With Base Drive Control Dissipation Patents (Class 323/289)
  • Patent number: 11437986
    Abstract: A gate voltage magnitude compensation equalization method and circuit for series operation of power switch transistors are provided. A dynamic voltage equalization of series-connected power switch transistors is implemented by using sampling principles where voltages of the power switch transistors are controlled by gate voltage magnitude and unbalanced voltage differentials are converted into unbalanced current differentials of buffer currents. The gate voltage magnitude compensation equalization method and circuit relates to differential control and works in a dynamic voltage change process of the series-connected power switch transistors, without having a negative effect on operation of the power switch transistors under normal operating conditions.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 6, 2022
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Wuhua Li, Chengmin Li, Saizhen Chen, Haoze Luo, Xin Xiang, Chushan Li, Xiangning He
  • Patent number: 11391805
    Abstract: A solid-state power controller (SSPC) system with a built-in-test circuit includes a SSPC field-effect transistor (FET) switch. The system includes a current sense resistor electrically connected to the SSPC FET switch in series. A resistor is electrically connected to the current sense resistor in series. A switch is electrically connected to the resistor in series. A method for testing a current sense resistor value in a solid-state power controller (SSPC) system includes determining a cycle count, generating a new bit with a processing unit, and outputting the new bit to a switch operatively connected to the processing unit to at least one of turn the switch on or turn the switch off. The method includes reading a load current with the processing unit to determine whether a current sense resistor electrically coupled to the switch is operating within a desired resistance range.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 19, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventor: John A. Dickey
  • Patent number: 11329567
    Abstract: A forward converter includes an input voltage source divided into multiple divided input voltage sources, each of which provides a portion of a total input voltage of the input voltage source. The forward converter includes an output circuit with an output capacitor, a transformer having multiple primary windings, a secondary winding, and a relaxation winding. Each primary winding is connected in series with a corresponding primary side switching device. A combination of the primary winding and the corresponding primary side switching device is in parallel with a corresponding divided voltage source. The secondary winding outputs a voltage via the output circuit. The relaxation winding is connected across the divided input voltage sources or the output capacitor. A controller circuit controls the primary side switching devices to control power flow from the input voltage source to the output capacitor based on an indication of a voltage across the output capacitor.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 10, 2022
    Assignee: Appulse Power Inc.
    Inventors: Seyed-Behzad Mahdavikhah-Mehrabad, Nenad Vukadinovic
  • Patent number: 10819332
    Abstract: An integrated circuit includes a first power transistor, a second power transistor, and an isolator. The first power transistor is integrated with a first driving circuit. The second power transistor is integrated with a second driving circuit. The isolator provides a first control signal and a second control signal to the first power transistor and a second power transistor respectively, according to an input signal.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: October 27, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chang-Jing Yang, Liang-Cheng Wang
  • Patent number: 10812069
    Abstract: A switch driving circuit includes an output coil having a first end and a second end and configured to receive positive or negative pulses from an input coil and a drive portion that includes a holding capacitor coupled across the output coil. The circuit also includes a discharge circuit that includes a discharge switch connected across the output coil, the discharge circuit having a discharge resistor and a discharge capacitor connected in parallel with each other and across control terminals of the discharge switch and a shunt circuit connected across the output coil that shorts the first end to the second end after a positive pulse is received.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 20, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Youssef Boulaknadal, Carlos Rivero, Ryan Rocheleau
  • Patent number: 10756083
    Abstract: A device includes a capacitive element that is coupled between first and second nodes and that includes a first well region, a second well region, and a transistor. The second well region is formed in the first well region, has a different conductivity type than the first well region, and is coupled to the second node. The transistor includes source and drain regions formed in the second well region and coupled to each other and to the second node, a channel region between the source and drain regions, and a gate region over the channel region. The first well region and the gate region are coupled to each other and to the first node, whereby a capacitance of the capacitive element is increased without substantially enlarging a physical size of the capacitive element.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yu-Tso Lin, Chih-Hsien Chang, Min-Shueh Yuan, Robert Bogdan Staszewski, Seyednaser Pourmousavian
  • Patent number: 10707170
    Abstract: The invention relates to a power electronic switching device having a substrate, which has a non-conductive insulation layer on which at least one first conductor track 40 and at least one second conductor track 50 are applied. The first conductor track 40 is assigned an electrical DC voltage potential DC+ of the power electronic switching device and the one second conductor track 50 is assigned an electrical AC voltage potential AC of the power electronic switching device. At three first partial power switches are arranged on the first conductor track. At least three second partial power switches are arranged on the second conductor track. The at least three first partial power switches are connected electrically in parallel with each other to form a first parallel circuit and the at least three second partial power switches are electrically connected in parallel with each other to form a second parallel circuit.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: July 7, 2020
    Assignee: SEMIKRON ELEKTRONIK GmbH & CO. KG
    Inventor: Christina Ebensperger
  • Patent number: 10587261
    Abstract: The invention relates to: Control circuit (1) for an electrical device (2), said control circuit (1) receiving as input a discrete electrical control signal (CMD), the control circuit (1) comprising a source (11) of voltage (±V) configured so as to supply the circuit according to a negative or positive voltage; a switch (12) normally closed in the absence of any discrete electrical control signal (CMD) and configured so as to isolate the electrical device from the voltage source as a function of the electrical control signal (CMD), said switch being connected between the voltage source and the electrical device (2); the switch (12) being sensitive to the discrete electrical control signal (CMD) for just one sense of voltage.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: March 10, 2020
    Assignee: SAFRAN ELECTRONICS & DEFENSE
    Inventors: Eric Karniewicz, Michael Montoya, Nicolas Charrier, Nicolas Marti
  • Patent number: 10361355
    Abstract: A power generation system includes a first power generation apparatus and a second power generation apparatus outputting alternating voltages by an input of vibrations; a first voltage-doubling rectifier circuit not only rectifying the alternating voltages output by the first power generation apparatus to store electricity, but also outputting enhanced voltages to the load instrument; a second rectifier circuit rectifying the alternating voltages output by the second power generation apparatus, and connected in series to the first voltage-doubling rectifier circuit, thereby outputting rectified voltages to the load instrument; a constant-current circuit connected in series to the load instrument, thereby limiting currents flowing to the load instrument to a predetermined current or less.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 23, 2019
    Assignee: SUMITOMO RIKO COMPANY LIMITED
    Inventors: Hajime Kurikuma, Koichi Hasegawa
  • Patent number: 10277136
    Abstract: A power converter includes a primary winding and multiple output windings to provide multiple independently controlled and regulated outputs with a common return line. The outputs are coupled to independently regulate constant current, constant voltage, or both constant current and constant voltage outputs. A secondary control block is coupled to control a synchronous rectifier switch coupled to the common return line to synchronize switching with a primary side power switch to provide complementary conduction of the primary winding and the multiple output windings. A plurality of controlled power pulse switches is coupled to the multiple output windings. A request of a power pulse from each of the outputs is transferred through the secondary control block to a primary switch control block to turn on the primary side power switch to transfer a power pulse to the multiple output windings and through controlled power pulse switches to the outputs.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Power Integrations, Inc.
    Inventors: Antonius Jacobus Johannes Werner, Matthew David Waterson, Yuncong Alex Jiang, Roland Sylvere Saint-Pierre
  • Patent number: 10243473
    Abstract: An LED driver is provided having a gate drive integrated circuit with an adaptive operating mode which operates between a first operating mode and a second operating mode. The gate drive integrated circuit is designed to primarily operate in the first operating mode which includes a predetermined minimum on-time and a predetermined maximum off-time for enabling and disabling gate drive signals to a switch, respectively. The second operating mode begins at the minimum on-time and the maximum off-time. The LED driver further includes a controller configured to monitor an on-time and an off-time of the gate drive signals. The controller is further configured responsive to the second operating mode to fix the on-time equal to the predetermined minimum on-time and to continually adjust the off-time greater than or equal to the maximum off-time.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 26, 2019
    Assignee: Universal Lighting Technologies, Inc.
    Inventors: Wei Xiong, Travis L. Berry, Keith Davis
  • Patent number: 10186509
    Abstract: A power transistor assembly and method of operating the assembly are provided. The power transistor assembly includes integrated transient voltage suppression on a single semiconductor substrate and includes a transistor formed of a wide band gap material, the transistor including a gate terminal, a source terminal, and a drain terminal, the transistor further including a predetermined maximum allowable gate voltage value, and a transient voltage suppression (TVS) device formed of a wide band gap material, the TVS device formed with the transistor as a single semiconductor device, the TVS device electrically coupled to the transistor between at least one of the gate and source terminals and the drain and source terminals, the TVS device including a breakdown voltage limitation selected to be greater than the predetermined maximum allowable gate voltage value.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, James Jay McMahon, Ljubisa Dragoljub Stevanovic
  • Patent number: 10181732
    Abstract: A circuit for balancing capacitor voltages at capacitors in a DC circuit includes a first circuit path having first and second capacitors connected in series between first and second potentials of a DC voltage of the DC circuit, with a first center tap arranged between the first and second capacitors. A second circuit path includes first and second switchable semiconductors and first and second balancing elements which are connected in series between the first and second potentials. The first switchable semiconductor is arranged at the first potential, the second switchable semiconductor at the second potential, and the first and second balancing elements are arranged between the first and second switchable semiconductors, with a second center tap arranged between the balancing elements. A first electrical connection is established between the first center tap in the first circuit path and the second center tap in the second circuit path.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 15, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Melanie Eckert, Markus Frühauf, Peter Jänicke
  • Patent number: 10135372
    Abstract: An apparatus includes a magnetizing circuit configured to be coupled to a transformer and to selectively provide a magnetizing current to the transformer and a control circuit configured to cause the magnetizing circuit to provide the magnetizing current following disconnection of the primary winding of the transformer from the power source. The magnetizing circuit may be configured to provide the magnetizing current from a first source following disconnection of the primary winding from a second source. The transformer may include a first transformer and the apparatus may further include a second, higher impedance transformer coupled between the second source and the first transformer. In further embodiments, the magnetizing circuit may include a solid-state converter.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: November 20, 2018
    Assignee: Eaton Intelligent Power Limited
    Inventors: Irving Albert Gibbs, Thomas Arthur Farr
  • Patent number: 10044350
    Abstract: A power drive circuit is disclosed. The power circuit includes: a pulse detector, configured to generate first and second control signals in response to first and second pulse signals, respectively. The power drive circuit also includes a state storage device, configured to generate first and second driver input signals in response to the first and second control signals, respectively. The power drive circuit also includes a driver configured to generate first and second gate drive signals in response to the first and second driver input signals, respectively. The power drive circuit also includes a power switch, configured to receive the first and second gate drive signals, where the first and second gate drive signals control the power switch to selectively conduct or not conduct current between first and second terminals.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 7, 2018
    Assignee: Navitas Semiconductor, Inc.
    Inventors: Thomas Ribarich, Ju Zhang
  • Patent number: 9906213
    Abstract: An inverter circuit for reducing runaway current due to applied voltage stress and temperature conditions comprises: first and second field effect transistor (FET) devices of opposite device polarities for driving a connected second stage device having a connected 2nd stage first and second FET devices, each 2nd stage device having a respective input gate terminal. The first FET and second FET devices have a respective output drive terminal, a first conductive structure connects the first FET output drive terminal to the input gate terminal of each the first and second connected FET device and further connects the first FET output drive terminal to the second FET output drive terminal through a ballasting resistor device. A second separate conductive structure connects the second FET output drive terminal to the input gate terminals and includes a path further connecting the second FET output drive terminal to the first FET output drive terminal through the ballasting resistor device.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: February 27, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gregory G. Freeman, Siyuranga O. Koswatta
  • Patent number: 9806616
    Abstract: The efficient control of a plurality of high side switches, e.g. the high side switches of half bridges is presented. A control circuit contains a charge provisioning unit to provide an electrical charge. The control circuit contains a plurality of sets of high control switches for the plurality of high side switches, respectively; wherein each set of high control switches is used to arrange the charge provisioning unit in parallel to a gate-source capacitance of the respective high side switch. The control circuit comprises a controller to, during a phase of a plurality of different phases, control a respective set of high control switches from the plurality of sets of high control switches to arrange the charge provisioning unit in parallel to the gate-source capacitance of the respective high side switch from the plurality of high side switches, to switch on the respective high side switch.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: October 31, 2017
    Assignee: Dialog Semiconductor GmbH
    Inventors: Horst Knoedgen, Slawomir Malinowski
  • Patent number: 9705492
    Abstract: The present invention relates to a switch circuit and a single pole double throw (SPDT) circuit. The switch circuit includes: a MOS transistor transferring or blocking a signal according to a turn on/off operation thereof; a gate resistor connected to a gate of the MOS transistor; and a variable gate resistor circuit increasing a resistance value of the gate resistor when the MOS transistor is changed from a turn-off state to a turn-on state.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: July 11, 2017
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae Hyouck Choi, Sung Hwan Park
  • Patent number: 9685945
    Abstract: An electric circuit includes: a plurality of switching elements connected in parallel to each other, the plurality of switching elements including a first switching element and a second switching element; a control voltage application element applying a control voltage to a connection point at which respective gates of the plurality of switching elements are connected to each other; a connection point grounding element grounding the connection point; and a control circuit configured to put the first switching element into an ON state and maintain the second switching element in an OFF state during a stand-by period, and put the second switching element into an ON state after an elapse of the stand-by period.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: June 20, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yosuke Osanai
  • Patent number: 9673816
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may operate to transform a first control signal to produce an isolated second control signal, to receive a pair of floating power supply voltages at opposing ends of a totem-pole series of driver metal-oxide semiconductor field-effect transistors (MOSFETs), and to clamp an output of a driver apparatus to one of the pair of floating power supply voltages. The isolated second control signal may operate to control current flow through the driver MOSFETs. Additional apparatus, systems, and methods are described.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: June 6, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Steven Cong, Thomas Jones
  • Patent number: 9621050
    Abstract: A switch mode power converter (SMPC) includes a switching control system to control the turn off time delay of a switching device. The SMPC also has an inductive component including an input winding to receive power from an input and a switching device to conduct input winding current. The switching control system applies turn on and turn off signals to the switching device. The turn off signal initiates turning off of the switching device and a sensing signal from a further winding inductively coupled to the input winding is detected to indicate an end of a turn off time delay or duration. The turn on signal for a subsequent switching cycle of the SMPC device is controlled to regulate the turn off delay time.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: April 11, 2017
    Assignee: Power Integrations, Inc.
    Inventors: Paul Ryan, Johan Piper
  • Patent number: 9590574
    Abstract: An audio switching power amplifier having an output with controlled-slope transitions maintains efficiency while avoiding uncontrolled non-overlap intervals during switching transitions. A pair of transistors forming a half-bridge that supplies an output signal at an output terminal of the amplifier are operated so that neither transistor is fully on during an overlap time period. A current source provides an output current to the output terminal during the non-overlap time period to control the output voltage while changing the transistor that conducts the output current from a first one of the pair of transistors to a second one of the pair of transistors. The current source may be provided by operation of one of the transistors in a current source configuration. The voltage of a gate of one of the transistors can be compared with a threshold to provide an indication of the current.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 7, 2017
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Shahrzad Naraghi, Johann Gaboriau, John L. Melanson
  • Patent number: 9287697
    Abstract: A protection circuit includes a voltage conversion unit, a voltage clamping unit, and a power supply. The voltage conversion unit converts a first voltage from the power supply into a second voltage and outputs the second voltage to an electronic element. The voltage clamping unit stops the power supply from operating if the second voltage is greater than a rated voltage of the electronic element.
    Type: Grant
    Filed: December 29, 2013
    Date of Patent: March 15, 2016
    Assignee: ScienBiziP Consulting(Shenzhen)Co.,Ltd.
    Inventor: Hai-Qing Zhou
  • Patent number: 9270161
    Abstract: A power supply circuit preventing any overvoltage to an electronic element includes a voltage conversion unit and a voltage clamping unit. The voltage conversion unit converts voltage of a power supply into an operation voltage of the electronic element, and outputs the converted voltage through an output terminal of the voltage conversion unit. When the voltage output from the output terminal of the voltage conversion unit is more than the operation voltage of the electronic element, the voltage clamping unit effectively clamps the voltage output from the output terminal of the voltage conversion unit down to the operation voltage of the electronic element.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: February 23, 2016
    Assignee: ScienBiziP Consulting(Shenzhen)Co., Ltd.
    Inventor: Hai-Qing Zhou
  • Publication number: 20140285173
    Abstract: System and method for adaptively altering a power supply's dead time. A method comprises detecting a start of a dead time, detecting an ending condition of the dead time, and ending the dead time. The detecting of the ending condition is based on a first current flowing through a lower portion of the power supply or a second current flowing through a gate driver of a lower switching element in the power supply.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventor: Martin Feldtkeller
  • Patent number: 8836311
    Abstract: Provided is a power converter having a switching circuit wherein a surge voltage of a plurality of switching elements connected in series is suppressed and loss is not concentrated to a specific switching element. The switching circuit is provided with: a non-latching type switching element having two main terminals and one control terminal; a voltage detecting means which detects a voltage applied between the main terminals of the switching element; a control current supply for supplying the control terminal with a control signal corresponding to the voltage detected by the voltage detector; and a delay device for delaying the control signal.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromichi Tai, Takeru Murao
  • Patent number: 8823354
    Abstract: The present disclosure provides a power semiconductor switch series circuit. The power semiconductor switch series circuit includes a plurality of series modules and a system control module. Each series module has a power semiconductor switch; a drive module for driving each power semiconductor switch to be turned on or turned off; a short-circuit detection unit for outputting at least one detection signal; an equalizer circuit; a comparison module for comparing the detection signal with a predetermined threshold, and outputting a short-circuit signal when the detection signal exceeds the predetermined threshold; and a soft turn-off module for receiving the short-circuit signal and outputting a second control signal. The system control module receives the short-circuit signal and outputs a first control signal.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: September 2, 2014
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Hong-Jian Gan, Jian-Ping Ying, Jie Fu, Wei-Liang Fu, Ming Wang
  • Patent number: 8816666
    Abstract: One of first and second switching devices turns on to flow a current along a current path between a potential reference output terminal of a drive-target switching device and a control terminal of the drive-target switching device to turn on the drive-target switching device. Thereby, a voltage changes between the control terminal of the drive-target switching device and the potential reference output terminal of the drive-target switching device to turn off the one of the first and second switching devices being turned on. Thereby, a potential of the control terminal of the drive-target switching device is clamped.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: August 26, 2014
    Assignee: DENSO CORPORATION
    Inventor: Tomonori Kimura
  • Patent number: 8717003
    Abstract: A voltage regulator circuit includes: a first pulse generator configured to output a pulse whose level remains unchanged when an input signal of a first circuit is in a first period, and whose level changes from a second level to a first level when an edge of the input signal of the first circuit is detected after the first period; a second pulse generator configured to output a pulse from a time that the pulse output by the first pulse generator becomes the first level until a second period elapses; a first field-effect transistor having a source connected to a power supply potential node, and a drain connected to a power supply potential terminal of the first circuit; and a first switch configured to cause a potential at a gate of the first field-effect transistor to be a first potential.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 6, 2014
    Assignee: Fujitsu Limited
    Inventors: Tetsutaro Hashimoto, Tetsuyoshi Shiota
  • Patent number: 8680837
    Abstract: A driver for driving a driving element includes: a signal source, for providing a square signal; a first modulation circuit, for providing on-pulses and off-pulses according to edges of the square signal; a transformer for coupling output signals of the first modulation circuit to a secondary winding of the transformer to form coupled signals; a second modulation circuit for providing first operating pulses according to coupled on-pulses of the coupled signals, and providing second operating pulses according to coupled off-pulses of the coupled signals; a switch device for turning off the switch device according to the first operating pulses and turning on the switch device according to the second operating pulses, and when the switch device is turned off, coupled on-pulses charge an equivalent capacitor of the driving element to a first driving potential to turn on the driving element, and when the switch device is turned off, the equivalent capacitor discharges to a second driving potential to turn off the
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: March 25, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Jian-Hong Zeng, Jian Jiang, Qifeng Ye, Jian-Ping Ying
  • Patent number: 8674631
    Abstract: A power conversion apparatus includes: a line breaker that is connected in series to a direct-current power supply; a first capacitor that is connected in parallel to the direct-current power supply through the line breaker; a discharge circuit that includes a resistor and a first switching circuit connected in series and is connected in parallel to the first capacitor; a power converter for driving a synchronous machine; a second capacitor that is connected in parallel to a direct-current side of the power converter; a second switching circuit that is connected in series between the first capacitor and the second capacitor; and a control circuit for controlling the discharge circuit. The control circuit controls the discharge circuit on the basis of the voltage of the first capacitor and the voltage of the second capacitor.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Kono, Keita Hatanaka
  • Patent number: 8558520
    Abstract: An electrical circuit for manipulating at least one of a voltage and a current on a bus wire comprises a first switch having a first gate, a first source, and a first potential reduction unit. The first potential reduction unit is suitable for lowering a potential difference between the first gate and the first source of the first switch, wherein the lowering of the potential difference is caused by a shutting-off of a first control voltage.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 15, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alexis Huot-Marchand, Hamada Ahmed, Patrice Besse, Nicolas Jarrige
  • Patent number: 8558525
    Abstract: To reduce gate-drive losses caused by high switching frequency operation, embodiments herein include a novel resonant gate driver circuit for driving switches. This gate drive circuit can include a simple two-half-bridge structure. A coupling inductor of the resonant gate driver circuit can provide energy circulation between gates of high and low side switches and also works as a voltage-boost transformer. According to one configuration, the resonant gate driver circuit can be extended to drive two MOSFETs with a common ground. Both theoretical and simulation results for the new resonant gate driver circuit illustrate increased efficiency via lower switching losses.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: October 15, 2013
    Assignee: International Rectifier Corporation
    Inventors: Praveen K. Jain, Shangzhi Pan
  • Patent number: 8513937
    Abstract: A driver circuit for controlling a high-side power switch of a switching regulator includes: a logic circuit configured to generate a gate control signal for turning on the power switch; a diode having coupled to a first power supply voltage; a capacitor having a first electrode coupled to the cathode of the diode and a second electrode coupled to the switching output voltage; and a delay circuit configured to receive the gate control signal and to generate a delayed gate control signal. In operation, the capacitor is precharged to about the first power supply voltage. When the power switch is turned on, a first output drive transistor is turned on to distribute the charge stored on the capacitor to the gate terminal of the high-side power switch, and after the predetermined delay, a second output drive transistor is turned on to drive the output node to a high supply voltage.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: August 20, 2013
    Assignee: Micrel, Inc.
    Inventors: Daniel J. DeBeer, Charles Vinn
  • Patent number: 8471545
    Abstract: An electronic device is provided for switched DC-DC conversion of an input voltage level into an output voltage level. The electronic device is configured to control a control gate of a power switch and to prevent a charge of a capacitance of the control gate released during a switching operation from flowing to ground.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Michael Couleur, Lei Liao, Christophe Vaucourt
  • Patent number: 8428709
    Abstract: Devices, systems and methods for controlling the application of current and/or voltage to deliver drug from patient contacts of an electrotransport drug delivery device by indirectly controlling and/or monitoring the applied current without directly measuring from the cathode of the patient terminal. In particular, described herein are electrotransport drug delivery systems including constant current delivery systems having a feedback current and/or voltage control module that is isolated from the patient contacts (e.g., anodes and cathodes). The feedback module may be isolated by a transistor from the patient contacts; feedback current and/or voltage control measurements may be performed at the transistor rather than at the patient contact (e.g., cathode).
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 23, 2013
    Assignees: Incline Therapeutics, Inc., Alza Corporation
    Inventors: Bradley E. White, Paul Hayter, John Lemke, Scot Satre, Corinna X. Chen, Brian W. Read, Jason E. Dougherty
  • Patent number: 8351172
    Abstract: A power supply control apparatus includes an output transistor coupled between a first power supply line and an output terminal, the output terminal being configured to be coupled with a load, a discharge transistor coupled between a gate of the output transistor and the output terminal, and rendered conductive when the output transistor is brought into a non-conduction state, a negative voltage control unit coupled between the first power supply line and the gate of the output transistor, and bringing the output transistor into a conduction state when the counter electromotive voltage applied to the output terminal from the load exceeds a predetermined value, a diode having a cathode coupled with the first power supply line, and an anode, a third resistor provided between the anode of the diode and a second power supply line, and a compensation transistor coupled between the second power supply line and the output terminal.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: January 8, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Akihiro Nakahara
  • Patent number: 8305066
    Abstract: A low dropout regulator having a power transistor, a current-voltage converting circuit, a current variation sensing circuit and a compensation circuit is provided. The power transistor has a power terminal receiving an input voltage, a control terminal, and an output terminal coupled to the current-voltage converting circuit to generate an output voltage. The current variation sensing circuit provides a first and a second output terminal and, according to a current variation of the power transistor, the first and second output terminals vary with distinct voltage transition speeds. The compensation circuit controls the control terminal of the power transistor to adjust the output voltage according to a first voltage difference between a feedback of the output voltage and a reference voltage and a second voltage difference between the second and first output terminals of the current variation sensing circuit.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Wei Lin, Chien-Yu Chen
  • Patent number: 8294299
    Abstract: A control device for a DC-DC converter includes a PWM controller for generating a PWM signal to a switch module of the DC-DC converter according to a feedback signal of the DC-DC converter, a logic circuit for generating a selection signal according to a magnitude of an output current of the DC-DC converter, and a multiplexer coupled to a plurality of voltages for selecting one of the plurality of voltages to be a supply voltage according to the selection signal.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: October 23, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wen-Hsiu Huang, Ciou-Fong Li
  • Patent number: 8270133
    Abstract: A power supply control apparatus includes: an output transistor coupled between a first power supply line and an output terminal, the output terminal being configured to be coupled with a load; a protection transistor coupled between a gate of the output transistor and a second power supply line; a negative voltage control unit coupled between the first power supply line and the gate of the output transistor; a compensation transistor bringing the second power supply line and the output terminal into a conduction state when a counter electromotive voltage from the load is applied to the output terminal; and a back gate control circuit that controls the second power supply line and a back gate of each of the compensation transistor and the protection transistor to be brought into a conduction state in a standby state when the polarity of the power supply is normal.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 18, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Akihiro Nakahara
  • Patent number: 8232835
    Abstract: An apparatus for generating a voltage required for a semiconductor device by using a voltage supplied from an external power supply is provided.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 31, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-rae Kim, Hee-seok Han, Yoon-kyung Choi
  • Patent number: 8193786
    Abstract: A driving circuit for a half bridge utilizing bidirectional semiconductor switches in accordance with an embodiment of the present application includes a high side driver operable to control a high side bidirectional semiconductor switch, wherein the high side driver provides a negative bias voltage to the bidirectional semiconductor switch to turn the high side bidirectional semiconductor switch OFF. A low side driver may be operable to control a low side bidirectional semiconductor switch. An external voltage source with a negative terminal of the voltage source connected to the high side driver may be provided. A high side driving switch may be positioned between the negative terminal of the voltage source and the high side driver and operable to connect the high side driver to the negative terminal of the voltage source when the low side driver turns the low side bidirectional semiconductor switch ON.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 5, 2012
    Assignee: International Rectifier Corporation
    Inventors: Maurizio Salato, Marco Soldano
  • Patent number: 8169209
    Abstract: An output driving circuit capable of reducing EMI effect includes a non-overlapping signal generation unit for generating a first non-overlapping signal and a second non-overlapping signal according to an input signal, a pre-driver for generating a first pre-driving signal and a second pre-driving signal according to the first non-overlapping signal and the second non-overlapping signal, a high-side switch, a low-side switch, and a control unit for controlling the high-side switch or the low-side switch to be switched into a weak on state to reduce load inductive current effect for a load.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: May 1, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Fu-Yuan Chen, Yu-Chen Chiang, Ming-Hung Chang
  • Patent number: 8080988
    Abstract: A driver circuit (for example, in a switching power supply or in a Class-D switching amplifier) drives a gate of a switch during a transition with a low output impedance during an initial period and then for the remainder of the transition drives the gate with a midrange output impedance. The switch in turn switches current flow through an inductor. The driver circuit includes a “Drive Node Voltage Dependent Impedance Circuit” (DNVDIC) that couples the gate to a supply voltage node. In one embodiment, there are two resistive current paths through the DNVDIC. A non-linear device in the first current path switches from having a small to a large impedance when a voltage drop across the device falls below a threshold voltage. The resulting increase in impedance of the first current path decreases voltage edge rates and reduces noise, whereas the low initial impedance reduces transition power losses.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: December 20, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Gary Michael Hurtz, Trinh Khac Hue, David J. Kunst
  • Patent number: 8072194
    Abstract: A boost snubber circuit structure applied in a power supply having a boost circuit and a power conversion unit, wherein the boost circuit includes a boost unit connected to a switch element, a boost control unit for generating a driving signal to drive the switch element to control the charge/discharge of the boost unit, and a boost snubber unit for obtaining a voltage difference between a reference voltage and a detection signal and modulating the magnitude of the reference voltage or the detection signal to change the voltage difference and control the duration of outputting the driving signal. The voltage difference between the reference voltage and the detection signal determines the duration of outputting the driving signal. By controlling the voltage difference between the detection signal and the boost level, the invention prevents an occurrence of an inrush current caused by a too-large duration of generating the driving signal.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: December 6, 2011
    Assignee: Zippy Technology Corp.
    Inventors: Yu-Yuan Chang, Heng-Chia Chang
  • Patent number: 8049363
    Abstract: A motor drive circuit comprises positive and negative input terminals for connection of the motor circuit to a DC supply, a DC link filter connected between the input terminals: an electric motor having at least two phases, a plurality of motor drive sub-circuits, each connected to a respective phase of the electric motor and which each control the flow of current into or out of the respective phase of the motor that has been drawn from the supply through the DC link filter, and a switching means provided in the electrical path between the DC link filter and the electric motor drive sub-circuits, the switching means being movable between a closed position in which it connects the DC link filter to the motor drive sub-circuits, and an open position which isolates the DC link filter from the motor drive sub-circuits.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: November 1, 2011
    Assignee: TRW Limited
    Inventors: Andrew McLean, John Anthony Bolton
  • Patent number: 7952340
    Abstract: A gate driver circuit arranged to supply a DC/DC converter with a switching voltage. Both the gate driver circuit and the DC/DC converter include at least one transistor and at least one further component. The DC/DC converter is arranged to convert an input voltage to an output voltage and to supply to a load. A power converter includes the gate driver circuit and the DC/DC converter. The gate driver circuit can be designed such that the transistors are in the form of transistors being suitable for being manufactured in an MMIC-process or an RFIC-process.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 31, 2011
    Assignee: SAAB AB
    Inventor: Joakim Nilsson
  • Patent number: 7948220
    Abstract: A method of preventing the Rdson of a III-V Nitride power switching circuit from varying over time. The method includes biasing the switch to a pre-bias voltage level just below turn ON when the switch is OFF, wherein traps are discharged when the switch is biased to the pre-bias voltage level just below turn ON and the varying of the Rdson over time due to traps is reduced. The method can be employed in DC-DC converter circuits having III-V Nitride control and synchronous switches connected at a switching node.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 24, 2011
    Assignee: International Rectifier Corporation
    Inventor: HamidTony Bahramian
  • Patent number: 7928702
    Abstract: A driving circuit for a half bridge utilizing bidirectional semiconductor switches in accordance with an embodiment of the present application includes a high side driver operable to control a high side bidirectional semiconductor switch, wherein the high side driver provides a negative bias voltage to the bidirectional semiconductor switch to turn the high side bidirectional semiconductor switch OFF. A low side driver may be operable to control a low side bidirectional semiconductor switch. An external voltage source with a negative terminal of the voltage source connected to the high side driver may be provided. A high side driving switch may be positioned between the negative terminal of the voltage source and the high side driver and operable to connect the high side driver to the negative terminal of the voltage source when the low side driver turns the low side bidirectional semiconductor switch ON.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 19, 2011
    Assignee: International Rectifier Corporation
    Inventors: Maurizio Salato, Marco Soldano
  • Publication number: 20110001462
    Abstract: An electronic device is provided for switched DC-DC conversion of an input voltage level into an output voltage level comprising a driving stage for controlling a control gate of a high side power switch so as to vary the voltage level on a switching node and an auxiliary switch, wherein the auxiliary switch is coupled between the control gate of the power switch and the switching node so as to feed a charge released from the control gate in a switching operation to the switching node.
    Type: Application
    Filed: June 4, 2010
    Publication date: January 6, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Michael Couleur, Lei Liao, Neil Gibson