With Separate Pickup Patents (Class 324/334)
  • Patent number: 11964744
    Abstract: An AUV includes: an underwater vehicle main body configured to sail along an inspection object located in water or on the bottom of the water; an arm extending from the underwater vehicle main body; an inspection tool portion including a contact portion configured to contact the inspection object and an inspection device configured to inspect the inspection object; and a passive joint provided between the arm and the inspection tool portion and configured to allow passive rotation of the inspection tool portion relative to the arm about at least one axis.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: April 23, 2024
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Minehiko Mukaida, Kosuke Masuda, Shinichi Miyata, Noriyuki Okaya, Kazuyuki Nakamura, Satoshi Hashimoto, Yusuke Okimura
  • Patent number: 11940580
    Abstract: A system for near-surface geophysical subsurface imaging for detecting and characterizing subsurface heterogeneities comprises an instrument that outputs probing electromagnetic signals through a ground surface that interact and are affected by scattered signals of acoustic waves that travel through the ground surface and further senses vibrational modes of a subsurface below the ground surface; an imaging device that dynamically generates a time sequence of images of properties of the acoustic waves and maps elastic wave fields of the acoustic waves; and a processor that analyzes dynamic multi-wave data of the images to quantify spatial variations in the mechanical and viscoelastic properties of the subsurface.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: March 26, 2024
    Assignees: Massachusetts Institute of Technology, The Trustees of Boston University
    Inventors: Stephen Brown, Thomas Szabo, Daniel R. Burns, Michael Fehler
  • Patent number: 11914095
    Abstract: This invention is related to the method providing computation of the signal frequency components in an acceptable accuracy in contravention of the shifts in the phase and the magnitude information caused by asynchronous sampling of the signals in the process of asynchronous sampling of metal detectors wherein the received signal by the receiver unit (4) divided into time intervals, say timing values those are far shorter than the sampling period and correspond to nearest probable sampling of the ADC (6); providing the computation of the sine and cosine coefficients or exponents of time constant coefficients of the said timing value from previously located or dynamically generated coefficient table; resulting the elimination of the requirement of synchronous sampling and the requirement of the signal period is multiple of the sampling period.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: February 27, 2024
    Assignee: NOKTA MÜHENDISLIK A.S.
    Inventor: Mehmet Önlek
  • Patent number: 11549365
    Abstract: A wellbore servicing tool. The wellbore servicing tool comprises a tool body, an electromagnetic transmitter coupled to the tool body, an electromagnetic receiver coupled to the tool body and spaced apart from the electromagnetic transmitter, wherein a portion of the tool body between the electromagnetic transmitter and the electromagnetic receiver defines a direct signal path between the electromagnetic transmitter and the electromagnetic receiver, and an absorbing material coupled to the tool body in the direct signal path between the electromagnetic transmitter and the electromagnetic receiver, proximate to the electromagnetic receiver.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: January 10, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hsu Hsiang Wu, Yijing Fan, Li Pan
  • Patent number: 11286763
    Abstract: A method and system is provided for drilling a wellbore that traverses a geological formation using a drilling tool. The method and system derives a plurality of formation models that characterize the geological formation. The number of formation models represent layer structures with a heterogeneity (such a fault) offset laterally at variable distance relative to position of the drilling tool. Simulated directional resistivity data of the drilling tool is derived from the plurality of formation models. Certain simulated directional resistivity data are combined or selected for processing as multi-dimensional cross-plot data. Measured directional resistivity data obtained by the drilling tool is used to evaluate the multi-dimensional cross-plot data to determine distance of the heterogeneity relative to position of the drilling tool.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: March 29, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Dzevat Omeragic, Michael Thiel, Niloofar Farnoosh
  • Patent number: 11169295
    Abstract: An NMR logging system is disclosed which continues logging without interruption despite switching activation sets to adapt to changes in formation properties. Based on detection of an approaching or encountered geological boundary, an appropriate activation set is transmitted to the downhole NMR tool while the NMR tool continues logging. This system optimizes NMR data collection for each formation and associated formation fluid properties while reducing the need to stop the tool string movement while switching the activation set, and reduces incomplete collection of NMR and non-NMR logging tool data.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: November 9, 2021
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Daniel Lee Miller, MingJen Wang, Wei Shao, Songhua Chen, Ronnel Charles Balliet
  • Patent number: 11061160
    Abstract: It may be difficult to determine the location of objects underwater, especially when they are buried below a seabed. A system for detecting conductive objects underwater may include a long conductive cable in electric communication with a signal generator. When the cable is positioned proximate to the conductive object, its signal may induce a current and a detectible secondary magnetic field in the conductive object. A sensor, preferably positioned distally from any portion of the conductive cable, may detect the secondary magnetic field and thereby determine the location of the conductive object. A method of detecting and mapping the location of a buried underwater pipeline comprising a conductive material may include: sending a predetermined current through a conductive cable attached to a first water vehicle; inducing an induced current in the pipeline; and detecting the location of at least a portion of the pipeline by a sensor attached to a second water vehicle.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: July 13, 2021
    Assignee: Doc Mapping, L.L.C.
    Inventor: Peter Weber
  • Patent number: 10908096
    Abstract: A portable microwave material gauge for determining the quality of a pavement material is provided. The gauge includes an electromagnetic field generator configured to generate an electric field mode that penetrates into the material wherein the material includes a heterogeneous material including at least one of a pavement material and a soil material, a calibration data set, a sensor of size and shape to support the electric field mode and to determine the response of the pavement material to the electric field wherein determining the response includes determining a change in the permittivity as a function of a change in the quality of the material; and an analyzer configured to correlate the sensor permittivity response to the calibration data set wherein correlating the response includes using stored relationships between the material quality and the sensor response using calibration samples having changes in permittivity as a function of quality.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: February 2, 2021
    Assignee: Troxler Electronic Laboratories, Inc.
    Inventor: Robert Ernest Troxler
  • Patent number: 10845497
    Abstract: Buried object locator systems including transmitters and associated buried object locators using phase-synchronized signals are disclosed. A transmitter may generate output current signals that are phase-synchronized with a corresponding locator for improved utility locating.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: November 24, 2020
    Assignee: SEESCAN, INC.
    Inventors: Mark S. Olsson, Ray Merewether, Inho Shin, Jan Soukup, Stephanie M. Bench, David A. Cox
  • Patent number: 10809292
    Abstract: The invention relates to methods and to circuit arrangements for localizing a fault location on an electric line based on time-domain reflectometry. The presently described methods and circuit arrangements serve for localizing an interference location, in particular an insulation fault, on an electric line by using methods of time-domain reflectometry.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 20, 2020
    Assignee: BENDER GMBH & CO. KG
    Inventor: Eckhard Broeckmann
  • Patent number: 10416334
    Abstract: There is disclosed a method of performing a controlled source electromagnetic survey, which includes in one embodiment deploying a receiver and an electric dipole source. The source defines a dipole axis. An electromagnetic field is transmitted from the electric dipole source. First and second horizontal components of an electromagnetic field response are detected using the receiver. A vertical component of the electromagnetic field response is then estimated using the detected first and second horizontal components of the electromagnetic field response.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: September 17, 2019
    Assignee: EQUINOR ENERGY AS
    Inventors: Lars Ole Løseth, Lasse Amundsen, Arne Johannes Kaaijk Jenssen
  • Patent number: 10338173
    Abstract: The present invention is directed to a system and method for reducing large magnetic artifact susceptibility in magnetic resonance imaging. The present invention is used to maximize cancellation of the magnetic field distortion cremated when objects with high variations in magnetic susceptibility are placed in a uniform magnetic field. Particularly, the present invention reduces the magnetic resonance imaging artifact produced by pacemakers and internal cardiac defibrillators in order to maximize the diagnostic image quality in the region surrounding these devices.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 2, 2019
    Assignee: The Johns Hopkins University
    Inventors: Aravindan Kolandaivelu, Henry Halperin
  • Patent number: 10321843
    Abstract: A portable sensing system device and method for providing microwave or RF (radio-frequency) sensing functionality for a portable device, the device comprising: a portable device housing configured to be carried by a user; and a sensing unit within said housing con-figured to characterize an object located in proximity to the portable system, said sensing unit comprising: a wideband electromagnetic transducer array said array comprising a plurality of electromagnetic transducers; a transmitter unit for applying RF signals to said electromagnetic transducer array; and a receiver unit for receiving coupled RF signals from said electromagnetic transducers array.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: June 18, 2019
    Assignee: VAYYAR IMAGING LTD
    Inventor: Raviv Melamed
  • Patent number: 10208584
    Abstract: A wellbore ranging system and method utilized between first and second wellbores includes an electromagnetic field sensing instrument disposed in the second wellbore, a conductive casing in the first wellbore, an electric current source exciting current flow in the conductive member, and a fiber optic sensor disposed adjacent the conductive member. The current flow along the conductive member results in a magnetic field which is measured by the sensing instrument. The fiber optic sensor includes a core that is responsive to the magnetic field in which it is disposed. The responsive core alters the optical property of an optical wave guide forming the sensor, which altered optical property can be utilized to measure the magnitude of the electrical current at the position of the sensor. The magnitude of the current and the measured magnetic field can be utilized to determine a range between the first and second wellbores.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: February 19, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Glenn A. Wilson, Burkay Donderici
  • Patent number: 10024997
    Abstract: The Larmor frequency for an in situ nuclear magnetic resonance (NMR) tool is determined and used to acquire NMR data. An NMR tool is provided and placed in situ, for example, in a wellbore. An initial estimate of the Larmor frequency for the in situ NMR tool is made and NMR data are acquired using the in situ NMR tool. A spectral analysis is performed on the NMR data, or optionally, the NMR data are digitized and a discrete Fourier transform (DFT) is performed on the digitized NMR data. The modal frequency of the spectral analysis or DFT is determined, and the Larmor frequency for the in situ NMR tool is determined using the modal frequency. The NMR tool is modified to transmit at the determined Larmor frequency and then used to acquire further NMR data.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: July 17, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Vivek Anand, Robert Freedman, Anatoly Dementyev, Payam Tabrizi, Daniel Catina
  • Patent number: 10012754
    Abstract: In some aspects, systems and methods are provided for determining formation properties using data from both a high-frequency dielectric tool (HFDT) and an array induction tool (AIT). The system includes a controller in communication with at least one HFDT, at least one ART (which may be a multi-component AIT), and a processing unit. The acquired ART formation data can be processed and used to set constraints on the processing of the acquired HFDT formation data. In aspects, a set of processed HFDT data can be used to reinitialize the ART data processing, to allow for a repeated or iterative evaluation process. The system and method generate values used to determine one or more formation properties such as a resistivity of the formation, the presence of an invasion in the formation, mud resistivity or permittivity, anisotropy characteristics of the formation, and dipping characteristics of the formation.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: July 3, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dagang Wu, Junsheng Hou
  • Patent number: 9851438
    Abstract: A system and associated methodology identifies and estimates relaxation frequencies, which are used by a Ground Penetrating Radar (GPR). These estimated relaxation frequencies are used to characterize and interpret a reflected GPR signal from a ground. The system also identifies the number of relaxation frequencies and estimates their magnitudes and values. The system also exhibits high resistance to noise.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: December 26, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Ahmad A. Masoud, Ali A Al-Shaikhi
  • Patent number: 9709691
    Abstract: The present invention provides a transmitter for an electromagnetic survey system for transmitting signals having a waveform comprising at least a first pulse and a second pulse, wherein the first and second pulses are different in at least one of shape and power. Embodiments of the invention enable combining various distinct pulses that may have been optimized for respective applications to form a transmitter waveform for conducting a geological survey. In effect, the embodiments of the present invention provides an EM system that is substantially equivalent to multiple EM systems operating at the same time for collecting data in relation to different aspects of the geology of interest. Advantageously, the benefits of the present invention can be obtained without the undesirable complexity and cost associated with the simultaneous deployment of multiple EM systems.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 18, 2017
    Assignee: CGG DATA SERVICES AG
    Inventors: Philip John Miles, Jason Conrad Berringer, Tianyou Chen, David Gregory Hodges
  • Patent number: 9606256
    Abstract: Determining parameters associated with a hydrocarbon bearing formation beneath a sea bed. At least some of the illustrative embodiments are methods including: obtaining data gathered regarding a plurality of distinct readings by sensors, the readings responsive to a source of electrical energy towed in water above the hydrocarbon bearing formation, the sensors sense an electrical parameter associated with the source; combining a first datum associated with a first path of travel of the source with a second datum associated with a second path of travel of the source, the second path of travel distinct from the first path of travel, and the combining creates a first combined datum; and determining the parameter associated with the hydrocarbon bearing formation by evaluating the first combined datum.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: March 28, 2017
    Assignee: PGS Geophysical AS
    Inventors: U. Peter Lindqvist, L. Erik Magnus Bjornemo
  • Patent number: 9588247
    Abstract: A system for detecting a location of a subsurface channel may include a portable frame and a plurality of magnetic coils supported by the frame. The magnetic coils may be spaced apart from one another and ends of each of the magnetic coil are unobstructed by other of the magnetic coils.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 7, 2017
    Assignee: Willowstick Technologies, LLC
    Inventors: Val O. Kofoed, Jerry R. Montgomery, Rondo N. Jeffery, N. Rich Montgomery, Michael L. Jessop, Michael J. Wallace, Benjamin A. Christensen
  • Patent number: 9540085
    Abstract: An ocean exploration apparatus including: a probe body; a buoyancy adjusting section that adjusts buoyancy generated in the probe body; a posture adjusting section that adjusts a posture of the probe body; a position information acquiring section that acquires position information of the probe body; a wing section that moves the probe body using a lifting force applied from seawater; a sensor section that is provided in the probe body and measures an electromagnetic field; and a control section that controls operations of the buoyancy adjusting section, the posture adjusting section, the position information acquiring section, and the sensor section according to predetermined conditions.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 10, 2017
    Assignee: YBM CO., LTD.
    Inventors: Hideki Mizunaga, Satoru Yamaguchi
  • Patent number: 9405031
    Abstract: A method for mapping geological structures of a formation on a side of a surface, includes: generating a magnetic moment using at least one magnetic moment generator to build up a magnetic field in the formation in an on-period, wherein the magnetic moment has a moment strength, and wherein the magnetic moment is positioned on another side of the surface; changing the magnetic moment to change the magnetic field; and making at least one record in a recording device at a recording time trecord in an off-period, wherein the record includes at least a representation of the change in the magnetic field and/or a representation of the magnetic field obtained by a B/E-measuring unit; wherein the on-period is separated from the off-period by the act of changing the magnetic moment.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: August 2, 2016
    Assignee: SkyTEM Surveys Aps
    Inventor: Kurt Ingvard Sorensen
  • Patent number: 9359888
    Abstract: Techniques involve determining the conductivity profile of a formation from a well between a surface location and a borehole location. The method involves placing a first sensor at the surface location, a second sensor located at the borehole location, obtaining a first signal by detecting Schumann resonances from the electric field occurring at the first location, obtaining a second signal by detecting Schumann resonances from the electric field occurring at the second location with the second sensor; and combining the first and the second signal to determine the conductivity profile of the formation between the first location and the second location.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 7, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Erwann Lemenager, Martin G. Luling, Yves G. Mathieu, Christian Chouzenoux
  • Patent number: 9335435
    Abstract: A technique provides a methodology for improving surveys of subterranean regions. The methodology comprises estimating macro anisotropy and an intrinsic or micro anisotropy of an overburden. A surface electromagnetic survey is conducted, and the data from the survey is inverted based on or including information gained from estimating the macro anisotropy and/or intrinsic anisotropy. A processor system can be used to conduct the inversion with the adjustments for anisotropy to improve the information provided by the survey.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 10, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: James P. Brady, Andrew Hawthorn, John P. Horkowitz, Jean Seydoux, Jacques R. Tabanou, Jian Yang, David L. Alumbaugh
  • Patent number: 9239401
    Abstract: Disclosed are methods and systems for using electromagnetic sources that are substantially stationary in a body of water while electromagnetic field signals are detected with electromagnetic sensors towed through the body of water. An embodiment discloses an apparatus comprising: a vessel; a first electromagnetic source coupled to the vessel and configured to have a dipole moment oriented in a first direction; and a second electromagnetic source coupled to the vessel and configured to have a dipole moment oriented in a second direction, wherein the second direction is generally orthogonal to the first direction. Another embodiment discloses a system comprising: a sensor streamer configured for towing in a body of water, wherein the sensor streamer comprises a plurality of electromagnetic sensors disposed at spaced apart positions; and an electromagnetic source assembly configured for deployment at a substantially stationary position in the body of water.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 19, 2016
    Assignee: PGS Geophysical AS
    Inventors: Carl Joel Gustav Skogman, Johnathan P. Linfoot
  • Patent number: 9229102
    Abstract: Systems and methods for sensing targets on an opposite side of a wall are disclosed. In some aspects, the techniques include providing an indication to a user that portions of reflected radar signals were blocked by radiofrequency-blocking material at the wall. In some aspects, the techniques include identifying candidate targets as multipath echoes or motion-induced errors based on a correlation map.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 5, 2016
    Assignee: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Donald Charles Wright, Christopher Gary Sentelle, Jeffery Carter May, Rafik Hanna, Liviu Voicu
  • Patent number: 9110180
    Abstract: A method for acquisition and processing of marine seismic signals to extract up-going and down- going wave-fields from a seismic energy source includes deploying at least two marine seismic energy sources at different depths in a body of water. These seismic energy sources are actuated with known time delays that are varied from shot record to shot record. Seismic signals from sources deployed at different depths are recorded simultaneously, Seismic energy corresponding to each of the sources is extracted from the recorded seismic signals. Up-going and down-going wave-fields are extracted from the sources deployed at different depths using the extracted seismic energy therefrom. A method includes the separated up-going and down-going wave-fields are propagated to a water surface or a common reference, the up-going or the down-going wave-field is 180 degree phase shifted, and the signals from these modified up-going and down-going wave-fields are summed.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 18, 2015
    Assignee: PGS Geophysical AS
    Inventors: Stian Hegna, Gregory Ernest Parkes
  • Patent number: 9035656
    Abstract: A device rotates at least one static magnetic field about an axis, producing a rotating magnetic dipole field, and is movable in relation to the surface of the ground. The field is periodically sensed using a receiver to produce a receiver output responsive to the field. A positional relationship between the receiver and the device is monitored using the output. In one aspect, changing the positional relationship, by moving the device nearer to a boring tool which supports the receiver, causes an increase in accuracy of depth determination. In another aspect, determination of an actual overhead position of the boring tool, and its application, are described. Use of a plurality of measurements over at least one-half revolution of each magnet is disclosed. Establishing a surface radial direction toward a boring tool and resolution of multi-valued parameters is described. Calibration techniques, as well as a three transmitter configuration are also described.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 19, 2015
    Assignee: Merlin Technology Inc.
    Inventors: Rudolf Zeller, Guenter W. Brune, Albert W. Chau, John E. Mercer
  • Patent number: 9000768
    Abstract: A method of surveying the condition of an underground enclosure including the steps of: (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 7, 2015
    Assignee: Louisiana Tech University Research Foundation; a division of Louisiana Tech University Foundation, Inc.
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Neven Simicevic
  • Patent number: 8994527
    Abstract: A device for collecting samples of the sea floor, including a collection apparatus, a diving apparatus and a control apparatus.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 31, 2015
    Inventor: Galen G. Verhulst
  • Publication number: 20150048833
    Abstract: Methods and systems for measuring subsurface electrical conductivity, using first and second sensor coils. The second sensor coil has a smaller effective area and a greater bandwidth than the first sensor coil. The first and second sensor coils are positioned with respect to each other to achieve zero or near zero mutual inductance.
    Type: Application
    Filed: January 24, 2014
    Publication date: February 19, 2015
    Applicant: Geonics Limited
    Inventor: Miroslav Bosnar
  • Patent number: 8933699
    Abstract: A resistivity array having a modular design includes a transmitter module with at least one antenna, wherein the transmitter module has connectors on both ends adapted to connect with other downhole tools; and a receiver module with at least one antenna, wherein the transmitter module has connectors on both ends adapted to connect with other downhole tools; and wherein the transmitter module and the receiver module are spaced apart on a drill string and separated by at least one downhole tool. Each transmitter and receiver module may comprise at least one antenna coil with a magnetic moment orientation not limited to the tool longitudinal direction. A spacing between the transmitter and receiver module may be selected based on expected reservoir thickness.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: January 13, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean Seydoux, Emmanuel Legendre, Reza Taherian
  • Patent number: 8928324
    Abstract: Methods for geophysical surveying include disposing an electromagnetic source and first and second receiver electrodes in water; actuating the source; and detecting a responsive electromagnetic field by measuring a potential difference between the first and second receiver electrodes, wherein: the electromagnetic source defines a source dipole axis; the first and second receiver electrodes define a receiver dipole axis; and the source dipole axis is not substantially parallel to the receiver dipole axis. Systems for geophysical surveying include a first source electrode on a first source cable; a second source electrode on a different second source cable, the first and second source electrodes forming an electromagnetic source and defining a source dipole axis; a first receiver electrode on a first receiver cable; a second receiver electrode on a different second receiver cable, the first and second receiver electrodes defining a receiver dipole axis not substantially parallel to the source dipole axis.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 6, 2015
    Assignee: PGS Geophysical AS
    Inventor: Bruce Alan Hobbs
  • Patent number: 8922214
    Abstract: The present disclosure describes various geophysical survey systems and methods for mapping an electric potential field. At least one illustrative embodiment includes an electromagnetic (EM) source and geophysical survey cables that each includes multiple electrodes spaced apart along each geophysical survey cable's length, and multiple data acquisition units that each obtains measurements indicative of an electric potential between two the electrodes. A modeling module is included and configured to calculate a reference potential at a selected electrode for each of the plurality of geophysical survey cables, as well as a calculation module to combine signals representative of the measurements to produce signals indicative of the electric potential of each electrode relative to the reference potential.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 30, 2014
    Assignee: PGS Geophysical AS
    Inventors: Mattias Südow, Frederick James Barr, Jr., Peter Lindqvist, Robert Juhasz
  • Patent number: 8917102
    Abstract: A method for measuring a capacitance using a capacitance meter. The capacitance meter includes an AC power source with a controllable frequency which is fed to a capacitor to measure its capacitance. A first measurement of the capacitance is performed by the capacitance meter using a first frequency. When the first measurement of the capacitance indicates the capacitance is below a threshold capacitance a lower capacitance measurement is performed in the capacitance meter, using a second measurement of the capacitance using a second frequency. When the first measurement of the capacitance indicates the capacitance is above a threshold capacitance, a higher capacitance measurement is performed in the capacitance meter, using a second measurement of the capacitance using a third frequency, the third frequency being lower than the second frequency.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 23, 2014
    Assignee: ABB Technology AG
    Inventors: Alf Brodin, Jon Lissmats, Jerry Svedlund, Hans Olof Fröjd
  • Patent number: 8917094
    Abstract: Downhole tools and techniques acquire information regarding nearby conductors such as pipes, well casing, and conductive formations. At least some method embodiments provide a current flow along a drill string in a borehole. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates may be obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Jing Li
  • Patent number: 8901931
    Abstract: A method for water monitoring about a deviated well is disclosed. The method includes positioning a series of electromagnetic (EM) receivers in a completed deviated wellbore, said receivers being spaced along substantially the length of the well located in a region of a reservoir to be monitored. The method also includes positioning an electromagnetic (EM) source at a first Earth surface location. Then the EM source is activated for a first survey measurement of the reservoir, and an EM field detected at each EM receiver is recorded. The EM source is moved to a second Earth surface location, and activated for a second survey measurement of the reservoir, and an EM field detected at each EM receiver is recorded. From the first and second survey measurements at each of the receivers, an inversion is performed to determine position of water about (and specifically below) the horizontal well.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: December 2, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Cengiz Esmersoy
  • Patent number: 8896313
    Abstract: Disclosed is an electromagnetic receiver assembly for marine electromagnetic surveying, the electromagnetic receiver assembly comprising an elongated housing and receiver electrodes mounted at separate points along the elongated housing. An embodiment may include an electromagnetic receive assembly that includes an elongated housing, wherein the elongated housing defines an interior chamber. The electromagnetic receiver assembly may further include receiver electrodes configured to be in contact with water when in operation, wherein the receiver electrodes are mounted at separate points along the elongated housing. The electromagnetic receiver assembly may further include sensor electronics disposed in the interior chamber and electrically coupled to the receiver electrodes. The electromagnetic receiver assembly may be configured for deployment on or near a bottom of a body of water.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 25, 2014
    Assignee: PGS Geophyiscal AS
    Inventors: Ulf Peter Lindqvist, Gustav Goran Mattias Sudow, Andras Robert Juhasz, Rune Johan Magnus Mattsson, Carl Joel Gustav Skogman, Lars Erik Magnus Bjornemo
  • Patent number: 8896314
    Abstract: A method for marine electromagnetic surveying includes transmitting a first electromagnetic field oriented in a first direction into a body of water. A second electromagnetic field oriented in a second direction is transmitted into the body of water, wherein the second direction is substantially transverse to the first direction. A parameter related to electromagnetic field amplitude is detected at a plurality of longitudinally and laterally spaced apart positions behind a vessel. The components of the detected electromagnetic field parameter are resolved into components along the first and second directions by using the geometrical symmetries and asymmetries of the transmitting source. Systems for implementing such methods are also provided.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: November 25, 2014
    Assignee: PGS Geophysical AS
    Inventor: Gustav Göran Mattias Südow
  • Publication number: 20140312906
    Abstract: An apparatus for estimating a subsurface material property includes: a first energy interface device configured to transmit electromagnetic or electrical energy into the subsurface material; a second energy interface device configured to receive return electromagnetic or electrical energy due to the transmitted electromagnetic or electrical energy interacting with the subsurface material; and a processor configured to estimate the property using a signal received from the second device; wherein at least one of the first energy interface device and the second energy interface device is a fractal-shaped antenna comprising a base motif figure and at least one scaled down replication of the base motif figure, the at least one replication being a change from the base motif by at least one of a linear displacement translation and a rotation, and a position of the replication upon the base motif figure is by at least one of rotation, translation, and stretching.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 23, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Randy Gold
  • Patent number: 8829899
    Abstract: A pneumatic vibration isolating suspension is disclosed for supporting a payload on a moving carrier while suppressing the transmission of vibrations in the 1 to 50 Hz band between the carrier and the payload. The disclosed invention can be deployed in the air in a towed carrier or sonde, and operated from aircraft power, making it a suitable platform for airborne geophysical instrumentation. It also has particular application to airborne electromagnetic surveying operating in the same frequency band because the sensor vibrations that result in noise created by the modulation of the sensor coupling with the earth's magnetic field are suppressed. Furthermore, the invention can be constructed from resistive composite materials and non-magnetic metals, so it can be operated without producing significant modification to the ambient electromagnetic field being measured.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: September 9, 2014
    Assignee: Vale S.A.
    Inventors: Benjamin David Polzer, Gordon Fox West, Peter White Walker
  • Publication number: 20140239956
    Abstract: A surface electromagnetic survey system and method for detecting a fracture or fracture zone in a rock formation are provided. The system includes an electromagnetic source configured to generate an electromagnetic field in the vicinity of or at a surface of the rock formation. The electromagnetic source includes one or more electric dipole sources that are arranged so as to generate a substantially vertical electric field. The system also includes an electromagnetic receiver associated with the electromagnetic source, the electromagnetic receiver being configured to measure a component of the electromagnetic field at the surface of the rock formation; and a processor configured to convert the measured component of the electromagnetic field measured at the electromagnetic receiver into an electromagnetic field response per unit moment of the electromagnetic source. The electromagnetic field response provides information about characteristics parameters of the fracture or fracture zone.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Gary Michael Hoversten, David Lee Alumbaugh
  • Publication number: 20140239957
    Abstract: A method for mapping a subterranean formation having an electrically conductive wellbore casing therein may include using a low frequency electromagnetic (EM) transmitter and EM receiver operating at a low frequency of less than or equal to 10 Hertz to perform a first EM survey of the subterranean formation, and with either the low frequency EM transmitter or EM receiver within the electrically conductive well-bore casing. The method may further include injecting a magnetic fluid into the subterranean formation, and using the low frequency EM transmitter and EM receiver to perform a second EM survey of the subterranean formation after injecting the magnetic fluid.
    Type: Application
    Filed: July 9, 2012
    Publication date: August 28, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ping Zhang, David L. Alumbaugh, Michael Wilt
  • Patent number: 8816689
    Abstract: A method and apparatus is provided for collecting reservoir data. The method includes providing one or more electromagnetic sources for generating an electromagnetic field in a reservoir and providing one or more electromagnetic sensors equipped with capacitive electrodes. The electromagnetic source is located separately from the electromagnetic sensor. The electromagnetic sensor may either be located within a well or at the surface, is capable of measuring the electromagnetic field in three dimensions, and may be isolated from the well fluids. The data collected by the electromagnetic sensors can be used to create a model of the oil reservoir, including the water saturation.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: August 26, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Timothy H. Keho, Michael Anthony Jervis, Brett W. Bouldin
  • Patent number: 8791701
    Abstract: Electromagnetic proximity detection method for a buried structure executed with a mobile detection device, including sensing an electromagnetic field emitted from the structure as an analog electrical signal and digitalizing the analog electrical signal as a digital signal, performed after or while filtering the analog and/or digital signal. The proximity of the buried structure is determined by analyzing the digital signal, wherein the detection method can be alternatively executed in at least two of the following modes of detection: Power-Mode of detection, Radio-Mode of detection or Active-Mode of detection. An additional Switching-Mode of operation includes a repeated sequential detection in at least two of the mentioned modes of detection and is done by automatic subsequent alternating of the mode of detection with a minimum rate of alternation that an area of detection is coverable by the at least two modes of detection in a single execution of the detection method.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: July 29, 2014
    Assignee: Leica Geosystems AG
    Inventors: Simon Branson, Ping Wang
  • Publication number: 20140191760
    Abstract: The far zone “airwave” that arises when surveying subsea formations is greatly diminished by deployment of the transmitter combining mutually orthogonal horizontal electric and magnetic dipoles with the electric and magnetic dipole moments being locked in a special relationship. At each of the operating frequencies, the amplitude and phase characteristics of the transmitter electric and magnetic dipole moments are determined either from a supplementary measurement earned out using natural and/or controlled field sources, or by minimization of the vertical magnetic field at a remote receiver. Similar results can be obtained when data acquired in two independent surveys—one with the horizontal electric dipole transmitter pointing in one direction and another with a horizontal magnetic dipole transmitter pointing in the orthogonal direction and towed over the same or close positions—are linearly combined to minimize the vertical component of the combined magnetic field at remote receivers.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 10, 2014
    Inventor: Bentsion Zinger
  • Publication number: 20140184227
    Abstract: Concurrently measuring, correlating, and processing magnetic and electric field data includes measuring base band signals, and then up-converting those band signals to a higher frequency for filtering, while at the same time preserving phase and amplitude information. All timed elements in the system are rigorously synchronized. The increased data set results in improved signal-to-noise ratio and information correlation.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Deep Imaging Technologies, Inc.
    Inventor: Alexander Edward Kalish
  • Patent number: 8754649
    Abstract: A disclosed electromagnetic survey system includes one or more streamer(s) having multiple electromagnetic sensors and motion sensing units. Each motion sensing unit has one or more accelerometer(s) to measure motion perpendicular to an axis of the streamer, and a rotation sensor to measure rotation about the axis. The measurements of the accelerometer are adjusted based on measurements from the rotation sensor. The survey system also includes one or more processor(s) that determine, for each electromagnetic sensor, a motion signal based on the adjusted measurements. A described electromagnetic survey method includes processing acceleration and rotational motion measurements to obtain an orientation of motion sensing units as a function of time. The measured acceleration is manipulated based on the orientation to obtain one or more velocity signal(s) for each motion sensing unit. Interpolation is performed on the velocity signals to determine at least one velocity signal for each electromagnetic sensor.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 17, 2014
    Assignee: PGS Geophysical AS
    Inventors: Gustav Göran Mattias Südow, Ulf Peter Lindqvist, Andras Robert Juhasz, Carl Joel Gustav Skogman
  • Patent number: 8749241
    Abstract: A method of geophysical prospecting for detecting bodies of fluids in underground formations comprises the steps of activating a seismic energy source (2) to transmit seismic energy into the ground, detecting an electromagnetic signal (14) generated by interaction between the seismic energy and underground formations (12) including fluids, and recording properties of the detected electromagnetic signal against time, so as to record an electromagnetic signal generated by interaction between a secondary energy impulse (10) from the activation of the energy source and underground formations including fluids. The secondary energy impulse propagates to the formations more slowly than the primary seismic waves from the same activation of the energy source travelling at the speed of sound as attenuated by the materials through which they pass. The detected electromagnetic signal comprises frequencies in the range 0 to 30 Hz.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 10, 2014
    Assignee: EMON (UK) Limited
    Inventors: Christopher Edwards, Michael Nosworthy
  • Patent number: 8736269
    Abstract: The present disclosure describes various geophysical survey systems and methods for mapping an electric potential field. At least one illustrative embodiment includes an electromagnetic (EM) source and geophysical survey cables that each includes multiple electrodes spaced apart along each geophysical survey cable's length, and multiple data acquisition units that each obtains measurements indicative of an electric potential between two the electrodes. A calculation module is included and configured to combine signals representative of the measurements to produce signals indicative of the electric potential of each electrode relative to a reference potential assumed to be present at a selected electrode for each of the plurality of geophysical survey cables. Each reference potential is assumed to be of a magnitude that is within a tolerance range of a common reference potential.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: May 27, 2014
    Assignee: PGS Geophysical AS
    Inventors: Mattias Südow, Frederick James Barr, Jr., Peter Lindqvist, Robert Juhasz