With Plural Condition Sensing Patents (Class 323/285)
  • Patent number: 9024609
    Abstract: A power conversion system and method includes a DC-DC converter and an auxiliary circuit configured to ensure that a minimum input voltage is provided to the DC-DC converter during power interruption and for at least a predetermined hold-up time period. The auxiliary circuit includes an energy storage device, an auxiliary energy source for charging the energy storage device, and a clamping circuit to limit the energy stored by the energy storage device to a threshold voltage. A discharge time of the energy storage device from the threshold voltage to the minimum voltage thereby exceeds the predetermined hold-up time, but is only incrementally greater such that the size of the energy storage device is substantially reduced. The auxiliary energy source may typically be a current source, with the clamping circuit being control logic effective to disable the current source as a voltage across the storage device approaches the threshold.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: May 5, 2015
    Assignee: PAI Capital LLC
    Inventor: Johann Ferdinand Milavec
  • Patent number: 9018928
    Abstract: A pulse width modulation (PWM) power conversion system has improved efficiency over a wide operating input voltage and load range. Being able to measure relative efficiency of an analog PWM system allows enhanced control while maintaining the benefits of analog control. An analog low pass filter produces an average value of the PWM pulse train, then this analog average value is converted into digital values with an analog-to-digital converter and stored so that relative efficiencies of the PWM power conversion system may be compared for various combinations of operating parameters.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: April 28, 2015
    Assignee: Microchip Technology Incorporated
    Inventors: Scott Dearborn, Terry L. Cleveland, Clifford N. Ellison, III
  • Patent number: 9013164
    Abstract: A constant on-time controller, comprising a ripple generator, a comparing circuit and a logic control circuit, is provided. The ripple generator generates a ripple signal, which is injected into one of a voltage reference signal and a voltage detection signal to form a ripple modulated signal with ripple information. The comparing circuit compares the ripple modulated signal with the other of the voltage reference signal and the voltage detection signal and accordingly generates a comparison result signal. The logic control circuit generates a control signal with a fixed pulse width according to the comparison result signal. The ripple generator has a level modulation circuit for modulating an amplitude of the ripple modulated signal to make the amplitude within an preset range under different applications.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 21, 2015
    Assignee: Green Solution Technology Co., Ltd.
    Inventors: Li-Min Lee, Yuan Cai, Chao Shao, Quan Gan
  • Patent number: 9013163
    Abstract: Circuits and methods to detect a threshold for entering and leaving a discontinuous current mode of a buck converter have been disclosed. A buck converter is switched to continuous mode if the filtered battery current has reached a defined threshold current Ithccm. In order to expedite the transition from DCM mode to CCM mode the time delay between two or more pulses of a current through an inductor is monitored and the buck converter is switched to CCM mode if this time delay is smaller than a defined threshold.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 21, 2015
    Assignee: Dialog Semiconductor GmbH
    Inventor: Martin Faerber
  • Patent number: 9013165
    Abstract: A multi-mode pulse width modulation (PWM) controller for a buck switching regulator includes a multi-mode PWM control circuit where the PWM control circuit is configured to operate in one of multiple control schemes selectable by a mode select signal. In one embodiment, the multi-mode PWM control circuit incorporates a peak current mode control scheme, a voltage mode control scheme, and a valley current mode control scheme. In another embodiment, the multi-mode PWM control circuit further incorporates a constant ON-time control scheme.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 21, 2015
    Assignee: Micrel, Inc.
    Inventors: Nitin Kalje, Mansour Izadinia
  • Patent number: 9013166
    Abstract: In a DC-DC converter controller of the present invention, a ramp voltage for compensating a reference voltage is designed to have the same valley value or peak value irrespective of an input voltage and an output voltage of a controlled converting circuit when the controlled converting circuit operates in the steady state. Hence, the DC-DC converter controller of the present invention is capable of controlling the controlled converting circuit to accurately output the output voltage in different applications.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 21, 2015
    Assignee: Green Solution Technology Co., Ltd.
    Inventors: Li-Min Lee, Chao Shao, Quan Gan
  • Patent number: 9007048
    Abstract: In one embodiment, a method of forming a multi-channel power supply controller includes forming a plurality of channels configured to regulate an output voltage between first and second values, configuring the controller to select a channel that has a lowest current value and initiate forming a drive signal for that channel responsively to the output voltage having a value that is less than the first value, configuring a reset circuit for each channel to terminate the respective drive signal responsively to at least the output voltage having a value greater than the first value.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: April 14, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gang Chen, Gabor Reizik, Paul J. Harriman, Kisun Lee
  • Patent number: 9007044
    Abstract: An embodiment of a driving device is proposed for supplying at least one regulated global output current to a load. The driving device includes programming means for programming a value of the global output current within a global current range. Reference means are provided for supplying a reference voltage, which has a value corresponding to the value of the global output current. Conversion means are then used for converting the reference voltage into the global output current. The conversion means may further include a plurality of conversion units for corresponding partial current ranges, which partition the global current range.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 14, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberto La Rosa, Massimo Michele Antonio Sorbera
  • Patent number: 9001098
    Abstract: A power supply system includes a control unit comprising a detecting and converting unit that is operable to generate a detected current based on a difference between a set voltage and a voltage representative of a current flow through an energy storage member.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Ho Seo, Hee-Seok Han
  • Patent number: 9000736
    Abstract: The present disclosure provides techniques for a power factor correction system having an arbitrary input waveform. The present disclosure provides two example methods of digital power factor correction that allow for a high power factor on an arbitrary input waveform. The two example methods are applicable to both constant-current inputs and constant-voltage inputs. One example method samples the arbitrary input waveform to produce a reference table used to synchronize the input voltage with the input current in a constant current system, and to synchronize the input current to the input voltage in a constant voltage system. A second example method uses instantaneous input values as a reference in performing power factor correction.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: April 7, 2015
    Assignee: Cooper Technologies Company
    Inventor: Traver Gumaer
  • Patent number: 9000601
    Abstract: The respective main electrodes of the semiconductor switching elements such as IGBTs, which are respectively mounted on the plurality of insulating boards, are electrically connected to each other via the conductor member. This configuration makes it possible to suppress the occurrence of the resonant voltage due to the junction capacity and the parasitic inductance of each semiconductor switching element.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Hitachi Power Semiconductor Device, Ltd.
    Inventors: Katsunori Azuma, Kentaro Yasuda, Takahiro Fujita, Katsuaki Saito, Yoshihiko Koike, Michiaki Hiyoshi
  • Patent number: 8994353
    Abstract: A power converter includes a control circuit provided with a set signal generator, a current command generator, a reset signal generator, a drive signal generator, and a pulse-width limiter. The set signal generator generates a set signal at every predetermined cycle. The current command generator generates a current command based on an output voltage command and an output voltage. The reset signal generator generates a reset signal based on an input current and the generated current command. The drive signal generator generates a drive signal which turns on in synchronization with the generated set signal to turn on a switching element and which turns off in synchronization with the subsequently generated reset signal to turn off the switching element. The pulse-width limiter limits a pulse-width of the drive signal according to an input voltage and the output voltage, or according to the input voltage and the output voltage command.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Denso Corporation
    Inventor: Yuji Hayashi
  • Patent number: 8994352
    Abstract: A switching regulator and control method for the same. The switching regulator employs a hybrid mode. A ramp voltage signal is added to the current sense signal to make the ramp voltage signal overtake the current information when the duty cycle becomes low.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: March 31, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Jack Zhu, Basa Wang, Kevin Yao, Helen Yu
  • Patent number: 8994354
    Abstract: A current sensing circuit for an electronic power converter having an inductor that is not referenced to ground is configured to provide an output signal that is referenced to ground and is proportional to the current flow between the inductor and a load in an electrical power system. The current sensing circuit includes outputs associated with a voltage of the inductor, a current source circuit, a current steering circuit responsive to the voltage outputs and a level shifting circuit.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 31, 2015
    Assignee: Cooper Technologies Company
    Inventor: Mark Steven George
  • Patent number: 8988052
    Abstract: A control circuit for controlling a power supply including a first switch and a second switch coupled in series between a first potential and a second potential. The control circuit includes a detection circuit that detects a magnitude relation of a voltage value at a node between the first and second switches and a reference value during a period in which the first switch and the second switch are inactivated. The detection circuit generates a control signal corresponding to the magnitude relation. A regulation circuit regulates a switching timing of the second switch in response to the control signal to decrease a difference between the voltage value at the node and the reference value.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 24, 2015
    Assignee: Spansion LLC
    Inventors: Kazuyoshi Futamura, Takashi Matsumoto, Ryuta Nagai
  • Patent number: 8988056
    Abstract: A hysteretic power converter constituted of: a switched mode power supply; a hysteretic comparator, a first input of the comparator arranged to receive a feedback signal providing a representation of the output voltage of the switched mode power supply and a second input of the comparator arranged to receive a reference voltage; a ramp capacitor coupled to one of the first and second input of the comparator; a current source, a terminal of the current source coupled to the ramp capacitor and arranged to drive current to the ramp capacitor; and a switchable current source, a terminal of the switchable current source coupled to the ramp capacitor, the switchable current source arranged to drive current to the ramp capacitor in a direction opposite the current driven by the current source, wherein the switchable current source is alternately enabled and disabled responsive to the output of the hysteretic comparator.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: March 24, 2015
    Assignee: Microsemi Corporation
    Inventors: Kevin Mark Smith, Jr., Ekrem Cengelci
  • Publication number: 20150069991
    Abstract: The power supply circuit includes a power supply-side capacitor The power supply circuit includes a ground-side capacitor The power supply circuit includes a power supply-side amplifier that is connected to the voltage output terminal at a non-inverting input terminal thereof and to the second end of the power supply-side resistor at an inverting input terminal thereof and outputs a power supply-side control signal at an output terminal thereof. The power supply circuit includes a ground-side amplifier that is connected to the second end of the ground-side resistor at a non-inverting input terminal thereof, receives a ground-side detection voltage that is based on the output voltage at an inverting input terminal thereof and outputs a ground-side control signal.
    Type: Application
    Filed: December 31, 2013
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takuyo KODAMA
  • Publication number: 20150070953
    Abstract: A waveform shape discriminator includes a running maximum finder circuit coupled to receive a sense signal. The running maximum finder circuit is coupled to update a running maximum signal in response to the sense signal. A first comparator is coupled to receive the sense signal and a running maximum threshold signal that is representative of the running maximum signal. A search window block is coupled to receive the input signal to detect a search window in the sense signal. An output circuit is coupled to an output of the first comparator and an output of the search window block to determine a presence of a waveform shape in the sense signal within the search window in the sense signal.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: Power Integrations, Inc.
    Inventor: Roger Colbeck
  • Patent number: 8975886
    Abstract: A system configured for charging and distribution control is provided. The system includes a switching regulator, a control circuit and a first converter. The switching regulator is configured to be selectively operable in one of a first operative state and a second operative state based on a control signal. The first operative state and the second operative state are associated with a maximum level of an alternator output power corresponding to at least one alternator operational feature, at least one alternator operational feature being associated with the alternator output voltage and an alternator speed. The control circuit is configured to generate the control signal based at least on the at least one alternator operational feature. The first converter is configured to generate a first converter output voltage based on the regulated DC output voltage. The first converter output voltage is lower than the regulated DC output voltage.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: March 10, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Latif Ameer Babu Shiek
  • Patent number: 8975887
    Abstract: Embodiments of systems, methods and apparatuses of a switching voltage regulator are disclosed. One switching voltage regulator includes a series switch element, a shunt switch element, a PWM controller, and a mode controller. The PWM controller includes an error amplifier and a switching controller. The error amplifier generates an error signal based on a difference between a reference voltage and an output voltage. Further, the switching controller is operative to generate switch element control voltages based on the error signal, for controlling opening and closing of the series switch element and the shunt switch element, wherein the opening and closing of the series switch element and the shunt switch element generates a switching voltage. The mode controller is operative adjust a gain of the error amplifier over a selected range of frequencies based on a parameter indicative of a likelihood of oscillations in the output voltage.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 10, 2015
    Assignee: R2 Semiconductor, Inc.
    Inventors: Pablo Moreno Galbis, James E. C. Brown, Cory Severson
  • Patent number: 8975885
    Abstract: A controller for a switch mode regulator with discontinuous conduction mode (DCM) correction which includes a correction network and a modulator. The correction network detects a low load condition indicative of regulation error during DCM and asserts an adjust value indicative thereof. The modulator receives the adjust value and adjusts operation accordingly to improve regulation during DCM. The correction network receives or determines a regulation metric, such as periods between successive pulses of a pulse control signal, or a current sense signal indicative of load current, and compares the regulation metric with one or more thresholds for determining the level of adjustment. Adjustment may be made using one or more methods, such as adjusting pulse on-time, adjusting pulse off-time, adjusting frequency of operation, etc.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 10, 2015
    Assignee: Intersil Americas Inc.
    Inventors: Rhys S. A. Philbrick, Steven P. Laur
  • Patent number: 8970200
    Abstract: Systems and methods for light-load efficiency in displays may include a backlight driver circuit that may adjust a gate drive voltage provided to a gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) in the boost converter based on the load conditions of light-emitting diodes used to illuminate the display panel. The backlight driver circuit may also switch between two different voltage sources to further broaden a range of gate drive voltages available to drive the gate of the MOSFET in the boost converter. As a result, the backlight driver circuit may decrease gate drive losses associated with the MOSFET, thereby increasing the efficiency of the boost converter.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 3, 2015
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Manisha P. Pandya, Mohammad J. Navabi-Shirazi
  • Patent number: 8970194
    Abstract: A switch mode power supply system has a constant on-time signal generator, a logic circuit, a feedback circuit, a first ramp signal generator, a second ramp signal generator, a switch circuit having a power switch, and a comparator. A feedback signal from the feedback circuit is compensated by the first ramp signal generator, and a reference signal is compensated by the second ramp signal generator. The comparator compares the compensated feedback signal with the compensated reference signal to indicate an off time of the power switch while the constant on-time signal generator decides the on-time of the power switch.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: March 3, 2015
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Yike Li
  • Patent number: 8971077
    Abstract: A power supply circuit includes: a first switch and a second switch that are connected in series between an input voltage terminal and a reference power supply; a controller that controls the first and second switches to be turned on and off by turns; a comparator that has an inverting input terminal connected to a voltage supply and that has a non-inverting input terminal connected to a first terminal of a capacitor; a third switch that is provided between an output terminal and the non-inverting input terminal of the comparator; a fourth switch that is provided between a connection node of the first and second switches, and a second terminal of the capacitor; and a latch circuit that detects change of output of the output terminal of the comparator and controls the second switch to be turned off.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: March 3, 2015
    Assignee: Fujitsu Limited
    Inventor: Hiroyuki Nakamoto
  • Patent number: 8970199
    Abstract: The invention relates to an electronic device and a method for DC-DC conversion using a comparator for generating an output signal for driving a power switch of a switch mode DC-DC converter. The electronic device is configured to reduce a bias current of the comparator with a first slope in response to a decreasing load and to increase the bias current of the comparator with a second slope in response to an increasing load, wherein the second slope is steeper than the first slope.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: March 3, 2015
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Kevin Scoones, Gerhard Thiele, Neil Gibson
  • Patent number: 8963523
    Abstract: A switching regulator configured to provide an output voltage comprises a power stage, an error correction circuit, a comparator, an ON-time generator and a logic circuit. The error correction circuit generates an error correction voltage based on a reference voltage and a feedback voltage representative of the output voltage. The comparator compares the feedback voltage with the difference between the reference voltage and the error correction voltage, and generates a comparison signal. The ON-time generator is configured to provide an ON-time signal. The logic circuit generates a logic control signal to control the power stage based on the comparison signal and the ON-time signal.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: February 24, 2015
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Rui Wang
  • Patent number: 8963585
    Abstract: An exemplary apparatus and method for using intelligent gate driver units with distributed intelligence to control antiparallel power modules or parallel-connected electrical switching devices like IGBTs is disclosed. The intelligent gate drive units use the intelligence to balance the currents of the switching devices, even in dynamic switching events. The intelligent gate driver units can use master-slave or daisy chain control structures and instantaneous or time integral differences of the currents of parallel-connected switching devices as control parameters. Instead of balancing the currents, temperature can also be balanced with the intelligent gate driver units.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 24, 2015
    Assignee: ABB Research Ltd
    Inventors: Yanick Lobsiger, Dominik Bortis, Johann Walter Kolar, Matti Laitinen
  • Patent number: 8963529
    Abstract: One embodiment relates to power conversion system. The system includes a converter configured to convert an input voltage to an output voltage, the converter comprising at least one switch that is controlled in response to an activation signal to provide current through an inductor. A transition mode controller is configured to provide the activation signal based on a measure of charge derived from current through the switch and based on the current through the inductor.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Isaac Cohen
  • Patent number: 8963530
    Abstract: A multi input circuit is provided having a first terminal; a second terminal; a third terminal; a current element sensing signal detection unit connected between the first terminal and the third terminal; a multiplexer of which input ports are each connected to the first to third terminals and an output end of the current element sensing signal detection unit; a key input unit selecting the input ports for receiving the sensing signals from the multiplexer; a power supply unit; a switch turning-on/off power supplied to the RTD temperature sensor from the power supply unit; and a control unit outputting a control signal selecting the input ports of the multiplexer and a control signal controlling the turn-on/off of the switch according to the selection of the key input unit to receive the sensing signal input to the input port of the multiplexer.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: February 24, 2015
    Assignee: Autonics Corporation
    Inventor: Hwan Ki Park
  • Patent number: 8957661
    Abstract: Disclosed is a DC-DC converter, including: a switch unit configured to generate output voltage for driving a load; an output voltage monitoring unit including a reference voltage generator generating reference voltage and a reference voltage capacitor maintaining the reference voltage when power of the reference voltage generator is interrupted and configured to generate a signal for setting the output voltage as the reference voltage; a switch controlling unit configured to control the switch unit by being operated in a pulse width modulation (PWM) mode or a pulse frequency modulation (PFM) mode by using the signal of the output voltage monitoring unit; and a mode determining and power interrupting unit configured to set an operating mode of the switch controlling unit as the PWM mode or the PFM mode according to a magnitude of the load and interrupt power of the reference voltage generator when operated in the PFM mode.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: February 17, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sewan Heo, Yil Suk Yang, Jong Kee Kwon
  • Patent number: 8957659
    Abstract: Provided is a voltage regulator having improved transient response characteristics even when a load current is switched from a light load to a heavy load. The voltage regulator includes, to a gate of a detection transistor constituting an output current detection circuit: a resistive element for interrupting the gate of the detection transistor from an output terminal of a differential amplifier circuit in an AC manner; and a capacitive element connected to an output terminal of the voltage regulator in an AC manner.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: February 17, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Manabu Fujimura, Takashi Imura, Yuji Kobayashi
  • Patent number: 8952672
    Abstract: A solar panel is constructed by electrically connecting one or more banks of solar cells in series, wherein each cell in each bank is electrically connected in series. In some aspects the cells are a quarter of typical full size cells in the direction of current flow. A module senses and controls small signal conduction and total conduction of the panel such that reverse current conduction of a weak or partially shaded cell is prevented, thereby allowing the panel to be constructed without bypass diodes. In some aspects the module prevents damage to the panel by an external inverter's maximum power point experiments; in other aspects the module itself provides maximum power point control.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: February 10, 2015
    Inventor: Kent Kernahan
  • Patent number: 8947064
    Abstract: An electronic switch is connected in series with a load dependent on an input signal. The electronic switch is operated in a first operation mode for a first time period after a signal level of the input signal has changed from an off-level to an on-level. The first operation mode includes driving the electronic switch dependent on a voltage across the load and dependent on a temperature of the electronic switch. The electronic switch is operated in a second operation mode after the first time period. The second operation mode includes driving the electronic switch dependent on the temperature according to a hysteresis curve.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Feldtkeller
  • Patent number: 8947062
    Abstract: In the case where the duty cycle of the PWM signal exists and the duty cycle of the PWM signal is constant for a certain period, a feedback control circuit is operated intermittently with the duty cycle fixed. Specifically, a power supply circuit includes an A/D converter circuit for forming a digital value based on an analog value obtained by monitoring an output voltage based on a reference voltage, a digital filter circuit for smoothing the digital value, a PWM signal generator circuit for generating a PWM signal based on an output value of the digital filter circuit, and an operation mode control circuit for controlling a circuit operation mode based on the duty cycle of the PWM signal.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takuro Ohmaru
  • Patent number: 8947065
    Abstract: A DC-DC controller and a control method thereof are provided. The DC-DC controller is coupled to an output stage. The output stage receives an input voltage and provides an output voltage. The DC-DC controller includes a transient boost circuit, a ramp oscillator, a combination logic circuit, a first comparator and a pulse width modulation (PWM) generator. The transient boost circuit generates an adjusting signal according to a variation of the output voltage. The combination logic circuit controls the ramp oscillator to generate a ramp signal according to the adjusting signal. The first comparator generates a first signal according to the ramp signal and an outputted feedback voltage related to the output voltage. The PWM generator generates a PWM signal according to the first signal, so as to control the operations of the output stage.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: uPI Semiconductor Corp.
    Inventors: Chu-Yi Chiang, Hua-Chiang Huang
  • Patent number: 8941366
    Abstract: A DC-DC converter includes efficiency reporting circuitry having an output that is a measure of efficiency. In an example, the DC-DC converter has an input voltage, an output voltage, and a switching circuit converting the input voltage to an intermediate voltage, and the efficiency reporting circuitry determines the ratio between the output voltage and the intermediate voltage.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Clint Wade Halsted
  • Patent number: 8941368
    Abstract: A method and system to inhibit the switching of a current mode switching converter having high and low side switching elements coupled to an output inductor, the other end of which is coupled to an output node, and operated with respective modulated switching signals to regulate an output voltage Vout produced at the node. A current IC that varies with the difference between a reference voltage and a voltage proportional to Vout is compared with and a current IDETECT—PEAK which varies with the current conducted by the high side switching element; the result of the comparison of IC and IDETECT—PEAK is used to control the regulation of Vout during normal operation. Current IC is also compared with a current IDETECT—VALLEY which varies with the current conducted by the low side switching element. When IDETECT—VALLEY>IC, a ‘skip mode’ is triggered during which the switching signals are inhibited.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 27, 2015
    Assignee: Analog Devices Technology
    Inventors: Shanshan Yang, Guoming Wu, Bin Shao
  • Patent number: 8937470
    Abstract: An active power factor correction (PFC) circuit for calibrating a power factor of an AC-to-DC converter when the active PFC circuit is coupled with the AC-to-DC converter is disclosed including: a piecewise linear gain circuit, an error amplifier, a PWM controller, and a PWM signal generator. The piecewise linear gain circuit is for receiving a feed forward signal and generating a corresponding gain signal, wherein the gain signal and the feed forward signal have a broken line relation with respect to magnitude. The error amplifier is for generating an error signal according to an output voltage of the AC-to-DC converter. The PWM controller is for generating a control signal according to the gain signal and the error signal. The PWM signal generator is for generating a PWM signal for controlling a power switch of the AC-to-DC converter according to the control signal.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 20, 2015
    Assignee: Richtek Technology Corporation
    Inventor: Tzu-Chen Lin
  • Patent number: 8933685
    Abstract: A protection system and method for protecting a direct current to direct current voltage converter (DC-DC converter) from a potentially damaging excessive output current due to exposure to a relatively strong magnetic field is disclosed. The system includes a detector circuit configured to monitor a signal characteristic of the DC-DC converter, and a linear regulator having an output coupled to the load output of the DC-DC converter. The system further includes a control system configured to disable a load output of the DC-DC converter and enable the output of the linear regulator when the detector detects that the signal characteristic has moved outside a predetermined threshold range. Moreover, the control system is further configured to disable the output of the linear regulator after a predetermined time period, and enable the load output of the DC-DC converter after the predetermined time period.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 13, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Mohammad Ahsanul Adeeb, John Endredy, Christopher Truong Ngo, Ashraf Rozek
  • Publication number: 20150008895
    Abstract: A current mode DC-DC conversion device with fast transient response is provided. The device includes a DC-DC converter, a pulse width control unit, a current feedback circuit, a fast transient feedback circuit, a first error amplifier, an adder, and a comparator. The current feedback circuit generates a current feedback signal according to the current passing through an inductor in the DC-DC converter. The fast transient feedback circuit generates a transient feedback signal according to a first voltage feedback signal. The first error amplifier amplifies the difference value between a second voltage feedback signal and a reference signal to generate an error amplification signal. The comparator compares the error amplification signal and the summation of current feedback signal and transient feedback signal to generate a comparison signal. The comparison signal is provided to the pulse width control unit for controlling the duty cycle of the power switch.
    Type: Application
    Filed: October 17, 2013
    Publication date: January 8, 2015
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: CHIA-CHIEH WENG, CHIN-HONG CHEN
  • Patent number: 8928302
    Abstract: A first added signal that is acquired by adding a reference current signal that is in proportion to a current flowing through an inductance element, a slope compensation signal and a voltage difference signal that is in proportion to a difference between an input voltage and an output voltage and a second added signal that is acquired by adding the reference current signal and the slope compensation signal are compared with a difference signal of a voltage that is in proportion to the output voltage and a predetermined reference voltage, and pulse widths of driving pulse signals of a step-down switching circuit and a step-up switching circuit are controlled as a result of the comparison.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshimasa Namekawa
  • Patent number: 8928248
    Abstract: Provided is a step up/down converter, in which the inductor current can be easily detected by a simple configuration in any connecting mode of the switches.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 6, 2015
    Assignee: Panasonic Corporation
    Inventors: Takuya Ishii, Takeshi Azuma
  • Patent number: 8928294
    Abstract: A hysteresis control step-up switching power supply includes a switching element. Current flowing through the switching element does not continue to increase indefinitely. The switching element is turned off when a detected value of an output voltage increases to a reference voltage, or when the output of a current detector circuit that detects that a current flowing through the switching element increases to a reference current value.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Kouhei Yamada
  • Patent number: 8928303
    Abstract: Apparatus and methods for generating a drive signal of a switching signal are disclosed. A first circuit receives an oscillating reference signal, a first compensation signal, a second compensation signal, and a third compensation signal. The first compensation signal is indicative of an error between an output voltage of a power converter and a reference voltage. The second compensation signal is indicative of the error relative to a threshold. The third compensation signal is indicative of an output current of the power converter. The first circuit generates a comparison signal having a waveform including pulses having durations based at least partly on a combination of the periodic reference signal, the first compensation signal, the second compensation signal, and the third compensation signal. A second circuit receives a clock signal and the comparison signal and generates a drive signal for activation and deactivation of a driver transistor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: Analog Devices Technology
    Inventors: Zhijie Zhu, Junxiao Chen, Bin Shao
  • Publication number: 20150002125
    Abstract: A DC-DC converter that is capable of cutting off a large current flowing in a voltage converter circuit when a short-circuit failure occurs in a switching element of the voltage converter circuit includes a voltage converter circuit having a first switching element, a reverse connection protection second switching element that blocks a large current from flowing in the voltage converter circuit when a negative electrode of a DC power supply is connected to an input terminal, a reverse connection protection third switching element that blocks a large current from flowing in the voltage converter circuit when a short-circuit failure occurs in the first switching element, and a detector that detects the short-circuit failure in the first switching element to turn off the third switching element. The third switching element is connected in series with the second switching element.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Applicant: OMRON AUTOMOTIVE ELECTRONICS CO., LTD.
    Inventors: Akihiro Kinoshita, Ryo Kobayashi
  • Publication number: 20150002124
    Abstract: A DC-DC converter includes a voltage converter circuit having an FET 1, a short-circuit protection FET 3 that blocks a large current from flowing in the voltage converter circuit when a short-circuit failure occurs in the FET 1 or capacitors, and a detector that detects a short-circuit failure in the FET 1 or the capacitors to turn off the FET 3. The FET 1 is connected to a power supply line and also in series to the FET 3. The capacitors are connected to the power supply line and to a connection point between the FET 1 and FET 3. The detector detects a failure on the basis of the voltage at the connection point.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Applicant: OMRON AUTOMOTIVE ELECTRONICS CO., LTD.
    Inventors: Akihiro Kinoshita, Ryo Kobayashi, Toshinori Origane
  • Patent number: 8922187
    Abstract: A buck switching regulator includes a feedback control circuit including a balanced feedback network including first and second gain circuits configured to generate first and second feedback signals, respectively, indicative of the regulated output voltage; a ripple generation circuit configured to inject a first ripple signal to the first gain circuit and a second ripple signal to the second gain circuit; an operational transconductance amplifier (OTA) configured to receive the second feedback signal and a reference signal and to generate an output signal being coupled to a node in the feedback control circuit; and a comparator configured to receive the first feedback signal and a comparator reference signal and to generate a comparator output signal. The output signal of the OTA is applied to the feedback control circuit to cancel a voltage offset in the regulated output voltage due to the injected ripple signal to the first gain circuit.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 30, 2014
    Assignee: Micrel, Inc.
    Inventor: Leland Swanson
  • Patent number: 8922186
    Abstract: A current sensing apparatus for a voltage converter apparatus includes a circuit selection module for generating a circuit selection result according to a clock signal and a duty cycle signal; a current sensing module coupled to the circuit selection module, an up-bridge circuit and a down-bridge circuit of the voltage converter apparatus for measuring an up-bridge conduction current and a down-bridge conduction current according to the circuit selection result; and a current generation module coupled to the current sensing module and a slope compensation circuit of the voltage converter apparatus for generating a sensing voltage according to a slope compensation current, the up-bridge conduction current or the down-bridge conduction current, so as to adjust the duty cycle signal of the controller. The current sensing apparatus utilizes the duty cycle signal to drive the voltage converter apparatus.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: December 30, 2014
    Assignee: Anpec Electronics Corporation
    Inventor: Chih-Ning Chen
  • Patent number: 8917077
    Abstract: The present invention provides a multi-phase switching regulator and a droop circuit for use in the multi-phase switching regulator. The multi-phase switching regulator generates pulse width modulation (PWM) signals according to an output voltage and a droop signal, to drive a plurality of switching sets to convert an input voltage to the output voltage. The droop circuit detects the sum of the currents generated by the plurality of switching sets and provides the droop signal which is related to the sum of the currents to the multi-phase switching regulator. The droop signal can be used for over current protection (OCP) or for the droop control.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: December 23, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Yu-Ta Lin, Jian-Rong Huang, Yi-Cheng Wan, Chien-Hui Wang, Yuan-Wen Hsiao
  • Patent number: 8912781
    Abstract: An integrated circuit (IC) controller for a switching power supply has a selectable operating mode for supporting multiple switching power supply topologies. The IC controls current by controlling a cycle rate of the switching power supply to provide a constant or variable output current, which may be provided to lighting devices such as light-emitting diodes (LEDs). The selectable operating mode includes at least a buck converter operating mode and another operating mode, which may be a flyback converter operating mode.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: December 16, 2014
    Assignee: Cirrus Logic, Inc.
    Inventors: Rahul Singh, John L. Melanson