Circuit Interruption Patents (Class 322/69)
  • Patent number: 7518344
    Abstract: A method and a damping device are proposed for damping a torsional oscillation in a rotating drive train. Arranged on the drive train is an electrical machine (13), which is connected to an electrical multipole (31). A damping torque is generated in the electrical machine (13) by an electrical damping member connected to the electrical machine (13). It is proposed that the damping torque has a predetermined damping frequency and is antiphase to the angular velocity of the torsional oscillation.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: April 14, 2009
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventor: Christof Sihler
  • Patent number: 7400117
    Abstract: An electromechanical power transfer system that transfers power between a prime mover and a direct current (DC) electrical system, comprises: a permanent magnet machine (PMM) that has a permanent magnet (PM) rotor coupled to the prime mover, a stator with a multiphase alternating current (AC) winding coupled to an AC bus and a control coil with a winding that has a configuration to generate a magnetic field with flux that varies the reactance of the stator winding with the application of control coil current; a control coil current sensor for generating a control coil current signal that is representative of the level of electrical current in the control coil; an electrical current sensor for generating a DC bus current signal that is representative of the level of DC current through the DC bus; an electrical potential sensor for generating a DC bus potential signal that is representative of the level of DC potential on the DC bus; a fixed pattern active rectifier and inverter system coupled between the AC bu
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: July 15, 2008
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Vijay K. Maddali, Kevin Dooley
  • Publication number: 20080042626
    Abstract: A control section 32 supplies a current obtained by rectifying the output of an exciting winding 5 to a field winding 3 responding to variations in the output voltage of the generator to suppress the variations in the output voltage of the generator. The control section 32 drives a transistor 37 at a duty based on a difference between the output voltage of a main winding 4 and a target voltage and controls the gate voltage of an FET 38 to control a field current to a constant value. A flywheel power generation unit including a control power supply winding 14 is provided as a power source of the control section 32 and a power source for passing an initial current through the field winding 3. A current to be supplied to the field winding 3 from the flywheel power generation unit is merged with an exciting current via a diode 31.
    Type: Application
    Filed: June 26, 2007
    Publication date: February 21, 2008
    Inventor: Kenji Kamimura
  • Patent number: 6859019
    Abstract: A system and method for electrically coupling windings of a main generator rotor to a plurality of DC sources on an exciter that each have respective first-voltage and second-voltage terminals is disclosed. The system includes first and second conductive plates supported by the rotor that respectively define first and second apertures that surround a rotor shaft. The first plate includes a first rotor winding terminal by which the plate is electrically coupled to the windings, and a first plurality of terminals configured to be respectively coupled to the first-voltage terminals of the DC sources. The second plate is electrically insulated from the first plate, includes a second rotor winding terminal by which the second plate is electrically coupled to the windings, and includes a second plurality of terminals configured to be respectively coupled to the second-voltage terminals of the DC sources.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: February 22, 2005
    Assignee: Honeywell International, Inc.
    Inventors: Gerald E. Tornquist, Raymond W. Borden, James D. Lengel, Ming Xu, Kieran P. J. Doherty, Gregor J. S. McDowall
  • Patent number: 6700357
    Abstract: Magnetic bodies for reducing electromagnetic wave noises are mounted to a battery voltage supplying terminal for supplying of an electric source power for the operation of circuits to an IC chip of a regulator or an internal electric source line for connection of the terminal to the regulator chip. The magnetic bodies are attached to an IG ON terminal for inputting into the regulator chip a voltage signal caused by opening and closing of an ignition switch or to an IG ON detection line for connection of the terminal to the regulator chip. A bypass capacitor is connected to a battery voltage detecting terminal for inputting a change of battery voltage into the regulator chip, or to an internal battery voltage detection line for connection of the terminal to a switching transistor control circuit unit.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: March 2, 2004
    Assignee: Denso Corporation
    Inventor: Makoto Taniguchi
  • Patent number: 6486639
    Abstract: The generator includes an asynchronous machine with a wound rotor driven mechanically and a stator connected to the network. The rotor is excited by a constant DC voltage source via an inverter controlled by a pulse width modulation control circuit. In accordance with the invention, the following are generated: a stator frequency set point, a rotor frequency set point which is a function of the stator frequency set point and the rotation speed of the machine, an rms stator voltage set point, an error signal which is a function of the difference between the rms stator voltage set point and the actual rms stator voltage. A rotor voltage set point is imposed on the control circuit which is a function of the error signal and the rotor frequency set point.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: November 26, 2002
    Assignee: Dassault Aviation
    Inventors: Christophe Montret, Christian Marie Pierre Jacquet-Francillon
  • Patent number: 6191562
    Abstract: Circuit configuration for degradation of the stored magnetic energy of a field winding of a generator, where a battery voltage is applied to the field winding, having a power switch that is in operative connection with the field winding and is controllable by timed pulses from a clock control and which controls the storage and degradation of energy of the field winding. A zener diode is arranged between the field winding and a control input of a power switch for control of the energy degradation of the field winding, in particular of the power switch.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: February 20, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Mueller, Oliver Luz, Richard Schoettle, David Frey
  • Patent number: 5850138
    Abstract: An electrical generator provides an output at a main stator winding which is excited by a main rotor winding. The main rotor winding is connected via a rectifier to a main exciter rotor winding which is excited by a main exciter field winding. A control circuit controls excitation of the main exciter field winding so as to stabilise the generator output voltage. The control circuit includes a detector for detecting excessive generator output voltage and a transistor switch for connecting a resistor in the current recirculation path of the main exciter field winding so as to prevent transient over-voltages caused by sudden load reductions.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: December 15, 1998
    Assignee: Lucas, Industries public limited company
    Inventors: Christopher John Adams, Michael David Bailey
  • Patent number: 5508601
    Abstract: A shorted rectififing diode protection system for a synchronous generator having a stationary exciter field which induces a voltage in a rotating exciter armature when energized by an exciter drive current, the voltage being rectified by a plurality of rotating rectifiers and applied to a rotating field winding to induce an output voltage in a plurality of main stator output phase windings, the output voltage being controlled by a voltage regulator having peak excitation current protection means, comprises a circuit for detecting actuation of the excitation current protection and generating a field protection monitor signal, a circuit for discriminating a shorted exciter field and generating a protection lock-out signal, and a logic circuit responsive to the field protection monitor signal and the protection lock-out signal for generating a shorted rectifying diode protection signal.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: April 16, 1996
    Assignee: Sundstrand Corporation
    Inventors: Jef W. Good, David J. Mrowiec
  • Patent number: 5493202
    Abstract: A voltage regulator circuit 3A for a vehicular AC generator 1 includes, in addition to the conventional voltage detector and transistors, a bypass PNP transistor 315 for supplying base current to the power transistor 305 upon disconnection of the line A from the battery 4. When the engine is started and the AC generator i is driven, a small voltage is induced in the armature coil 101 due to the residual magnetism in the core of the field coil 102 even when the line A is disconnected from the battery 4. A smoothed voltage developed at the junction point between a resistor 312 and a capacitor 313 coupled serially between a phase of the armature coil 101 and ground turns on the NPN transistor 311, thereby grounding the base of the PNP transistor 315 through a resistor 314. The PNP transistor 316 is thus turned on, and the base current of the power transistor 305 is supplied through the PNP transistor 315 via the bypass line B.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: February 20, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shirou Iwatani, Hirofumi Watanabe
  • Patent number: 5168416
    Abstract: Flashover protection is provided for a locomotive propulsion system including a plurality of d-c traction motors each having a commutator subject to flashovers, a traction alternator having armature and field windings and a rotor driven by a prime mover, a controllable source of excitation current connected to the alternator field, and means including an electric power rectifier for connecting the alternator to the motor commutators. It comprises means for producing a fault signal whenever a flashover occurs in any motor, a solid-state controllable electric valve connected between the excitation current source and the alternator field and having alternative conducting and non-conducting states, and means for changing the valve from conducting to non-conducting states in response to a fault signal being produced, whereupon the magnitude of excitation current in the alternator field is rapidly reduced toward zero and the alternator's output current is correspondingly decreased whenever a flashover occurs.
    Type: Grant
    Filed: September 18, 1990
    Date of Patent: December 1, 1992
    Assignee: General Electric Company
    Inventors: Ronald B. Bailey, Herbert J. Brown, Myron L. Smith, Edgar T. Balch, Roger D. Huczko, Joseph A. Laukaitis
  • Patent number: 4950973
    Abstract: A permanent magnet generator system is provided with a permanent magnet generator having a multiple phase armature that includes several circuit branches which are electrically connected to provide a multiple phase output voltage to the output terminals of the generator. At least two of the circuit branches include an armature phase winding and a switching device electrically connected in series with the winding. The switching devices are opened and closed in response to a control signal to disconnect the generator from the remainder of the electrical system and to simultaneously de-energize the individual phase windings of the generator armature to protect against a fault occurring within the generator housing.
    Type: Grant
    Filed: June 29, 1989
    Date of Patent: August 21, 1990
    Assignee: Westinghouse Electric Corp.
    Inventor: Carroll C. Kouba
  • Patent number: 4710840
    Abstract: "Doorbelling" in a generating system including a fault detecting circuit is prevented without the use of auxiliary power supply for a generator control unit. The generating system includes a permanent magnet generator (14) driving an exciter winding (18) and a relay (26) is utilized for interconnecting the two. Control of the relay (26) is exercised by a microcomputer (32) including a non-volatile memory (48) and programmed to remember the occurrence of a fault and thereafter prevent the relay (26) from cyclically opening and closing in response to power changes occurring as a result of connection and disconnection of the exciter winding (18) from the permanent magnet generator (14).
    Type: Grant
    Filed: January 8, 1985
    Date of Patent: December 1, 1987
    Assignee: Sundstrand Corporation
    Inventors: John E. Shepler, Dov Zur
  • Patent number: 4595965
    Abstract: A microcomputer implemented apparatus and method for detecting the occurrence of a shorted diode in the rotating rectifier of a brushless alternator. The alternator current, voltage and power output and the alternator temperature are measured. The anticipated exciter field current is determined for the alternator output and operating conditions and compared with the actual exciter field current. An actual exciter field current in excess of the anticipated current indicates a rectifier fault.
    Type: Grant
    Filed: December 19, 1983
    Date of Patent: June 17, 1986
    Assignee: Sundstrand Corporation
    Inventor: Timothy F. Glennon
  • Patent number: 4486801
    Abstract: This invention relates to a shorted diode protection system for a brushless alternating current generator of the type having an energizeable exciter field winding. The system includes a circuit arrangement for sensing the voltage difference across the exciter field and pairing the voltage difference with generator load current to thereby provide an output signal that falls within a predictable range of values over a normal generator load current range. The output signal is of such a nature that it falls within a higher range of values upon the occurrence of a shorted diode. Another circuit arrangement is responsive to the output signal such that whenever the output signal exceeds a preset value over the normal load current range, an output is generated that operates to cause the interruption of the exciter field.
    Type: Grant
    Filed: January 19, 1982
    Date of Patent: December 4, 1984
    Assignee: Sundstrand Corporation
    Inventors: Melvin C. Jackovich, William Spencer, James B. Thom
  • Patent number: 4463305
    Abstract: A method and system for delaying mechanical loading of an internal combustion engine by an alternator during start-up and transitional phases of the engine by inhibiting the field winding current of the alternator until the engine reaches a predetermined operational condition for a continuous predetermined period of time.
    Type: Grant
    Filed: December 16, 1981
    Date of Patent: July 31, 1984
    Assignee: Ford Motor Company
    Inventors: Richard J. Wineland, Robert L. Gault
  • Patent number: 4413222
    Abstract: A plurality of threshold switches or comparators, at least two and preferably five to seven are provided to compare actual generator output voltage (u.sub.g) with respect to various threshold levels derived from battery voltage, and normal and abnormal and highly abnormal or excessive voltage conditions. Actual generator voltage is sensed by providing a separate set of rectifiers (14) connected to the generator (10) and providing output voltage signals representative only of the magnetism of the field--remanent or excited--and generator speed, independently of loading and battery voltage, to permit monitoring actual operation of the generator in relation to the connected network and battery. One (76) of the threshold switches or comparators is provided to inhibit energization of the field winding by the voltage regulator (20) if the voltage of the generator, as sensed, exceeds a predetermined level (eg.
    Type: Grant
    Filed: October 23, 1981
    Date of Patent: November 1, 1983
    Assignee: Robert Bosch GmbH
    Inventors: Willi Gansert, Ulrich Munz, Edgar Kuhn
  • Patent number: 4164785
    Abstract: A multiphase to single phase electrical energy converter wherein the frequency is converted from a relatively high frequency, in order of 1,000 hertz, to a relatively low frequency, as for example, normal household frequency of 60 hertz. A three-phase alternator is driven by an internal combustion engine, the output of the alternator being fed to a full-wave bridge circuit and finally to an inverter. The output of the bridge circuit is acted on by a resolver. The resolver is utilized to control the delivery of energy from the alternator to the inverter to provide an average current or power to the inverter which increases and decreases in a unipolar sinusoidal form at a frequency which is twice the desired output frequency. The inverter is utilized to invert every other cycle of the output from the resolver. Thus, the power from the inverter will take the form of an alternating sinusoidal waveform at 60 hertz.
    Type: Grant
    Filed: December 8, 1977
    Date of Patent: August 14, 1979
    Assignee: Tenna Power Corporation
    Inventors: Thomas A. Young, Jay W. Gustin
  • Patent number: 4156172
    Abstract: In a synchronous generator-motor, having both its main armature windings and exciter winding located on the stator and both the main field winding and the exciter armature windings including a rectifier for providing DC current to the main field located on the rotor and also including a voltage regulator responsive to the main armature voltage for regulating the current applied to the exciter field; the effects of transient currents in the main field windings resulting from load removal during the generator mode of operation and the voltages induced during motor start-up are substantially reduced by utilizing a resistive circuit operatively controlled by a transistor switching network that is in turn responsive to the exciter voltage and the induced voltage in the main field windings.
    Type: Grant
    Filed: August 23, 1976
    Date of Patent: May 22, 1979
    Assignee: Sundstrand Corporation
    Inventors: David J. Hucker, Norbert L. Schmitz, Timothy F. Glennon
  • Patent number: 3978373
    Abstract: A leakage current detecting coil is provided in the output circuit of the armature of a generator. The output of the leakage current detecting coil is connected to a gate control circuit for a pair of thyristors constituting a full-wave rectifier circuit provided between the output of the generator and the field coil thereof. The full-wave rectifier circuit controls the exciting current of the generator and also interrupts the exciting current through turning-off the thyristors when the leakage current is detected.
    Type: Grant
    Filed: January 27, 1975
    Date of Patent: August 31, 1976
    Assignee: Hitachi, Ltd.
    Inventor: Hideo Tatsumi