Layout Patents (Class 327/373)
  • Patent number: 7414454
    Abstract: A voltage switching circuit is provided which is constructed from a minimum number of transistors and prevents the threshold voltage margin from being lowered by causing high-voltage cutoff and supply voltage transfer functions heretofore performed by a single depletion transistor to be shared between two series-connected depletion transistors different in gate insulating film thickness or threshold voltage. Thus, without using enhancement transistors which involve an increase in pattern area a voltage switching circuit can be provided which is small in chip area, low in cost and high in yield and reliability and provides a stable operation with a low supply voltage which is impossible with one depletion transistor.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 19, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Nakamura
  • Patent number: 7132875
    Abstract: A voltage switching circuit is disclosed which is constructed from a minimum number of transistors and prevents the threshold voltage margin from being lowered by causing high-voltage cutoff and supply voltage transfer functions heretofore performed by a single depletion transistor to be shared between two series-connected depletion transistors different in gate insulating film thickness or threshold voltage. Thus, without using enhancement transistors which involve an increase in pattern area a voltage switching circuit can be provided which is small in chip area, low in cost and high in yield and reliability and provides a stable operation with a low supply voltage which is impossible with one depletion transistor.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: November 7, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Nakamura
  • Patent number: 6924690
    Abstract: A voltage switching circuit is disclosed which is constructed from a minimum number of transistors and prevents the threshold voltage margin from being lowered by causing high-voltage cutoff and supply voltage transfer functions heretofore performed by a single depletion transistor to be shared between two series-connected depletion transistors different in gate insulating film thickness or threshold voltage. Thus, without using enhancement transistors which involve an increase in pattern area a voltage switching circuit can be provided which is small in chip area, low in cost and high in yield and reliability and provides a stable operation with a low supply voltage which is impossible with one depletion transistor.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: August 2, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Nakamura
  • Patent number: 6501323
    Abstract: A voltage switching circuit is disclosed which is constructed from a minimum number of transistors and prevents the threshold voltage margin from being lowered by causing high-voltage cutoff and supply voltage transfer functions heretofore performed by a single depletion transistor to be shared between two series-connected depletion transistors different in gate insulating film thickness or threshold voltage. Thus, without using enhancement transistors which involve an increase in pattern area a voltage switching circuit can be provided which is small in chip area, low in cost and high in yield and reliability and provides a stable operation with a low supply voltage which is impossible with one depletion transistor.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 31, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Nakamura
  • Patent number: 5900754
    Abstract: A D flip-flop latches a reference clock signal in response to an output signal fed back from an output circuit. A pulse generating circuit generates a pulse in response to the output signal fedback from the output circuit. From the latched signal and the pulse generated by the pulse generating circuit, a count pulse is generated. The count pulse is output to an up/down counter. Based on the counting result of the up/down counter, a digital-to-analog conversion circuit generates a delay control signal. Using this delay control signal, the delay circuit synchronizes its output signal with the reference clock signal. It is possible to synchronize the output data signal with the reference clock signal regardless of variations in the reference clock signal, source voltage, and ambient temperature.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: May 4, 1999
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Semiconductor Software Co., Ltd.
    Inventor: Takashi Nakatani
  • Patent number: 5436584
    Abstract: A noise suppression circuit for a floating bus in a digital integrated circuit includes pull-up and pull-down feedback loops each connected to the floating bus. The pull-up feedback loop includes a PMOS device connected between a high logic level and the floating bus, with a NOR gate switching the PMOS device. The pull-down feedback loop includes an NMOS device connected between a low logic level and the floating bus, with a NAND gate switches the NMOS device. The NOR and NAND gates are configured such that one of their inputs is connected directly to the floating bus and the other input is connected to the floating bus through an inverter having a finite gate delay. Voltage transitions occurring on the floating bus due to noise injection drive the bus back to its original state before the finite gate delay of the inverter.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: July 25, 1995
    Assignee: Intel Corporation
    Inventors: Milind A. Bodas, Nagaraj Palasamudram, Lavi Lev