Suppressed Carrier Double Sideband Type Patents (Class 329/356)
  • Patent number: 10778260
    Abstract: A method of transmitting a signal in a wireless communication network from a transmitting device to a receiving device, wherein said receiving device comprises an Analog to Digital Converter, ADC, arranged to sample a received signal at a predetermined sampling frequency. The method comprising the steps of generating 20, by said transmitting device, said transmission signal, wherein a bandwidth of said transmission signal is such that aliasing components will be created by said ADC upon sampling said transmission signal, and wherein said transmission signal is generated in such a way that the aliasing components have a same phase as a corresponding sampled low frequency component of said transmission signal thereby contributing constructively to said low frequency component of said transmission signal, and transmitting 40, by said transmitting device, said transmission signal to said receiving device.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 15, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Leif Wilhelmsson, Miguel Lopez
  • Patent number: 10567705
    Abstract: A vision system for a vehicle includes a camera and a control. The camera is disposed at a vehicle and has a field of view exterior of the vehicle. The camera is operable to capture image data. The control includes an image processor. A single coaxial cable connects the camera with the control. The single coaxial cable carries (i) image data from the camera to the control, (ii) control data from the control to the camera and (iii) electrical voltage for powering the camera. The image processor is operable to process image data captured by the camera and carried to the control by the single coaxial cable. The single coaxial cable carries at least one FBAS signal.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 18, 2020
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Sven Ziegenspeck, Pirmin Bader
  • Patent number: 10147413
    Abstract: A noise cancellation system, comprising: an input for a digital signal, the digital signal having a first sample rate; a digital filter, connected to the input to receive the digital signal; a decimator, connected to the input to receive the digital signal and to generate a decimated signal at a second sample rate lower than the first sample rate; and a processor. The processor comprises: an emulation of the digital filter, connected to receive the decimated signal and to generate an emulated filter output; and a control circuit, for generating a control signal on the basis of the emulated filter output. The control signal is applied to the digital filter to control a filter characteristic thereof.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: December 4, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: Anthony J. Magrath, Richard Clemow
  • Patent number: 9780959
    Abstract: A method and apparatus for content multicasting and broadcasting and data unicasting in a broadband multicarrier wireless communication system. A base station is configured to transmit, and a mobile station is configured to receive, a sequence of consecutive frames. The frames comprise two types: frames containing time-frequency resources for content multicasting and broadcasting via a single frequency network, and frames containing time-frequency resources for data unicasting without the use of a single frequency network. The two types of frames are intermixed in accordance with an intermixing configuration pattern. The intermixing configuration pattern is indicated by a bit-map contained in a scheduling signal.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 3, 2017
    Assignee: Neocific, Inc.
    Inventors: Haiming Huang, Xiaodong Li, Titus Lo, Kemin Li
  • Patent number: 9721463
    Abstract: A wireless sensor reader is provided to interface with a wireless sensor. The wireless sensor reader transmits an excitation pulse to cause the wireless sensor to generate a ring signal. The wireless sensor reader receives and amplifies the ring signal and sends the signal to a phase-locked loop. A voltage-controlled oscillator in the phase-locked loop locks onto the ring signal frequency and generates a count signal at a frequency related to the ring signal frequency. The voltage-controlled oscillator is placed into a hold mode where the control voltage is maintained constant to allow the count signal frequency to be determined.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: August 1, 2017
    Assignee: Endotronix, Inc.
    Inventors: Harry Rowland, Roger Watkins, Balamurugan Sundaram
  • Patent number: 9489831
    Abstract: A wireless sensor reader is provided to interface with a wireless sensor. The wireless sensor reader transmits an excitation pulse to cause the wireless sensor to generate a ring signal. The wireless sensor reader receives and amplifies the ring signal and sends the signal to a phase-locked loop. A voltage-controlled oscillator in the phase-locked loop locks onto the ring signal frequency and generates a count signal at a frequency related to the ring signal frequency. The voltage-controlled oscillator is placed into a hold mode where the control voltage is maintained constant to allow the count signal frequency to be determined. The reader uses an ambient reading or other information to select a subset of the possible ring signal frequencies, and tunes or adjusts its circuits and algorithms to focus on that subset.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 8, 2016
    Assignee: Endotronix, Inc.
    Inventors: Michael Nagy, Harry D. Rowland, Roger Dwight Watkins, Balamurugan Sundaram
  • Patent number: 9305456
    Abstract: A wireless sensor reader is provided to interface with a wireless sensor. The wireless sensor reader transmits an excitation pulse to cause the wireless sensor to generate a ring signal. The wireless sensor reader receives and amplifies the ring signal and sends the signal to a phase-locked loop. A voltage-controlled oscillator in the phase-locked loop locks onto the ring signal frequency and generates a count signal at a frequency related to the ring signal frequency. The voltage-controlled oscillator is placed into a hold mode where the control voltage is maintained constant to allow the count signal frequency to be determined.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: April 5, 2016
    Assignee: Endotronix, Inc.
    Inventors: Harry Rowland, Roger Watkins, Balamurugan Sundaram
  • Patent number: 8102948
    Abstract: A carrier recovery apparatus includes a pilot strength detector, a first lock loop, a second lock loop, and a controller. The pilot strength detector determines whether a pilot strength of an input signal is greater than a threshold value to generate a control signal. The first lock loop performs a first carrier recovery on the input signal. The second lock loop performs a second carrier recovery on the input signal. The controller selectively allows the first lock loop to perform the first carrier recovery on the input signal or the second lock loop to perform the second carrier recovery on the input signal according to the control signal. The first lock loop is a pilot-based FPLL and the second locked loop is a pilot-less PLL.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 24, 2012
    Assignee: Himax Media Solutions, Inc.
    Inventors: Guo-Hau Gau, Pei-Jun Shih, Shin-Shiuan Cheng
  • Patent number: 7668263
    Abstract: A frequency synthesizing apparatus and method for a multi-band radio frequency (RF) receiver is provided. The frequency synthesizing apparatus includes a simple circuit configuration with a single SSB mixer and thus, may synthesize six high frequency signals. Signals to be inputted into the SSB mixer include a first signal and a second signal. The first signal is generated based on a VCO and a PPF. Also, the second signal is selected from a plurality of frequency divided signals which are generated by dividing a signal generated in the VCO via a plurality of dividers.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Chul Park, Hyun Soo Chae, Hoon Tae Kim
  • Patent number: 6950481
    Abstract: A vestigial-sideband (VSB) signal is converted to a double-sideband amplitude-modulation signal having information that is subsequently detected in the double-sideband amplitude-modulation signal. A method for performing the conversion includes mixing the VSB signal with a first beat frequency different from a carrier frequency of the VSB signal, the first beat frequency being of such value as to generate a first mixing result that is translated in frequency to have a carrier at an offset frequency; mixing the VSB signal with a second beat frequency different from the carrier frequency of the VSB signal and from the first beat frequency, the second beat frequency being of such value as to generate a second mixing result that is translated in frequency to have a earner at the offset frequency; and combining the first and second mixing results to form the double-sideband amplitude-modulation signal with a carrier frequency at the offset frequency.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: September 27, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Allen LeRoy Limberg
  • Patent number: 6687313
    Abstract: A vestigial-sideband (VSB) signal is converted to a double-sideband amplitude-modulation final intermediate-frequency signal that is subsequently detected to generate a baseband demodulation result. The carrier of this final I-F signal has a carrier offset from zero-frequency, which carrier offset exceeds the highest modulating frequency of the VSB signal and is adjusted to a prescribed carrier offset value. The double-sideband amplitude-modulation final I-F signal is generated by combining the VSB signal with its image.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: February 3, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Allen LeRoy Limberg
  • Patent number: 6426716
    Abstract: A range gated microwave motion sensor having adjustable minimum and maximum detection ranges with little response to close-in false alarm nuisances such as insects or vibrating panels. The sensor resolves direction of motion and can respond to target displacement in a selected direction and through a selected distance, in contrast to conventional hair-trigger motion sensors. A constant false alarm rate (CFAR) detector prevents false triggers from fluttering leaves, vibrating machinery, and RF interference. The sensor transmits an RF pulse and, after a modulated delay, mixes echo pulses with a mixer pulse. Thus, the echo pulses are modulated at the mixer output while transmit and mixer pulse artifacts remain unmodulated and easily filtered from the output. Accordingly, the sensor only responds to echoes that fall within its minimum and maximum range-gated region, and not to close-in or far-out objects.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: July 30, 2002
    Assignee: McEwan Technologies, LLC
    Inventor: Thomas E. McEwan
  • Patent number: 6081697
    Abstract: A multi-carrier radio system in which pairs of subcarriers are positioned in frequency such that each subcarrier in a pair is the image of the other subcarrier in the pair. By making each subcarrier the image of another subcarrier, the radio system of the present invention permits highly integrated low-IF transceiver implementation. In an exemplary embodiment, a multi-carrier transceiver includes an integrated receiver comprising a first mixer for mixing an input signal with a local oscillator signal to produce an in-phase downconverted signal. Additionally, a first phase shifter phase-shifts the local oscillator signal to produce a quadrature local oscillator signal, and a second mixer mixes the input signal with the quadrature local oscillator signal to produce a quadrature downconverted signal. Thereafter, a second phase shifter phase-shifts, or rotates, the quadrature downconverted signal to produce a rotated quadrature downconverted signal.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: June 27, 2000
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Jacobus Cornelis Haartsen
  • Patent number: 5742645
    Abstract: A method for digitally demodulating a complex modulation signal and allowing different parameters to be transmitted thereby. The input signal is baseband filtered and a complex demodulation is performed on the first subcarrier at a frequency Fp to obtain a correction signal, after squaring. The input signal is demodulated around a frequency exactly equal to twice the frequency of the first demodulation in order to obtain output signals which exhibit a frequency error with respect to 2Fp. This frequency error is corrected by multiplication with the previously derived frequency correction signal. The corrected signal is filtered at a frequency lower than 1 Hz, in order to obtain a signal giving the phase error at a frequency 0, that is to say that of the subcarrier at 2Fp. The signal makes it possible to correct the phase of signals which were previously frequency corrected in order to obtain two signals which are complementary to one another and transmitted by quadrature modulation around the frequency 2Fp.
    Type: Grant
    Filed: March 29, 1994
    Date of Patent: April 21, 1998
    Assignee: Thomson - CSF
    Inventors: Guy Riccardi, Philippe Calvano, Jean-Luc Nicolas
  • Patent number: 5459432
    Abstract: To demodulate an analog signal having information modulated by a carrier, the analog signal is chopped by a chopper, the chopped signal is digitized by a sigma-delta analog-to-digital converter to produce a series of digital samples at a sampling frequency, the digital samples are filtered in a digital decimating filter to produce data words, and the data words are modulated by an intermediate frequency signal to produce a detected information signal. The various frequency signals are generated by a phase-lock loop so that the intermediate frequency is the difference between the carrier frequency and the chopping frequency, and both the chopping frequency and the intermediate frequency are sub-multiples of the sampling frequency.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: October 17, 1995
    Assignee: Rockwell International Corporation
    Inventors: Stanley A. White, John C. Pinson
  • Patent number: 5361036
    Abstract: To demonstrate a signal, the signal is sampled and each sample of the signal is multiplied by the sine and the cosine of a phase angle indicating when the sample was taken from the signal. The sinusoidal signal for producing an in-phase demodulated signal is Chebychev-approximation derived and computed as a selected even or odd polynomial, depending on whether the phase angle falls within one of a plurality of angular ranges. So that the error in the synthetic sinusoid is minimax and so that the even and odd polynomials have similar computational complexity, the angular ranges for the even polynomial exceed the angular ranges for the odd polynomial. Preferably, the sinusoid for producing a quadrature-phase demodulated signal is computed as a differential of the sinusoid spliced from the odd and even polynomials. Therefore the quadrature-phase demodulated signal can be provided with a minimal increase in computational complexity.
    Type: Grant
    Filed: August 12, 1993
    Date of Patent: November 1, 1994
    Assignee: Rockwell International Corporation
    Inventor: Stanley A. White
  • Patent number: 5115201
    Abstract: A digital demodulator utilizes voltage to frequency converters, digital counters and a computer to combine demodulation and analog to digital conversion into one step, therefore providing for in-phase and quadrature demodulation of amplitude modulated double sideband suppressed carrier signals. Accleration sinusoidal signals and phase reference pulses are input to a voltage to frequency converter and counter board which interfaces to a computer where the signals are demodulated using a digital demodulation scheme.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: May 19, 1992
    Assignee: Allied-Signal Inc.
    Inventor: Mark D. Asplund
  • Patent number: 5077542
    Abstract: A system of transmission with amplitude modulation for the transmission of signals of all types, analog and/or digital, requiring high performance characteristics with respect to the noise induced by the transmission channel, comprising, at transmission, means for the suppressed carrier amplitude modulation of a useful signal and means for the amplitude modulation, in phase quadrature with said modulated useful signal, of a service signal, making it possible, at reception, to remove the ambiguity on the polarity of the demodulated useful signal. Thus it enables the transmission of signals in suppressed carrier modulation mode, hence with a good signal-to-noise ratio, without losing the polarity of the signal. The transmitters and receivers according to the invention also enable the transmission and reception of the signals modulated in SCAM, VSBAM or VSBSCAM modes.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: December 31, 1991
    Assignees: L'Etat Francais (CNET), Telediffusion de France S. A.
    Inventor: Marc Lanoiselee
  • Patent number: 4893341
    Abstract: A digital receiver samples data from an amplitude modulated subcarrier at a rate less than twice the subcarrier's maximum frequency by sampling at known phase points. Sampling at known phase points is achieved by generating a sampling clock from a signal phase locked to and transmitted with the modulated data subcarrier.
    Type: Grant
    Filed: August 1, 1989
    Date of Patent: January 9, 1990
    Assignee: AT&E Corporation
    Inventor: Mark R. Gehring