Including Microwave Or Distributed Parameter Structure Patents (Class 329/322)
  • Patent number: 10488490
    Abstract: Detecting continuous wave police radar includes receiving an input signal from a first antenna, the input signal comprising a continuous wave emission within at least one radar band; sweeping a composite local oscillator signal through a range of frequencies from a first frequency to a second frequency in a predetermined time period so that the composite local oscillator signal has a first chirp rate with a first chirp rate magnitude of between 0.15 MHz/?s and 3.5 MHz/?s or even higher; and mixing the input signal from the first antenna with the sweeping composite local oscillator signal to produce an output signal having an intermediate frequency. A next step can include determining that the input signal from the first antenna includes a police radar signal based on the output signal.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: November 26, 2019
    Assignee: Valentine Research, Inc.
    Inventors: Michael D. Valentine, Stephen R. Scholl, Richard L. Dickerson, Marwan E. Nusair
  • Patent number: 9658319
    Abstract: Detecting continuous wave police radar includes receiving an input signal from a first antenna, the input signal comprising a continuous wave emission within at least one radar band; sweeping a composite local oscillator signal through a range of frequencies from a first frequency to a second frequency in a predetermined time period so that the composite local oscillator signal has a first chirp rate with a first chirp rate magnitude of between 0.15 MHz/?s and 3.5 MHz/?s or even higher; and mixing the input signal from the first antenna with the sweeping composite local oscillator signal to produce an output signal having an intermediate frequency. A next step can include determining that the input signal from the first antenna includes a police radar signal based on the output signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 23, 2017
    Assignee: Valentine Research, Inc.
    Inventors: Michael D. Valentine, Stephen R. Scholl, Richard L. Dickerson, Marwan E. Nusair
  • Patent number: 6785505
    Abstract: A fixing device includes an abutting member arranged at a position between an upstream side of a fixing roller and a downstream side of a heating roller in a moving direction of a fixing belt so as to abut against the fixing belt and expand a fixing region. The fixing device may also include a first supporting member and a second supporting member, which supports the fixing belt, etc., with respect to the first supporting member. An angle, formed between an approaching direction of a sheet-like recording medium and a line tangential to an upstream end of the fixing region in the moving direction of the fixing belt, is set equal to 20° or larger.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: August 31, 2004
    Assignee: Ricoh Company, Ltd.
    Inventors: Motokazu Yasui, Masanao Ehara, Hideo Furukawa, Hiroshi Yoshinaga, Hirofumi Ogawa, Hiroyuki Gotoh
  • Patent number: 6185248
    Abstract: A wideband digital microwave receiver includes a plurality of channels. Each channel includes an I sub-channel and a Q-sub-channel. Each channel also has a comb generator. Each sub-channel has a mixer for multiplying the signal from the comb generator and an input to that sub-channel. By offsetting the combs used in the channels, the true solution may be selected from a number of false solutions. This may be achieved by cross-multiplying outputs from the I sub-channels and cross-multiplying outputs from the Q sub-channels. The signal information may be stored in a buffer and pre-processed. The single true solution is output to a digital signal processor and/or a monitoring unit.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: February 6, 2001
    Assignee: Northrop Grumman Corporation
    Inventor: Richard J. Wiegand
  • Patent number: 5448501
    Abstract: The invention relates to an electronic life detection system, in particular for the searching for buried persons and the surveillance of buildings, having a microwave transmitting/receiving device for generating and radiating microwaves into an area to be investigated and for registering the microwave signal reflected from the area under surveillance and modulated with the frequencies corresponding to the life functions of any living beings present in the area, which device has a first signal-conditioning device, and a second signal-conditioning device.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: September 5, 1995
    Assignee: BORUS Spezialverfahren und-gerate im Sondermachinenbau GmbH
    Inventors: Dimitri V. Hablov, Oleg I. Fisun, Lev N. Lupichev, Viktor V. Osipov, Viktor A. Schestiperov, Richard Schimko
  • Patent number: 5081424
    Abstract: A microwave frequency discriminator circuit useful as a frequency lineariion device includes a microstrip input conductor and a pair of microstrip output conductors, a pair of resistors, a pair of microstrip transmission line diplexer stubs of unequal lengths, a pair of detector diodes, and a quad of microstrip filter stubs. Each resistor at one end is connected to the same end of the input conductor and in parallel relation to one another. Each diplexer stub at one end is connected to an opposite end of one resistor and in parallel relation to one another. Each diplexer stub is open-circuited at an opposite end. Each detector diode at one end is connected to the one end of one stub and at an opposite end to one output conductor. The filter stubs are interposed in spaced pairs in one output conductor.
    Type: Grant
    Filed: January 18, 1991
    Date of Patent: January 14, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Carl P. Tresselt
  • Patent number: 5039951
    Abstract: A Josephson junction (100) is employed as a very-high-speed frequency demodulator for detecting a frequency-shift-keyed (FSK) modulated signal (201) in a microwave or lightwave communication system. The voltage induced across the junction in response to an incident FSK modulated radiation signal follows the frequency variations in the incident wave thereby directly demodulating the information signal from its carrier. In the disclosed embodiment an FSK modulated optical signal is mixed with a local oscillator (303) signal, which is then incident on a photodetector (305). The resultant microwave-frequency signal is then applied over a two-wire transmission line (308) to the Josephson junction (307) for direct demodulation.
    Type: Grant
    Filed: October 30, 1990
    Date of Patent: August 13, 1991
    Assignee: Bell Communications Research, Inc.
    Inventors: Nim K. Cheung, James L. Gimlett, Ki Bui Ma