Temperature Compensation Of Semiconductor Patents (Class 323/907)
  • Patent number: 8602645
    Abstract: A temperature detection system includes a power semiconductor device, a chip temperature detection device for detecting a temperature of the power semiconductor device, loss-related characteristic value acquiring means for acquiring a loss-related characteristic value that is a characteristic to decide a loss of the power semiconductor device, difference value calculating means for calculating, from the loss-related characteristic value, a difference value between the temperature of the power semiconductor device and a temperature detected by the chip temperature detection device, a corrected temperature signal generating part for generating a corrected temperature signal by adding the temperature detected by the chip temperature detection device and the difference value, and an output part for outputting the corrected temperature signal to the outside.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Noboru Miyamoto, Akira Yamamoto
  • Patent number: 8593449
    Abstract: A reference voltage generation circuit of the disclosure includes a first amplifier circuit and a second amplifier circuit. The first amplifier circuit includes a first input stage including two npn transistors or two NMOS transistors having base terminals or gate terminals to which a variable voltage and a predetermined lower limit voltage are inputted. A first output stage includes a pnp transistor or a PMOS transistor having an emitter terminal or a source terminal connected to an output terminal of a reference voltage. A first amplifier stage controls the first output stage for equalizing the higher one of the variable voltage and the lower limit voltage with the reference voltage.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 26, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhiro Murakami
  • Patent number: 8575912
    Abstract: The present invention discloses a circuit for generating a dual-mode proportional to absolute temperature (PTAT) current. The circuit includes a voltage stabilizing circuit to provide a voltage reference, and a load current control circuit comprising a first transistor to provide a first load current based on the voltage reference, a second transistor to provide a second load current based on the voltage reference, a first switch to control whether to allow the first load current to flow therethrough in response to different predetermined temperatures, and a second switch to control whether to allow the second load current to flow therethrough in response to the different predetermined temperatures. A resultant current resulting from at least one of the first load current or the second load current has different current magnitudes at the different predetermined temperatures.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 5, 2013
    Assignee: Elite Semiconductor Memory Technology Inc.
    Inventor: Ming-Sheng Tung
  • Patent number: 8552693
    Abstract: A battery cell charging system, including a charger and a controller, for low-temperature (below about zero degrees Celsius) charging a lithium ion battery cell, the battery cell charging system includes: a circuit for charging the battery cell using an adjustable voltage charging-profile to apply a charging voltage and a charging current to the battery cell wherein the adjustable voltage charging-profile having: a non-low-temperature charging stage for charging the battery cell using a charging profile adapted for battery cell temperatures above about zero degrees Celsius; and a low-temperature charging stage with a variable low-temperature stage charging current that decreases responsive to a battery cell temperature falling below zero degrees Celsius.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: October 8, 2013
    Assignee: Tesla Motors, Inc.
    Inventor: Anil Paryani
  • Patent number: 8552795
    Abstract: A substrate bias control circuit includes a process voltage temperature (PVT) effect transducer that responds to a PVT effect. A PVT effect quantifier is coupled to the PVT effect transducer. The PVT effect quantifier quantifies the PVT effect to provide an output. The PVT effect quantifier includes at least one counter and a period generator. The period generator provides a time period for the counter. A bias controller that is coupled to PVT effect quantifier is configured to receive the output of the PVT effect quantifier. The bias controller is configured to provide a bias voltage. The bias controller includes a bias voltage comparator.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-An Chi, Shiue Tsong Shen, Jyy Anne Lee, Yun-Han Lee
  • Patent number: 8536932
    Abstract: A temperature compensation circuit may include a temperature coefficient generator configured to generate a first signal and a second signal, wherein the first signal is proportional-to-absolute-temperature (ptat) and the second signal in negatively-proportional-to-absolute temperature (ntat), a first programmable element configured to multiply at a first programmable ratio an amplitude of a third signal having a negative temperature coefficient from a first temperature to a second temperature, and a second programmable element configured to multiply at a second programmable ratio an amplitude of a fourth signal having a positive temperature coefficient from the second temperature to a third temperature.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: September 17, 2013
    Assignee: Intel IP Corporation
    Inventor: Darin Dung Nguyen
  • Patent number: 8508283
    Abstract: Back-gate voltage control provides a high speed and low power consumption LSI operable in a wide temperature range in which a MOS transistor having back gates is used specifically according to operating characteristics of a circuit. In the LSI, an FD-SOI structure having an embedded oxide film layer is used and a lower semiconductor region of the embedded oxide film layer is used as a back gate. A voltage for back gates in logic circuits having a small load in logic circuit block is controlled in response to activation of the block from outside of the block. Transistors, in which the gate and the back gate are connected to each other, are used for the circuit generating the back gate driving signal, and logic circuits having a heavy load such as circuit block output section, and the back gates are directly controlled according to a gate input signal.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takayuki Kawahara, Masanao Yamaoka
  • Patent number: 8495395
    Abstract: A system includes a plurality of processor cores and a power management unit. The power management unit may be configured to independently control the performance of the processor cores by selecting a respective thermal power limit for each of the plurality of processor cores dependent upon an operating state of each of the processor cores and a relative physical proximity of each processor core to each other processor core. In response to the power management unit detecting that a given processor core is operating above the respective thermal power limit, the power management unit may reduce the performance of the given processor core, and thereby reduce the power consumed by that core.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 23, 2013
    Assignee: Advanced Micro Devices
    Inventor: Samuel D. Naffziger
  • Patent number: 8487588
    Abstract: A battery pack is disclosed that includes a plurality of battery cells and a plurality of temperature sensors. Each of the temperature sensors is for sensing a temperature of a corresponding one or more of the battery cells to generate a temperature signal, and the temperature sensors are divided into groups of temperature sensors. A plurality of A/D converters is provided, and each of the A/D converters is coupled to a corresponding one of the groups of temperature sensors to convert the temperature signal into a digital signal. An identification signal module is coupled to the A/D converters for applying different identification signals to the plurality of A/D converters, respectively. A controller is coupled to the A/D converters for receiving the identification signals and the temperature signal, and for identifying a temperature of each of the battery cells through the identification signals.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 16, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hanseok Yun, Susumu Segawa, Tetsuya Okada, Euijeong Hwang, Sesub Sim, Beomgyu Kim, Jinwan Kim
  • Patent number: 8466685
    Abstract: The method includes the simultaneous measurement of the current I, of the positive plate potential V+, and of the temperature T at the positive terminal of the battery, the determination of a temperature compensated value Vc+ of the positive plate potential and the use of the temperature compensated value Vc+ for estimation of the state of charge. This method is more particularly used for estimation of the state of charge of an alkaline battery having a NiOOH positive plate.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 18, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Angel Zhivkov Kirchev
  • Patent number: 8466666
    Abstract: A multi-stage voltage regulating circuit and method with automatic temperature compensation comprises a plurality of charge-pumps, a temperature compensator, a comparative unit and a control logic circuit; wherein, the temperature compensator detects the ambient temperature and outputs a reference voltage related to the ambient temperature, the comparative unit compares the voltage of the output power source to the reference voltage output by the temperature compensator and outputs a comparative signal based on the comparison, and the control logic circuit controls the charging/discharging operations of the charge-pumps based on the comparative signal and voltages of input power sources connected to said charge-pumps to automatically regulate the voltage of the output power source.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 18, 2013
    Assignee: Richtek Technology Corp.
    Inventors: Der-Jiunn Wang, Kuo-Chen Tsai
  • Patent number: 8441246
    Abstract: A temperature independent type reference current generating device and methods thereof. A temperature independent type reference current generating device may include a first reference current generator generating a first reference current having a first element decreasing according to a temperature, a second reference current generator generating a second reference current having a second element increasing according to the temperature, and/or mirroring and outputting a second reference current and/or a mirrored second reference current. A temperature independent type reference current generating device may include a first current mirror mirroring a first reference current and/or outputting a mirrored first reference current, and a second current mirror adding a mirrored first reference current and a mirrored second reference current, and/or mirroring a result of an addition to output a mirrored result as an output reference current.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: May 14, 2013
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Seung-Hun Hong
  • Patent number: 8421434
    Abstract: A temperature corrected voltage bandgap circuit is provided. The circuit includes first and second diode connected transistors. A first switched current source is coupled to the one transistor to inject or remove a first current into or from the emitter of that transistor. The first current is selected to correct for curvature in the output voltage of the bandgap circuit at one of hotter or colder temperatures.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 16, 2013
    Assignee: Dolpan Audio, LLC
    Inventor: David Cave
  • Patent number: 8405376
    Abstract: A low noise reference voltage circuit without using an amplifier inside is capable of transforming a current IPTAT in positive proportion to absolute temperature into a voltage VPTAT in positive proportion to absolute temperature, and outputting it to a ring oscillator. The low noise reference voltage circuit improves a degradation of noise performance compared with a conventional band-gap reference voltage circuit and is in characteristic of low noise and higher PSRR.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 26, 2013
    Assignee: FCI Inc.
    Inventors: In-chul Hwang, Myung-woon Hwang, Je-cheol Moon, Hyun-ha Jo
  • Patent number: 8390265
    Abstract: A reference voltage generating circuit in a semiconductor memory apparatus comprises a driving control signal generating unit configured to generate a driving control signal according to a temperature variation, wherein the driving control signal generating unit is enabled in response to a power-up signal, a driving unit configured to control a voltage level, which is applied to a voltage transfer node, in response to the power-up signal and the driving control signal, and a reference voltage generating unit configured to generate a reference voltage when a voltage level on the voltage transfer node is higher than a predetermined voltage level.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: March 5, 2013
    Assignee: SK Hynix Inc.
    Inventor: Dong Keum Kang
  • Patent number: 8370674
    Abstract: Computing and server power supplies are typically sized larger to deliver the maximum power the system may need. However since systems are not often used to capacity a smaller power supply may be used in conjunction with a thermal sensor to monitor a critical component of the power supply defined as the particular component within the power supply whose temperature reaches its maximum allowed limit sooner than any other power supply component when the average (continuous) power may exceed the power supply's max rating. When a critical temperature has been reached, an interrupt signal is generated by the power supply to signal the host to throttle back until the temperature comes back into an acceptable range.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 5, 2013
    Assignee: Intel Corporation
    Inventor: Viktor D. Vogman
  • Patent number: 8358119
    Abstract: A current reference circuit includes a proportional-to-absolute temperature (PTAT) current generator, a band-gap reference circuit and a current replication circuit. The PTAT generator generates a PTAT current. The band-gap reference circuit generates a reference voltage based on the PTAT current and generates a second current by cancelling a first current from the PTAT current. The first current has a zero temperature coefficient and the second current has a positive temperature coefficient. The current replication circuit replicates the first current based on the PTAT current and the second current.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: January 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyoung-Rae Kim
  • Patent number: 8350555
    Abstract: A method and apparatus for generating a low reference voltage having low power consumption characteristics is provided. A reference voltage generating apparatus includes a constant current source circuit which generates a reference current. A load circuit is connected to the constant current source circuit and generates a voltage which is proportional to the reference current. A current branch circuit removes a portion of temperature-invariant current components included in the reference current from a connection terminal of the constant current source circuit and the load circuit to a ground terminal through a current branch which is different from a current branch of the load circuit.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-Rae Kim, Hyo-Sun Kim
  • Patent number: 8351223
    Abstract: A secondary circuit of a flyback power converter has a resistor network to monitor the output current of the flyback power converter, so as to generate a voltage to apply to a base of a bipolar junction transistor to thereby provide a collector signal for output feedback. The resistor network has a temperature-dependent resistance to compensate the temperature dependence of the base-emitter voltage imparted to the output current and thereby stable the output current.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 8, 2013
    Assignee: Richpower Microelectronics Corporation
    Inventors: Ke-Chih Chou, Pei-Lun Huang
  • Patent number: 8330476
    Abstract: A supply voltage management system and method for an integrated circuit (IC) die are provided. The supply voltage management system includes one or more temperature sensing elements located on the IC die and configured to sense temperature of the die and to output a sensed temperature value for the die. A dynamic voltage controller is located on the die and is configured to receive the sensed temperature value for the die and to identify a technology process category of the die. Based on the sensed temperature value and the identified technology process category of the die, the dynamic voltage controller adjusts an output voltage to at least one circuit of the die.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: December 11, 2012
    Assignee: ATI Technologies ULC
    Inventors: Nancy Chan, Ramesh Senthinathan
  • Patent number: 8330445
    Abstract: Provided herein are circuits and methods to generate a voltage proportional to absolute temperature (VPTAT) and/or a bandgap voltage output (VGO) with low 1/f noise. A first base-emitter voltage branch is used to produce a first base-emitter voltage (VBE1). A second base-emitter voltage branch is used to produce a second base-emitter voltage (VBE2). The circuit also includes a first current preconditioning branch and/or a second current preconditioning branch. The VPTAT is produced based on VBE1 and VBE2. A CTAT branch can be used to generate a voltage complimentary to absolute temperature (VCTAT), which can be added to VPTAT to produce VGO. Which transistors are in the first base-emitter voltage branch, the second base-emitter voltage branch, the first current preconditioning branch, the second current pre-conditioning branch, and the CTAT branch changes over time.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Intersil Americas Inc.
    Inventor: Steven G. Herbst
  • Patent number: 8313034
    Abstract: The present invention provides a reference power supply circuit which does not require trimming and prevents occurrence of deadlock of a band gap reference circuit. An RFID tag chip related to the present invention has a reference power supply including a switch for switching between a band gap reference circuit and a Vth difference reference circuit. A reference potential in band gap reference of the band gap reference circuit and an output of the Vth difference reference circuit are compared by a comparator, and a transistor operating as a switch is controlled, thereby making the reference potential in band gap reference rise, hastening startup of the band gap reference circuit, and preventing occurrence of deadlock in the band gap reference circuit.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: November 20, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Okuda
  • Patent number: 8269467
    Abstract: A dual-mode charger circuit includes a first charge circuit and a second charge circuit connected in parallel between a power source and a battery, to charge the battery under a slow charge mode and a quick charge mode. A central processing unit detects a capacity of the battery and determines whether the detected capacity exceeds a predetermined capacity, and outputs a mode control signal according to the determination. A mode switch circuit switches the second charger circuit on/off according to the mode control signal. When the second charge circuit is off, the battery is charged under the slow charge mode, and when the second charge circuit is on, the battery is charged under the quick charge mode.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: September 18, 2012
    Assignees: Ambit Microsystems (Shanghai) Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Rong Li, Feng-Chang Yan, Jian-Jun Liu
  • Patent number: 8217707
    Abstract: According to one embodiment, a system and method for operating an Integrated Circuit (IC) includes inputting power to the IC in bursts, sensing an IC temperature using a temperature sensor, operating the IC by controlling the power to be outputted by the IC during the burst in dependence on the sensed IC temperature compared to a reference IC temperature using a controller, wherein the IC temperature is obtained at a predetermined moment prior to a start of the burst, and the IC is operated by setting an allowable power to be outputted by the IC prior to the start of the burst.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: July 10, 2012
    Assignee: ST-Ericsson SA
    Inventor: Leonardus C. H. Ruijs
  • Patent number: 8212606
    Abstract: An apparatus is provided that includes a drift trimming stage that includes a first current source providing a current with a first temperature dependency and a second current source providing a current with a second temperature dependency. The first and the second current source are coupled at a first node and configured to have equal currents at a first temperature. There is further a third current source providing a current with a third temperature dependency and a fourth current source providing a current with a fourth temperature dependency. The third current source and the fourth current source are coupled at a second node and configured to have equal currents at the first temperature. There is a first resistor coupled between the first node and a third node, a second resistor coupled between the second node and the third node. The first node and the second node are coupled to provide a combined voltage drop across the first resistor and the second resistor for reducing the offset drift.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 3, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Martijn F. Snoeij, Mikhail V. Invanov
  • Patent number: 8203321
    Abstract: A DrMOS combines a high side power MOSFET, a low side power MOSFET and a driver circuit for driving the power MOSFETs with current balance and thermal balance mechanism and variable phase control circuit on a single chip.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: June 19, 2012
    Assignee: Richtek Technology Corp.
    Inventors: Nai-Yuan Liang, Isaac Y. Chen, Shao-Hung Lu
  • Patent number: 8203324
    Abstract: A temperature compensated low voltage reference circuit can be realized with a reduced operating voltage overhead and reduced spatial requirements This is accomplished in several ways including integrating one or more bipolar junction transistors into a current differencing amplifier and reducing the number of components required to implement various voltage reference circuits. All of the reference circuits may be constructed with various types of transistors including DTMOS transistors.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 19, 2012
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 8154272
    Abstract: A method and apparatus for generating a low reference voltage having low power consumption characteristics is provided. A reference voltage generating apparatus includes a constant current source circuit which generates a reference current. A load circuit is connected to the constant current source circuit and generates a voltage which is proportional to the reference current. A current branch circuit removes a portion of temperature-invariant current components included in the reference current from a connection terminal of the constant current source circuit and the load circuit to a ground terminal through a current branch which is different from a current branch of the load circuit.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 10, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-Rae Kim, Hyo-Sun Kim
  • Patent number: 8111058
    Abstract: A reference voltage generating circuit in a semiconductor memory apparatus comprises a driving control signal generating unit configured to generate a driving control signal according to a temperature variation, wherein the driving control signal generating unit is enabled in response to a power-up signal, a driving unit configured to control a voltage level, which is applied to a voltage transfer node, in response to the power-up signal and the driving control signal, and a reference voltage generating unit configured to generate a reference voltage when a voltage level on the voltage transfer node is higher than a predetermined voltage level.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: February 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dong-Keum Kang
  • Patent number: 8106707
    Abstract: Embodiments of the present invention include systems and methods for generating a curvature compensated bandgap voltage reference. In an embodiment, a curvature compensated bandgap reference voltage is achieved by injecting a temperature dependent current at different points in the bandgap reference voltage circuit. In an embodiment, the temperature dependent current is injected in the proportional to absolute temperature (PTAT) and complementary to absolute temperature (CTAT) current generation block of the bandgap circuit. Alternatively, or additionally, the temperature dependent current is injected at the output stage of the bandgap circuit. In an embodiment, the temperature dependent current is a linear piecewise continuous function of temperature. In another embodiment, the temperature dependent current has opposite dependence on temperature to that of the bandgap voltage reference before curvature compensation.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: January 31, 2012
    Assignee: Broadcom Corporation
    Inventors: Vipul Katyal, Mark Rutherford
  • Patent number: 8093831
    Abstract: A boost DC/DC power converter is disclosed that has a low voltage source, an inductor and a switching device that forms a series loop, a diode in series with a capacitor coupled across the switching device, a voltage divider coupled across the capacitor and a pulse width modulator that is coupled to the voltage divider. The boost converter includes a first push controller coupled across the switching device to provide a first push voltage of sufficient magnitude to turn the switching device on where the low voltage source by itself is not capable of generating a voltage of sufficient magnitude to operate the switching device.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 10, 2012
    Inventor: Qi Deng
  • Patent number: 8072200
    Abstract: A current sensing circuit with AC and DC temperature compensation for sensing current through an output inductor which has an inherent DC resistor with a temperature varying resistance. A first RC circuit is coupled across the output inductor and has a time constant. The first amplifier provides a sense signal indicative of voltage of the first RC circuit. The second RC circuit is coupled to a first correction node and receives the sense signal. The second resistor has a temperature varying resistance so that the second RC circuit has a time constant commensurate with a time constant of the output inductor. The third RC circuit is coupled to a second correction node and has a time constant equal commensurate with the first RC circuit. The second amplifier provides a corrected sense signal based on the correction nodes.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 6, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Weihong Qiu, Shangyang Xiao, Kun Xing
  • Patent number: 8063623
    Abstract: The present disclosure relates to a compensation circuit for providing compensation over PVT variations within an integrated circuit. Using a low voltage reference current source, the compensation circuit generates directly, from an on-chip reference low voltage supply (VDD), a reference current (Iref) that is constant over PVT variations, whereas a detection current (Iz) that is variable over PVT variations is generated by a sensing circuit, which is based on a current conveyor, from a low voltage supply (VDDE?VDD) applied across a single diode-connected transistor (M10) corresponding to a voltage difference between two reference low voltage supplies. Both currents (Iref, Iz) are then compared inside a current mode analog-to-digital converter that outputs a plurality of digital bits. These digital bits can be subsequently used to compensate for PVT variations in an I/O buffer circuit.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 22, 2011
    Assignee: Synopsys, Inc.
    Inventors: Andy Negoi, Michel Zecri
  • Patent number: 8057094
    Abstract: A power semiconductor module with temperature measurement is disclosed. One embodiment provides a conductor having a first end and a second end. The second end is thermally coupled at a substrate. A device including temperature sensor is thermally coupled at the first end and configured to determine a temperature at the second end using the temperature sensor.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 15, 2011
    Assignee: Infineon Technologies AG
    Inventor: Piotr Tomasz Luniewski
  • Patent number: 8022685
    Abstract: A circuit and a method for regulating a voltage supply where the method includes the steps of concurrently measuring temperature, IR drop and frequency response within the circuit, adjusting voltage supplied to the circuit in response to the measured temperature, IR drop and frequency response, and determining a correction value based on the variance of the measured frequency response from an expected frequency response and providing a correction for subsequent predetermined frequency response values. The frequency response measurement is dependent upon the constant bandgap voltage source which may very according to temperature. Upon a determination that corrections may be required for the bandgap voltage source to compensate for temperature variations, the measurement process which uses the bandgap voltage source can be altered to compensate for the temperature variations.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Deepak K. Singh, Francois Ibrahim Atallah
  • Patent number: 8004266
    Abstract: A chopper stabilized bandgap voltage reference circuit comprises current mirror circuitry mirroring first and second currents into first and second networks to generate a forward diode voltage signal and a PTAT (proportional to absolute temperature) component signal, and a third current having a derived temperature coefficient into a third network to generate a reference voltage signal for a regulator. An amplifier amplifies a differential signal of the forward diode voltage signal and the PTAT component signal to output a fourth current to control the first and second currents. According to a chopper clock, a modulator modulates the differential signal to be supplied to the amplifier and a demodulator demodulates the fourth current. A gain loop compensation circuit is coupled to the demodulator to compensate the amplifier, and filter the fourth current for noise components, and a bypass circuit is also provided to the third network for filtering the third current.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: August 23, 2011
    Assignee: Linear Technology Corporation
    Inventor: Kelly Joel Consoer
  • Patent number: 7965527
    Abstract: A device for protecting an electronic converter, e.g. for halogen lamps, includes a comparator having an output as well as non-inverting and inverting inputs for receiving a first input signal indicative of the load applied to the converter and a second input signal indicative of the temperature of the converter. The comparator is in a non-inverting Schmitt-trigger configuration having an input-output characteristic with hysteresis. Consequently, the output is switched from a first value to a second value to switch off the electronic converter as the first input signal exceeds a first threshold value. The output is switched back from the second value to the first value to restart the electronic converter when the first input signal falls below a second threshold value. The second threshold value is lower than the first threshold value, and both threshold values are a function of the signal indicative of the temperature of the converter.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: June 21, 2011
    Assignee: OSRAM Gesellschaft mit beschraenkter Haftung
    Inventor: Marco Faccin
  • Patent number: 7960961
    Abstract: A temperature corrected voltage bandgap circuit is provided. The circuit includes first and second diode connected transistors. A first switched current source is coupled to the one transistor to inject or remove a first current into or from the emitter of that transistor. The first current is selected to correct for curvature in the output voltage of the bandgap circuit at one of hotter or colder temperatures.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 14, 2011
    Assignee: Dolpan Audio, LLC
    Inventor: David Cave
  • Patent number: 7948305
    Abstract: A circuit having a substrate, a generator with a field effect transistor (FET) portion and a heterojunction bipolar transistor (HBT) portion integrated in the substrate, a voltage-to-voltage conveyor integrated in the substrate, a bias circuit, and a power amplifier is disclosed.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 24, 2011
    Assignee: Triquint Semiconductor, Inc.
    Inventors: Mikhail S. Shirokov, Grant A. Small
  • Patent number: 7936204
    Abstract: A temperature sensing circuit includes a temperature-dependent voltage generating block configured to generate a plurality temperature-dependent voltages having voltage levels that are changed according to temperature; and a comparing block configured to compare each voltage level of the temperature-dependent voltages with a voltage level of a predetermined voltage to output thermal codes.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 3, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Man Im
  • Patent number: 7888987
    Abstract: A temperature compensation circuit according to an embodiment includes a bias circuit configured to output a bias current, the bias current having a current value increasing in proportion to absolute temperature, in a low temperature region in which a temperature is lower than a predetermined temperature, and having another current value increasing at a faster rate than the current value increasing in proportion to absolute temperature, in a high temperature region in which the temperature is equal to or greater than the predetermined temperature, and a transistor having a collector connected to a power supply terminal, an emitter which is grounded, and a base supplied with the bias current.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koji Horie
  • Patent number: 7852061
    Abstract: An apparatus comprises a band gap voltage generator circuit for generating a band gap voltage. A temperature invariant current generator is located within the band gap voltage generator circuit for generating a temperature invariant current. A temperature invariant current correction circuit is located within the band gap voltage generator circuit and adjusts the output voltage responsive to the temperature invariant current without altering temperature characteristics of the temperature invariant current.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 14, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Jia-Hau Liu, Alan L. Westwick, Douglas S. Piasecki
  • Patent number: 7834598
    Abstract: In a preferred embodiment for use in step-down (buck) DC-DC converters that may operate, at least part of the time, at high duty cycles (>50%), the power dissipation in the high side switch is effectively monitored and the switching frequency of the converter is lowered as needed to keep the sum of the conduction losses and switching losses in the high side switch substantially constant. In another embodiment, the ideal switching frequency is approximated. In still another embodiment having the switches integrated with the controller, the die temperature is monitored, and switching frequency, output current or both are varied to limit the die temperature.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 16, 2010
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Jason Allen Wortham, Turev Dara Acar
  • Patent number: 7821331
    Abstract: An apparatus and a method to reduce temperature dependence of a reference voltage have been presented. In one embodiment, the method includes generating a reference voltage associated with a difference between a first threshold voltage of a first transistor and a second threshold voltage of a second transistor. The method may further include biasing the first transistor and the second transistor at a predetermined ratio of currents of the first and the second transistors to reduce temperature dependence of the reference voltage.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: October 26, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventor: Radha Krishna
  • Patent number: 7813150
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 12, 2010
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William M. Polivka
  • Patent number: 7768339
    Abstract: Provided is a voltage regulator for limiting a rush current from an output stage transistor. The voltage regulator includes an output current limiting circuit having a low detection current value and an output current limiting circuit having a high detection current value, and is structured so as to enable operation of the output current limiting circuit having a low detection current value during a time period from a state in which an overheat protection circuit detects overheat and an output current is stopped to a state in which an overheat protection is canceled and a predetermined time passes. Accordingly, after the overheat protection is cancelled, an excessive rush current can be limited.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: August 3, 2010
    Assignee: Seiko Instruments Inc.
    Inventor: Teruo Suzuki
  • Patent number: 7737669
    Abstract: A hierarchical control for an integrated voltage regulator may include a voltage regulator circuit with a plurality of parallel voltage cells, with each of the cells having a plurality of phases of interleaved voltage converters, and a feedback control associated with the cells to set identical current references for the phases. A multi-rail embodiment has a plurality of parallel voltage regulator circuits each with a plurality of parallel voltage cells, with each of the cells having a plurality of phases of interleaved voltage converters, and a feedback control associated with the circuits to sense parameters of the circuits and set identical parameter references for the phases.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 15, 2010
    Assignee: Intel Corporation
    Inventor: Rinkle Jain
  • Patent number: 7710096
    Abstract: A reference circuit comprises a first current generator comprising a first transistor operably coupled to a second transistor and having respective base current corresponding to a positive temperature dependence of the reference circuit. A resistance is operably coupled to the first current generator and arranged to provide a second current corresponding to a negative temperature dependence of the reference circuit. A second current generator is operably coupled to the resistance and the first current generator that generates a combined current as a sum of the second current and base current. In this manner, the output voltage of the curvature compensated voltage and/or current reference circuit is substantially linear and substantially independent of the operating temperature of the circuit.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 4, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ivan Kotchkine, Alexandre Makarov
  • Patent number: 7692476
    Abstract: Provided is a temperature compensating circuit, which conducts a temperature correction having a continuous characteristic, and is small in the circuit scale. An output voltage VOUT at a connection point 14 is determined on the basis of a current Ia2, a current Ib2, and a current Ic2, and an output voltage of a temperature sensor circuit is corrected by the output voltage VOUT with a temperature. As a result, the temperature correction having the continuous characteristic is conducted on the basis of a current change of the current Ia2, the current Ib2, and the current Ic2. Because the plural temperature compensating circuits are not provided, and only one temperature compensating circuit is provided, the circuit scale becomes smaller.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 6, 2010
    Assignee: Seiko Instruments Inc.
    Inventor: Ryoichi Anzai
  • Patent number: RE42037
    Abstract: A current-sensing and correction circuit having programmable temperature compensation circuitry that is incorporated into a pulse width modulation controller of a buck mode DC—DC converter. The front end of the controller contains a sense amplifier, having an input coupled via a current feedback resistor to a common output node of the converter. The impedance of a MOSFET, the current through which is sampled by a sample and hold circuit is controlled by the sense amplifier unit. A sensed current correction circuit is coupled between the sample and hold circuit and the controller, and is operative to supply to the controller a correction current having a deterministic temperature-compensating relationship to the sensed current. The ratio of correction current to sensed current equals a value of one at a predetermined temperature, and has other values at temperatures other than at that temperature.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: January 18, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Robert Haynes Isham