H bridge structure supplying the said winding.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: July 9, 2013
    Assignee: Valeo Systemes de Controle Moteur
    Inventors: Boris Bouchez, Luis de Sousa
  • Patent number: 8465859
    Abstract: A current sensor includes a magnetic balance sensor and a switching circuit. The magnetic balance sensor includes a feedback coil which is disposed near a magnetic sensor element varying in characteristics due to application of an induction field caused by measurement current and which produces a canceling magnetic field canceling the induction field. The switching circuit switches between magnetic proportional detection and magnetic balance detection. The magnetic proportional detection is configured to output a voltage difference as a sensor output. The magnetic balance detection is configured to output, as a sensor output, a value corresponding to current flowing through the feedback coil when a balanced state in which the induction field and the canceling magnetic field cancel each other out is reached after the feedback coil is energized by the voltage difference.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: June 18, 2013
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Masatoshi Murata, Manabu Tamura, Shinji Mitsuya, Hiroyuki Hebiguchi
  • Patent number: 8450976
    Abstract: Generally, a system includes a control circuitry configured to detect a current wherein the detected current is one of a battery discharge current or a battery charging current; a first transistor configured to disconnect a load from at least one of a battery and a DC/DC converter if the battery discharge current exceeds a maximum battery discharge current setting; and a second transistor configured to adjust the charging current to maintain the charging current at or near a charge current setting.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 28, 2013
    Assignee: O2Micro, Inc.
    Inventors: Laszlo Lipcsei, Catalin Popovici, Alin Gherghescu
  • Publication number: 20130113439
    Abstract: A method for charging a battery, in particular a lithium ion battery, be performing the following: charging the battery using a constant charging current in a first phase, charging the battery using a constant charging voltage in a subsequent second phase, ending the charging as a function of a specifiable boundary value of the charging current in the second phase. In this context, the following operations are provided: comparing a guide voltage specified for setting the constant voltage to at least one stored switch-off value determined as a function of the boundary value, and ending the charging when the guide voltage reaches the switch-off value. Also described is a device for charging the battery.
    Type: Application
    Filed: February 23, 2011
    Publication date: May 9, 2013
    Inventor: Juergen Mack
  • Patent number: 8433938
    Abstract: A computer system includes a device which operates depending on a clock frequency; a battery unit which comprises a plurality of battery cells and supplies power to the device; a temperature sensor which senses temperature of the battery cells; and a controller which decreases the clock frequency if the sensed temperature is beyond a first preset critical point.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-deok Cha, Jong-tae Chun
  • Publication number: 20130093385
    Abstract: Methods and systems for controlling a power pack charging circuit. While a device is connected to an electrical charging source, a determination is made that an operating condition of a device satisfies a condition for halting charging of a power pack of the device. While the operating condition of the device satisfies the condition for halting charging of the power pack, a power pack output value is determined. While the operating condition of the device satisfies the condition for halting charging of the power pack, a power pack charging circuit output characteristic is set to an output value that is determined based upon the power pack output value to preclude charging of the power pack.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Joseph PATINO, Roberto RODRIGUEZ
  • Patent number: 8421416
    Abstract: A battery charger and method for a rechargeable battery pack which includes various elements in series with the cells to be charged, including but not limited to current control FETs, a fuse, current sense resistor, and internal series impedance of the series connected cells to be charged. The charging current Ichg flowing through these series elements reduces the voltage applied to the cells, thus lengthening charging time. A compensation voltage Vcomp, which when added to the nominal charging voltage for the series connected cells overcomes these voltage drops, facilitates more efficient charging while avoiding over-voltage damage to the cells. Three voltages representing substantially all of the voltage drops reducing the charging voltage on the cells, are summed, and the result is a compensation voltage which is utilized to change the nominal charge voltage for the battery to overcome these voltage drops.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: April 16, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Tsing Hsu, Yevgen Barsukov, Robert Martinez, Peter Mignano
  • Patent number: 8390145
    Abstract: A battery isolator unit is disclosed for controlling a switching means having a first contact for connection to a terminal of a first battery, a second contact for connection to a corresponding terminal of a second battery, and an actuating input for biasing a switch element of the switching means switch in a closed position. The battery isolator unit includes a sensing circuit and a switch controller. The sensing circuit periodically determines a first and second value attributable to terminal voltage values of the first battery and the second battery respectively. The switch controller is responsive to detecting a predetermined condition of the first battery and/or the second battery to provide to the actuating input a control signal having a characteristic for biasing the switch element to the closed position.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 5, 2013
    Assignee: Redarc Technologies Pty Ltd
    Inventor: John Wayne Harding
  • Patent number: 8378640
    Abstract: A charging circuit with an application system thereof provides an error amplifier to control a transistor switch for controlling the charging power source to charges the battery. When the voltage difference between the power source and load terminals of the transistor switch drops along with the transistor switch being turned on, the output voltage of the error amplifier changes as well to increase the turning-on resistance of the transistor switch such that the voltage difference between the power source and load terminals is capable of maintaining at a value above a certain reference level for avoiding the unstable state resulting from the charging circuit being turned on and off frequently.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 19, 2013
    Assignee: Richtek Technology Corp.
    Inventors: Li-Wei Lee, Nien-Hui Kung, Kwan-Jen Chu, Hsuan-Kai Wang
  • Patent number: 8368359
    Abstract: A power management unit (PMU) for supplying electrical energy to a circuitry of a portable electronic device includes a power supply module, a power detection module connected to the power supply module, and a power control module connected to the power detection module and the circuitry. The power supply module includes a battery, a charge controller, and an adapter. The power detection includes a detection resistor connected to the battery, the charge controller, and the adapter. The battery or the adapter provides electrical energy to the circuitry. The adapter further charges the battery to charge the battery when it is used to provide electrical energy to the circuitry. The charge controller detects the current for charging the battery via the detection resistor, and regulates the current for charging the battery when the charging current exceeds a predetermined value.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: February 5, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chun-Po Chen
  • Patent number: 8362754
    Abstract: A discharge control device in an electric power conversion system mounted to a motor vehicle turns off a relay in order to instruct an electric power conversion circuit to supply a reactive current into a motor generator, and thereby to decrease a capacitor voltage to a diagnostic voltage. After this process, the discharge control device outputs an emergency discharging instruction signal dis in order to turn on both power switching elements at high voltage side and a low voltage side in the electric power conversion circuit. This makes a short circuit between the electrodes of the capacitor in order to discharge the capacitor, and executes a discharging control to detect whether or not an emergency discharging control is correctly executed and completed. The discharge control device detects whether or not the electric power stored in the capacitor is discharged on the basis of the voltage of a voltage sensor.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 29, 2013
    Assignee: Denso Corporation
    Inventors: Tsuneo Maebara, Yoshiyuki Hamanaka
  • Publication number: 20130015822
    Abstract: The present invention discloses a multi-purpose power management apparatus, a power path control circuit, and a control method therefor. The multi-purpose power management apparatus controls power conversion between an input power and an output power and charging operation from the output power to a battery. The multi-purpose power management apparatus includes: a switch circuit including at least one power transistor; a switch control circuit generating a PWM signal to control the power transistor, for controlling the power conversion between the input power and the output power; a charging management circuit for controlling the charging operation from the output power to the battery; and a path selection circuit for determining whether the charging operation is controlled by the charging management circuit.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Inventor: Nien-Hui Kung
  • Publication number: 20130009608
    Abstract: The present invention relates in particular to a battery unit with at least one battery cell and a switch unit that is designed so as to alter the internal resistance of the battery unit.
    Type: Application
    Filed: March 11, 2011
    Publication date: January 10, 2013
    Applicant: DIEHL AEROSPACE GMBH
    Inventors: Uwe Nieberlein, Dennis Stuhlmacher
  • Patent number: 8350534
    Abstract: A method for efficiently charging a battery. The method includes producing a first signal having a voltage level dependent on the voltage of the battery, comparing the voltage level of the first signal with a settable voltage representative of a maximum battery charging current, and producing a second signal representative of a charging current to be provided to the battery, the second signal having a voltage level selected to be the lower voltage level between the first signal and the settable voltage.
    Type: Grant
    Filed: July 19, 2009
    Date of Patent: January 8, 2013
    Assignee: O2Micro International, Ltd.
    Inventors: Marian Niculae, Constantin Bucur
  • Patent number: 8344702
    Abstract: A universal serial bus battery includes a universal serial bus interface, a battery, a charger, a comparator, a first switch, and a second switch. The comparator is configured for comparing the voltage at the universal serial bus interface and the voltage of the battery, and to produce an ON signal when the voltage at the serial bus interface exceeds the voltage of the battery, or to produce an OFF signal otherwise. The first switch is configured for establishing an electrical connection between the USB interface and the charger upon receiving the ON signal or cutting off the connection upon receiving the OFF signal. The second switch is configured for establishing a connection between the universal serial bus interface and the battery when the connection between the USB interface and the charger is terminated by the first switch.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 1, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chia-Cheng Sun, Jin-Jye Chou
  • Patent number: 8344696
    Abstract: A charging signal Vi responding to a charging current is inputted to one input terminal (?) of an operational amplifier 95 forming a comparator and a setting signal Vr corresponding to a setting current value is inputted to the other input terminal (+) of the operational amplifier 95. When the charging signal Vi is not higher than the setting signal Vr, a charging stop signal is generated from the output terminal of the operational amplifier 95 to interrupt a switch unit 4. A starting signal Vcc larger than the setting signal Vr applied to the other input terminal (+) is applied to the one input terminal (?) of the operational amplifier 95 through a condenser 94 till a prescribed time elapses from the start of a charging operation to generate a charging start signal from the output terminal of the operational amplifier 95 and electrically conduct the switch unit 4.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: January 1, 2013
    Assignee: Hitachi Koko Co., Ltd.
    Inventors: Takao Aradachi, Kazuhiko Funabashi
  • Patent number: 8339108
    Abstract: A circuit for charging a battery may include a switch operable for conducting a current flowing through the switch, and a first amplifier coupled to the switch and operable for adjusting the current according to an amount of power dissipation associated with the switch.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 25, 2012
    Assignee: 02MICRO Inc
    Inventors: Guoxing Li, Xin Dong
  • Patent number: 8339109
    Abstract: A charging circuit integrated into a chip, comprising a charging unit, a switch unit, a biasing unit, a voltage-dividing unit, and a comparing unit. The charging unit is connected between a power supply input and a load for outputting a constant current based on a constant bias voltage supplied by the power supply input in order to charge the load. The switch unit is connected between the charging unit and the power supply input for turning on or cutting off the charging unit. The voltage-dividing unit generates a first signal to the comparing unit according to a voltage of the load. The biasing unit outputs a second signal having a constant voltage to the comparing unit. The comparing unit compares the first signal with the second signal for cutting off or turning on the switch unit, bringing the charging unit to charge or stop charging the load, respectively.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 25, 2012
    Assignee: Acer Incorporated
    Inventors: Chua-Chin Wang, Shao-Fu Yen, Jr-Shang Shie
  • Publication number: 20120306456
    Abstract: A charging circuit employed in an electronic apparatus is operable to charge a portable electronic device. The charging circuit includes a charging control microchip including two control terminals, a southbridge microchip, a logic control circuit, and a basic input/output system (BIOS). The southbridge microchip and the BIOS are both electronically connected to the logic control circuit to control the logic control circuit to set or reset voltage of the two control terminals, then the charging control microchip is switched to a charging mode or a data transmission mode according to the voltage of the two control terminals.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 6, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD .
    Inventors: CHUN-SHENG CHEN, HUA ZOU, FENG-LONG HE
  • Patent number: 8314593
    Abstract: A power-saving line interactive UPS has a power switch set, a low-frequency transformer, a full-bridge circuit, a main controller, a charge and discharge mode controller, a rechargeable battery and a high-frequency charging circuit. The high-frequency circuit is connected between an AC power input terminal and the rechargeable battery to convert the AC power into a DC power and charge the rechargeable battery. Therefore, when the AC power is normally supplied and the power capacity of the rechargeable battery is not full, the high-frequency charging circuit is activated to charge the rechargeable battery without charging the rechargeable battery through the low-frequency transformer and the full-bridge switching circuit, thereby effectively reducing overall power consumption.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 20, 2012
    Assignee: Cyber Power System Inc.
    Inventors: Shou-Ting Yeh, Yung-Mei Lin
  • Patent number: 8305046
    Abstract: The present invention provides charger protection circuitry for a rechargeable battery, and a method of protecting a charger cable during charging of a rechargeable battery. A switch controller is used to turn a switch element on and off in dependence on a direction of current flow through the charger protection circuitry during charging and otherwise. If current is flowing in the first direction the switch controller turns on the switch element such that the auxiliary current tripping element is bypassed, whereby the main current tripping element controls interruption of current flow. If instead current is flowing in a second direction opposite to the first direction, the switch controller turns off the switch element, whereby the auxiliary current tripping element is connected into the current flow path to control interruption of current flow.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: November 6, 2012
    Assignee: PG Drives Technology Limited
    Inventors: Richard Peter Brereton, Matthew Bennett
  • Publication number: 20120268076
    Abstract: In a first embodiment multiple power sources are selected and then combined. Selecting power rather than controlling power may be a cheaper way of controlling the amount of power delivered. In a second embodiment the logic to control power is removed from the battery charger so that the logic may be changed when a different battery is being charged. This permits all types of batteries to be charged if the power source is compatible with the battery. Other embodiments expand the types of power sources that may be used.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Inventor: Carl Lee Danner
  • Patent number: 8289000
    Abstract: When a control circuit detects from a signal CPO4 that a battery voltage is less than a sixth reference voltage, a constant current operation in VFM control is performed with respect to a switching transistor and a synchronous rectification transistor in accordance with signals RVDET and CPO3. Furthermore, when the control circuit detects from the signal CPO4 that the battery voltage becomes equal to or greater than the sixth reference voltage, the constant current operation in PWM control is performed in accordance with a signal CPO2. When an output signal CVDET from a constant current/constant voltage switching detection circuit becomes high level, operation control with respect to the switching transistor and the synchronous rectification transistor is switched from the PWM control of constant current operations to the PWM control of constant voltage operations in accordance with a signal CPO1.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: October 16, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Junji Nishida
  • Patent number: 8284067
    Abstract: A delayed power-on function for an electronic device is disclosed. A charging unit charges a rechargeable battery with a pre-charge current when a voltage of the rechargeable battery is less than a voltage threshold value and with a current larger than the pre-charge current when the voltage of the rechargeable battery is greater than the voltage threshold value. A disabling unit can disable power-on when the voltage of the rechargeable battery is less than the voltage threshold value. A user may also be notified when power-on is disabled.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 9, 2012
    Assignee: Kyocera Corporation
    Inventors: Tomoaki Yasuda, Yasuhisa Tsubokawa
  • Patent number: 8278882
    Abstract: A charging monitor has a switch disposed between a load section having a storage battery and an external AC power supply supplying a current to the load section via a plurality of lines and interrupts the supply of the current from the external AC power supply to the load section; a current detection circuit; a suppression circuit that suppresses a DC component contained in the detection signal; a filter circuit that filters a plurality of frequency components contained in the detection signal so that attenuation increases as a frequency becomes high; a rectifier smoothing circuit that rectifies and smoothens an output signal; and an electric leakage determination circuit that detects an electric leakage and shuts off the switch.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: October 2, 2012
    Assignee: Panasonic Corporation
    Inventors: Kiyoshi Gotou, Hiroaki Koshin, Hiroshi Ooya
  • Patent number: 8275562
    Abstract: A method for evaluating a remaining electric charge of a battery that is utilized for supplying a single chip system includes: receiving signals from the battery and outputting parameters corresponding to the received signals; temporarily storing the parameters; and calculating the remaining electric charge, and when the single chip system wakes up from a sleep mode, updating the remaining electric charge according to the temporarily stored parameters. An associated single chip system includes: a power management unit for receiving signals from a battery and outputting parameters corresponding to the received signals; a storage unit, coupled to the power management unit, for temporarily storing the parameters; and a control unit, coupled to the storage unit, for calculating a remaining electric charge, wherein when the single chip system wakes up from a sleep mode, the control unit updates the remaining electric charge according to the parameters from the storage unit.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 25, 2012
    Assignee: Mediatek Inc.
    Inventors: Haw-Kuen Su, Ching-Ho Chan
  • Patent number: 8269468
    Abstract: A charging circuit includes a current mirror block configured to charge a load in response to a control voltage applied thereto, and a charge controller configured to generate the control voltage in response to comparison result values obtained by comparing a current sensing value and a voltage sensing value of the current mirror block with respective reference values. The comparison result value are applied to the gates of MOS transistors connected in series. The charge controller is configured to switch a charge mode from a constant current charge mode to a constant voltage charge mode when the charge state of the load reaches a predetermined state.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: September 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-Jung Ju, Jung-Woo Ha, Jin-Sub Choi
  • Patent number: 8264204
    Abstract: A cell controller with excellent reliability in which noise and soon are suppressed is provided. The cell controller includes, corresponding to the number of cell packs, a plurality of ICs each having a voltage detecting circuit detecting voltages of respective cells of a cell pack in which four cells are connected in series, a switch control circuit controlling conduction and a blocking operation of a plurality of switch elements connected in parallel to the respective cells via capacity adjusting resistors, a LIN1 terminal for inputting control information, a LIN2 terminal for outputting control information, a Vcc terminal and a GND terminal, and a LIN2 terminal of a higher-order IC and a LIN1 terminal of a lower-order IC are connected in a daisy chain.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: September 11, 2012
    Assignee: Hitachi Vehicle Energy, Ltd.
    Inventors: Masaki Nagaoka, Akihiko Kudo, Mutsumi Kikuchi, Kenichiro Tsuru, Tatsumi Yamauchi, Akihiko Emori
  • Publication number: 20120217936
    Abstract: The present invention discloses a power management circuit, including: a first voltage regulator, which converts an input voltage to an output voltage; a second voltage regulator coupled between the output voltage and a battery; and a voltage difference control circuit, which receives the output voltage and a voltage of the battery, and outputs a voltage difference control signal to control the first voltage regulator. The voltage difference control circuit includes: a battery reference voltage determination circuit, which generates a battery reference voltage related to the battery voltage, and an error amplifier, which receives the output voltage and the battery reference voltage and generates the voltage difference control signal.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Inventor: NIEN-HUI KUNG
  • Publication number: 20120206111
    Abstract: A system for controlling charging of a battery and a battery pack including the system are disclosed. The system includes a comparison unit that compares an actual output voltage value of a charger with an expected supply voltage value of the charger, and a control unit that resets a taper current value according to the comparison result.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: Samsung SDI Co., Ltd
    Inventor: Chilsung Park
  • Publication number: 20120206110
    Abstract: A reverse current prevention circuit, connected to an input terminal, an output terminal, and a driver transistor, including a current detection circuit to detect a current flowing through the driver transistor, and convert the detected current into a detection voltage; a proportional voltage generator to generate a proportional voltage proportional to a difference voltage between an input voltage at the input terminal and an output voltage at the output terminal; an inversely-proportional voltage generator to generate an inversely-proportional voltage inversely proportional to the difference voltage between the input voltage and the output voltage; and a comparison circuit to compares the generated voltages. When the detection voltage, the proportional voltage, and the inversely-proportional voltage are equal, the comparison circuit determines that the indication of the reverse current is detected and prevents the reverse current flowing from the output terminal to the input terminal.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 16, 2012
    Applicant: RICOH COMPANY, LTD.
    Inventor: Junji NISHIDA
  • Patent number: 8237447
    Abstract: An apparatus for detecting the state of a storage device prevents occurrence of a leakage current. A low-level detection unit is provided for each of blocks of a battery pack. Control units are connected to the blocks of the battery pack by way of first switches and are started upon receipt of power supply. The control units and measurement units are connected to the blocks by way of second switches. The control units activate the second switches after being started as a result of activation of the first switches, to thus receive power supply, and commence measurement of block voltages by means of the measurement units. The high-level detection unit supplies a read signal and a synchronous signal to the low-level detection units by way of the first switches.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: August 7, 2012
    Assignee: Panasonic EV Energy Co., Ltd.
    Inventor: Toshiaki Nakanishi
  • Patent number: 8203234
    Abstract: A power safety system includes a first MOS, a second MOS, a switch and a body controller. The first MOS is connected between a power input and a power output. The second MOSFET is connected between the power output and a charging output. The switch has an end connected to the body of the first MOS, and the opposite end switched between the source and the drain of the first MOS. A body controller controls the switch according to the voltage at the power input and the voltage at the power output, to connect the body of the first MOS to the source or the drain of the first MOS. By switching the switch, the first MOS will have a parasitic diode effective to prevent a reverse current from the power output to the power input.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: June 19, 2012
    Assignee: Richtek Technology Corp.
    Inventors: Li-Wei Lee, Nien-Hui Kung, Kwan-Jen Chu, Chun-Tsung Chen
  • Patent number: 8193779
    Abstract: A battery charger for an electronic device receives current limited power from an external power source, such as a Universal Serial Bus power interface. The battery charger can linearly regulate a charging current to an internal battery and limit the charging current so as not to demand current in excess of what the external power source can provide. A bi-directional pass element coupled between a system power terminal and the internal battery controls the charging current and effectively isolates the internal battery from a system load during charging of the battery while providing a low impedance path from the internal battery to the system load during discharging of the battery.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 5, 2012
    Assignee: Microsemi Corporation
    Inventor: Bruce R Ferguson
  • Patent number: 8179099
    Abstract: Provided is a battery state monitoring circuit including a control circuit that applies, to a gate of a signal output transistor provided at a terminal for transmitting an overcharge detection signal, a potential at which the signal output transistor is turned off at a voltage lower than a minimum circuit operating voltage. Accordingly, in a battery device that uses the cascade-connected battery state monitoring circuits, charge is inhibited securely even at a power supply voltage lower than the minimum circuit operating voltage.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: May 15, 2012
    Assignee: Seiko Instruments Inc.
    Inventor: Yoshihisa Tange
  • Patent number: 8179098
    Abstract: Disclosed is a charge controlling semiconductor integrated circuit including: an electric current controlling transistor connected between a voltage input terminal and an output terminal to control an electric current which flows from the voltage input terminal to the output terminal; a power source monitoring circuit to detect status of input voltage of the voltage input terminal; and a transistor element connected between the voltage input terminal and a ground potential point, wherein a bypass capacitor is connected to the voltage input terminal; and the transistor element is turned on and the bypass capacitor discharges when the power source monitoring circuit detects the input voltage of the voltage input terminal is cut off.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: May 15, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Gentaro Kurokawa, Yoshihiro Takahashi
  • Publication number: 20120112707
    Abstract: A battery management system is disclosed for control of individual cells in a battery pack. The battery management system includes a cell, a micro controller, a bleed off resistor, an analog circuit which includes a powered gate. In practice the powered gate which resides in the analog circuit is smartly configured such that in the event the micro controller becomes unresponsive while the bleed off resistor is connected to a cell the powered gate will open thereby disconnecting the bleed off resistor from the cell.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Inventor: Joseph S. Gottlieb
  • Patent number: 8169190
    Abstract: Lower order control devices control plural battery cells configuring plural battery modules. An input terminal of the low order control device in the highest potential, an output terminal of the low order control device in the lowest potential, and a high order control device are connected by isolating units, photocouplers. Diodes which prevent a discharge current of the battery cells in the battery modules are disposed between the output terminal of the low order control device and the battery cells in the battery module on the low potential side. Terminals related to input/output of a signal are electrically connected without isolating among the plural low order control devices.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: May 1, 2012
    Assignees: Hitachi, Ltd., Shin-Kobe Electric Machinery Co., Ltd.
    Inventors: Hideki Miyazaki, Akihiko Emori, Akihiko Kudo, Tsuyoshi Kai
  • Patent number: 8159195
    Abstract: The present invention discloses an overvoltage protection (OVP) circuit for use in a charger circuit system, comprising: a power transistor electrically connected between a voltage supply and a battery; an OVP circuit which turns off the transistor when a voltage supply exceeds a threshold value; and a multiplexing circuit electrically connected between an output of the OVP circuit and the gate of the transistor. The present invention also discloses a charger circuit with an OVP function, comprising: a single power transistor electrically connected between a voltage supply and a battery; an OVP control circuit which turns off the power transistor when a voltage supply exceeds a threshold value; and a charger control circuit which controls the gate of the power transistor to determine a charge current to the battery when the voltage supply does not reach the threshold value.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 17, 2012
    Assignee: Richtek Technology Corporation
    Inventors: Chien-Ping Lu, Nien-Hui Kung, Li-Wei Lee, Kwan-Jen Chu, Ying-Hsin Hsing, Chun-Tsung Chen
  • Publication number: 20120081081
    Abstract: A converter according to one embodiment converts an AC voltage to a regulated output current provided to a DC load of a Z-type configuration. A filter capacitor is provided to average current flowing through the load. The converter includes a rectifier network for rectifying the AC voltage and for providing a rectified voltage, and a smoothing capacitor for smoothing the rectified voltage. The converter includes a hysteretic current mode controller which controls a switching transistor based on sensed voltage and sensed current provided through an inductor coupled in series with the load. The transistor is turned on when current reaches a low valley level and is turned off when the current reaches a peak level. Operation toggles in this manner while a sensed voltage is above a predetermined level. A valley fill network may be provided to keep sensed voltage from falling below the predetermined minimum level.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 5, 2012
    Applicant: INTERSIL AMERICAS INC.
    Inventor: Michael M. Walters
  • Patent number: 8148945
    Abstract: A device configured to suppress the occurrence of an inrush current is provided at a low cost, where the device includes a power circuit configured to generate a voltage used to drive a load, a capacitor connected to a supply line provided to supply power from the power circuit to the load, the capacitor being configured in such manner to stabilize the potential of the load, a charging/discharging circuit that supplies an amount of power smaller than a predetermined amount of power to the capacitor and that discharges the smaller amount of power from the capacitor, a charging circuit that supplies an amount of power larger than the predetermined amount of power to the capacitor, and a switch circuit configured to make each of the charging/discharging circuit and the charging circuit operate.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: April 3, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masahiko Watanabe
  • Patent number: 8143864
    Abstract: A battery charger with an overvoltage protection circuitry is electrically coupled to a power source and a battery. The battery charger with the overvoltage protection circuitry includes a switching circuit. The switching circuit comprises a first switching element, a second switching element, a Zener diode, and a resistor. The first switching element includes a first terminal coupled to the power source, a control terminal, and a second terminal coupled to the battery. The second switching element includes a first terminal coupled to the control terminal of the first switching element, a control terminal, and a second terminal coupled to the first terminal of the first switching element. The Zener diode includes a cathode coupled to the control terminal of the second switching element and an anode grounded. The resistor includes a first terminal coupled to the control terminal of the first switching element and a second terminal grounded.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: March 27, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Yuan Kuo
  • Patent number: 8138725
    Abstract: A fraction of the battery energy is kept in reserve during operational use of a battery-powered apparatus. The motor of the apparatus is switched off when the battery has discharged to the level of this reserve fraction. The reserve is made available again for operational use when the user has recharged the apparatus for a little while. This approach 5 simulates a super fast charging operation.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 20, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Schelte Heeringa, Oedilius Johannes Bisschop
  • Patent number: 8138720
    Abstract: A dual-energy storage system is described, having two energy sources: (a) a fast-energy storage device (FES) such as an ultracapacitor, and (b) a long duration or steady power device, such as a fuel-cell or battery. A power converter or controller executes an energy management algorithm to determine when to provide bursts of additional power/current from the fast-energy storage device, and when to recharge the fast-energy storage device.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 20, 2012
    Assignee: AFS Trinity Power Corporation
    Inventors: Philip Kenneth Snyder, Donald Bender
  • Publication number: 20120043944
    Abstract: A method and apparatus for controlling a converter circuit within the electrical accumulator unit based on a comparison between an actual average converter current and a desired average converter current.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Vietson M. Nguyen, Josh C. Swenson, Sastry V. Vedula
  • Patent number: 8103485
    Abstract: A system and a method for computing an estimated state of charge and an estimated cell resistance of an electrochemical cell are provided. The method includes predicting a first cell resistance value indicating a present resistance of the electrochemical cell utilizing a first nonlinear cell model. The method further includes predicting a first state of charge value indicating a present state of charge of the electrochemical cell utilizing a second nonlinear cell model. The method further includes measuring a voltage and, a current associated with the electrochemical cell to obtain a voltage value and a current value, respectively. The method further includes estimating a second state of charge value indicating the present state of charge of the electrochemical cell utilizing the second nonlinear cell model based on the first state of charge value, the first cell resistance value, the voltage value, and the current value.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: January 24, 2012
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett