Using Saturable Inductor Patents (Class 323/214)
  • Patent number: 10998829
    Abstract: According to one embodiment, a power converter circuit includes a resonant circuit coupled to an alternating current (AC) voltage source to convert a first AC voltage to a first AC current and an AC to direct current (AC/DC) converter coupled to the resonant circuit, where the AC/DC converter is to convert the AC current to a DC current. The power converter circuit further includes an inverter coupled to the AC/DC converter to convert the DC current to a second AC current, an AC filtering circuit coupled to an output of the inverter, and a load coupled to the output of the inverter to convert the second AC current to a second AC voltage.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 4, 2021
    Inventor: James Nanut
  • Patent number: 10110140
    Abstract: According to one embodiment, a power converter circuit includes a resonant circuit coupled to an alternating current (AC) voltage source to convert a first AC voltage to a first AC current and an AC to direct current (AC/DC) converter coupled to the resonant circuit, where the AC/DC converter is to convert the AC current to a DC current. The power converter circuit further includes an inverter coupled to the AC/DC converter to convert the DC current to a second AC current, an AC filtering circuit coupled to an output of the inverter, and a load coupled to the output of the inverter to convert the second AC current to a second AC voltage.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 23, 2018
    Inventor: James Nanut
  • Patent number: 9172296
    Abstract: A photovoltaic system, method and apparatus are disclosed. In an exemplary embodiment, the system includes a photovoltaic array, a distribution system that distributes power within a premises of a demand-side energy consumer, an inverter coupled to the distribution system that is configured to convert DC power from the photovoltaic array to AC power and apply the AC power to the distribution system, a damping portion configured to damp high frequency voltages derived from the inverter, and trapping circuitry coupled to the damping portion that is configured to reduce a level of low frequency current traveling through the damping portion.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: October 27, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Eric Seymour, Jack Arthur Gilmore, Mike Armstrong
  • Patent number: 8766581
    Abstract: There are provided a power factor correction circuit capable of transferring extra power to a ground before performing switching for a power factor correction to thereby reduce a switching loss generated in switching for a power factor correction, and a power supply device and a motor driving device having the same. The power factor correction circuit includes: a main switch switching input power to adjust a phase difference between a current and a voltage of the input power; and an auxiliary switch switched on before the main switch is switched on, to thereby form a transmission path for extra power of the main switch.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Min Gyu Park, Kee Ju Um, Bum Seok Suh
  • Patent number: 8214677
    Abstract: A system is disclosed. The system includes a central processing unit (CPU) to operate in one or more low power sleep states, and a power converter. The power converter includes phase inductors; and one or more power switches to drive the phase inductors. The one or more power switches are deactivated during the CPU sleep state.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 3, 2012
    Assignee: Intel Corporation
    Inventors: Edward Burton, Robert Greiner, Anat Deval, Doug Huard
  • Patent number: 8159850
    Abstract: A converter control device includes a converter device formed by three converter circuits connected together in parallel between a secondary battery as a first power source and a fuel cell as a second power source. A control unit includes: a PID control module for controlling the converter device by PID control and executing a desired voltage conversion; a drive phase quantity changing module for changing the number of drive phases of the converter device in accordance with the passing power of the converter device; and an integration term correction function switching module which switches the PID control integration term correction function when changing the number of drive phases.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: April 17, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Takahiko Hasegawa, Takeshi Maenaka
  • Patent number: 7659700
    Abstract: An electronic device for transferring charge includes: a charge storage device; an inductive section; and a switching array having a first set of switches connected to a first node of a power terminal, a second set of switches connected to a second node, and a third set of switches connected to a third node. The device includes a controller configured to control the switching array so as to cause a first predetermined charge to interchange between the first node and the charge storage device, a second predetermined charge to interchange between the second node and the charge storage device, and a third predetermined charge to interchange between the third node and the charge storage device; and a bypass switch configured to close a circuit between the charge storage device and the inductive section so as to prevent charge from interchanging between the charge storage device and the nodes.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: February 9, 2010
    Assignee: Princeton Power Systems, Inc.
    Inventors: Mark Holveck, Wells Case Jacobson, Jr.
  • Patent number: 7633783
    Abstract: A converter device which is configured by connecting three converter circuits in parallel is provided between a secondary battery serving as a first power supply and a fuel cell serving as a second power supply. A control unit includes a PID control module which controls the converter device by PID control, for executing desired voltage conversion; a module for modifying the number of drive phases which changes the number of drive phases of the converter device in response to an electric power passing through the converter device; and a gain switching module which switches feedback gains in the PID control when the number of drive phases is changed.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 15, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Takahiko Hasegawa, Takeshi Maenaka
  • Publication number: 20090045785
    Abstract: An embodiment of a power supply includes a supply output node, phase paths, and sensor circuits. The supply output node is operable to carry a regulated output voltage, and each phase path has a respective phase-path non-output node, has a respective phase-path output node coupled to the supply output node, and is operable to carry a respective phase current. And each sensor circuit has a respective sensor node coupled to the phase-path non-output nodes and is operable to generate a respective sense signal that represents the phase current flowing through a respective one of the phase paths. For example, where the phase paths are magnetically coupled to one another, the sensor circuits take into account the portions of the phase currents induced by the magnetic couplings to generate sense signals that more accurately represent the phase currents as compared to conventional sensor circuits.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 19, 2009
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Shangyang Xiao, Weihong Qiu, Jun Liu
  • Publication number: 20080290845
    Abstract: An electronic device for transferring charge includes: a charge storage device; an inductive section; and a switching array having a first set of switches connected to a first node of a power terminal, a second set of switches connected to a second node, and a third set of switches connected to a third node. The device includes a controller configured to control the switching array so as to cause a first predetermined charge to interchange between the first node and the charge storage device, a second predetermined charge to interchange between the second node and the charge storage device, and a third predetermined charge to interchange between the third node and the charge storage device; and a bypass switch configured to close a circuit between the charge storage device and the inductive section so as to prevent charge from interchanging between the charge storage device and the nodes.
    Type: Application
    Filed: June 11, 2008
    Publication date: November 27, 2008
    Inventors: Mark Holveck, Wells Case Jacobson, JR.
  • Patent number: 7402983
    Abstract: A method for controlling a switching power converter which includes a central capacitor exchanges charge between the capacitor and plural nodes of a first terminal, and then transfers the charge between the capacitor and plural nodes of a second terminal. The charge interchanged between the capacitor and the nodes establishes the amount of power transferred during each cycle. The charge which is interchanged is controlled by selecting the electrical phase between the currents drawn from the nodes and the voltages at the nodes.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: July 22, 2008
    Assignee: Princeton Power Systems, Inc.
    Inventors: Wells Case Jacobson, Jr., Mark Holveck
  • Patent number: 6166494
    Abstract: A drive circuit arrangement for a gas discharge lamp includes a) a self resonating inverting for providing a drive voltage across a load impedance, the inverter having a pair of field effect transistors which operate in anti-phase, b) a tank circuit for canceling the reactive component of the load impedance coupled to the inverter, c) a voltage division circuit which provides a given fraction of the drive voltage to the gates of the field effect transistors, and d) a phase shifting means comprising an inductance in series with the tank circuit for shifting the phase of the given fraction of the drive voltage. The voltage division circuit is provided with a voltage limiter which in operation provides a further phase shift to the given fraction of the drive voltage when the drive voltage exceeds a given threshold value, increasing the resonant frequency of the inverter and limiting the peak drive voltage.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: December 26, 2000
    Assignee: Central Research Labs, Ltd.
    Inventor: Ian Macdonald Green
  • Patent number: 4719402
    Abstract: In a hybrid switched-capacitor controlled-reactor static VAR compensator including a fixed-capacitor, hysteresis on switching-OFF a switchable capacitor of the capacitance bank is performed with a minimal fixed-hysteresis at the entrance of the standby region and with a temporary and variable-hysteresis in relation to any operating point in the standby region whenever maintaining the capacitor OFF is required. Since the fixed-hysteresis operates most often to prevent switching-OFF of the capacitor while the variable-hysteresis will operate less often, the losses at standby are minimized during thyristor-switched capacitor operation through most of this.
    Type: Grant
    Filed: December 18, 1986
    Date of Patent: January 12, 1988
    Assignee: Westinghouse Electric Corp.
    Inventors: Michael B. Brennen, Mark G. Gernhardt
  • Patent number: 4684875
    Abstract: Power conditioning apparatus exhibiting enhanced stability with respect to lagging phase angle conditions incurred in conjunction with load derived transients. The apparatus employs a synthesizer network structured having a regulator which is fashioned as a non-linear saturable transformer in parallel with a capacitor bank and which is supplied from a utility line source through input inductors. The saturable transformer components and associated capacitors form a ferroresonant circuit wherein the reactive components operate beyond the knee of a conventional magnetization curve. To develop the stiffness to suddenly lagging phase angle otherwise encountered with such synthesizers, a induction or synchronous motor is employed at the output of the regulators which operates in essentially no load fashion to create a stable output in the presence of load transient phenomena. An odd harmonic trap arrangement is provided to assure stability under severe operational conditions such as single phasing.
    Type: Grant
    Filed: April 28, 1986
    Date of Patent: August 4, 1987
    Assignee: Liebert Corporation
    Inventor: Jeffrey M. Powell
  • Patent number: 4665322
    Abstract: An uninterruptible polyphase AC power supply equalizes an electric power taken out from a polyphase AC power source, even if unbalanced load is connected to output.
    Type: Grant
    Filed: October 29, 1985
    Date of Patent: May 12, 1987
    Assignee: Nishimu Electronics Industries, Co., Ltd.
    Inventors: Yoshinori Eishima, Yasuhiro Kawata
  • Patent number: 4531085
    Abstract: A polyphase line voltage regulator which uses polyphase pulse saturable ferroresonant reactors in series with three separate and equal input chokes. The line voltage regulator is particularly suitable for computer operations which impose a variable current demand on the power source. The input chokes are directly coupled with an unregulated a.c. source and are provided with controlled non-linearity. LC tuned circuits inhibit the second and third harmonics from the regulated a.c. voltage. An isolation transformer is connected across the polyphase pulse saturable ferroresonant reactors and delivers a voltage regulated a.c. output voltage to a load.
    Type: Grant
    Filed: June 13, 1983
    Date of Patent: July 23, 1985
    Assignee: Power Distribution Inc.
    Inventor: Lee O. Mesenhimer
  • Patent number: 4302805
    Abstract: A regulated power supply includes an oscillating inverter circuit for generating a high frequency square wave signal that drives a saturable reactor which pulse-width modulates the square wave as a function of a control current through a control winding on the saturable reactor. The output voltage generated by the power supply in sensed by a feedback circuit and fed back as a modulating signal of the control current through the saturable reactor control winding to vary the power transferred by the saturable reactor to an output transformer. The variation in power supplied to the output transformer compensates the output voltage as sensed by the feedback circuit. A protective circuit is provided to sense an output overvoltage condition and inactivate the power supply by terminating the oscillation of the inverter.
    Type: Grant
    Filed: February 26, 1980
    Date of Patent: November 24, 1981
    Assignee: Kyber Engineering, Inc.
    Inventors: Alejandro Marez, Jon J. Spykerman