Cavity Resonator Patents (Class 333/227)
  • Patent number: 11092703
    Abstract: Spin polarized beams are an essential tool in the study of nuclear physics using particle accelerators. Particle accelerators can produce spin polarized beams, but a technology is needed to continuously monitor, in real time and non-invasively, the beam's polarization direction and quality. Without this capability, there is no way to automate polarization quality optimization. The ring-coupled cavity resonator provides a mechanism to enhance the interaction between a cavity resonator and the spin of passing particles, and provides a method to determine and monitor, in real time and non-invasively, beam magnetization and longitudinal spin polarization direction and quality.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: August 17, 2021
    Inventor: Brock Franklin Roberts
  • Patent number: 11088431
    Abstract: A multimode radio frequency resonator is provided. The multimode radio frequency resonator comprises: a monoblock of dielectric material having an initial shape that allows for multimode resonance, the initial shape comprising surfaces areas and edges between the surface areas. The multimode radio frequency resonator also comprises a conductive layer covering the whole surface of the monoblock, and a split chamfer disposed at one of the edges of the monoblock. The split chamfer includes two symmetrical cut-outs at the outer-most sides of the edge of the monoblock, and a central portion that is intact with respect to the initial shape of the monoblock and separates the symmetrical cut-outs. A method for tuning such a multimode radio frequency resonator is also described.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: August 10, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Michael Guess
  • Patent number: 11056755
    Abstract: A microwave resonator comprising a hollow tube comprising a plurality of electrically conductive wall faces which together define a tube wall defining a tube bore, the tube extending along a length axis from a first end to a second end; the tube wall having an N fold rotational symmetry about the length axis where 2<N<10; a first electrically conductive covering plate covering the first end of the tube; a second electrically conductive covering plate covering the second end of the tube; a dielectric puck comprising first and second end faces and a side wall extending therebetween, the puck being dimensioned such that when in the tube bore its dominant resonant mode is a doubly degenerate mode; the puck being arranged in the tube bore spaced apart from the covering plates with its end faces normal to the length axis and centered on the length axis; the puck being spaced apart from the tube wall by a plurality N of electrically conductive spacer blocks, the spacer blocks being spaced equally around the le
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: July 6, 2021
    Assignee: ISOTEK MICROWAVE LIMITED
    Inventors: John David Rhodes, David Ibbetson, Vanessa Walker, Christopher Ian Mobbs
  • Patent number: 10978775
    Abstract: Examples of cavity resonators, filters, and communications devices are described. One example of cavity resonator includes a cover, a resonant column, and a cavity. The cover is mounted at an opening of a top portion of the cavity. The resonant column is disposed at a bottom portion of the cavity. A value of distributed capacitance is changed with a distance between the cover and the resonant column, a value of distributed inductance is changed with a distance between the cavity and the resonant column, and a material of at least one of the cover, the resonant column, and the cavity is a plastic metal material. Therefore, when the at least one of the cover, the resonant column, or the cavity deforms, the value of the distributed capacitance or the distributed inductance is changed, to adjust a resonant frequency.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 13, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Damiao Wu, Zheng Cui, Huanqing Zhang, Yuntao Zhu
  • Patent number: 10469107
    Abstract: Aspects of the subject disclosure may include, for example, an antenna structure having a feed point for coupling to a dielectric core of a cable that propagates electromagnetic waves without an electrical return path, and a dielectric antenna, substantially or entirely devoid of conductive external surfaces, coupled to the feed point, the dielectric antenna facilitating receipt, at the feed point, the electromagnetic waves for propagating the electromagnetic waves to an aperture of the dielectric antenna for radiating a wireless signal. Other embodiments are disclosed.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 5, 2019
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, Robert Bennett, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel, Thomas M. Willis, III
  • Patent number: 9997819
    Abstract: Aspects of the subject disclosure may include, for example, a transmission medium for propagating electromagnetic waves. The transmission medium can include a core for propagating electromagnetic waves guided by the core without an electrical return path, a rigid material surrounding the core, wherein an inner surface of the rigid material is separated from an outer surface of the core, and a conductive layer disposed on the rigid material. Other embodiments are disclosed.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 12, 2018
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Robert Bennett, Paul Shala Henry, Farhad Barzegar, Irwin Gerszberg, Donald J Barnickel, Thomas M. Willis, III
  • Patent number: 9829526
    Abstract: A circuit and method for electrostatic discharge testing using transmission line pulsing. A plurality of transmission line networks may be connected to a device under test, and each transmission line network may have different connected terminations. Switches may be used to select which transmission line networks are connected to the device under test, and which terminations, if any, are connected to transmission line networks.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Farzan Farbiz, Akram A. Salman
  • Patent number: 9184486
    Abstract: The millimeter waveband filter includes: a transmission line that is formed by a waveguide which propagates electromagnetic waves with a predetermined frequency range of a millimeter waveband from one end to the other end in a TE10 mode; and a pair of radio-wave half mirrors that are disposed opposite each other with a space interposed therebetween so as to block the inside of the transmission line and have planar shapes and a characteristic of transmitting a part of the electromagnetic waves with the predetermined frequency range and reflecting a part thereof. In the electromagnetic waves incident from the one end side of the transmission line, a frequency component centered on a resonant frequency of a resonator, which is formed between the pair of radio-wave half mirrors, is selectively output from the other end of the transmission line.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 10, 2015
    Assignee: ANRITSU CORPORATION
    Inventors: Takashi Kawamura, Akihito Otani, Hiroshi Hasegawa
  • Patent number: 9000851
    Abstract: A cavity resonator integrated on a monolithic microwave integrated circuit (MMIC) is provided. The cavity resonator includes a cavity defined by an upper metal surface and a lower metal surface embedded in a low conductivity semiconductor, and a plurality of discrete metal connections coupled between the upper and lower metal surfaces, and at least one port for coupling to the cavity electromagnetically.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: April 7, 2015
    Assignee: Hittite Microwave Corporation
    Inventors: Ekrem Oran, Ahmed Ibrahim, Michael Koechlin
  • Patent number: 9000868
    Abstract: The present disclosed technique pertains to high Q mode resonators, and, more particularly, to a technique for separating a high Q mode from masking low Q modes. In a first aspect, it includes a high Q mode resonator, comprising: a housing defining a clover-shaped resonating cavity; a dielectric material filling the cavity; an input to the cavity; and an output from the cavity. In a second aspect, it includes a high Q mode resonator, comprising: a housing defining a clover-shaped resonating cavity, the cavity comprising four intersecting right angle, cylindrical chambers; a fluid dielectric material filling the cavity; an input to the cavity; and an output from the cavity. In a third aspect, it includes a method, comprising: introducing a signal to a resonating cavity; resonating the signal within a chamber, the resonating cavity shifting the resonance of the low Q mode higher in frequency than it shifts the high Q mode; and permitting egress of the signal from the resonating cavity.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: April 7, 2015
    Assignee: Lockheed Martin Corporation
    Inventor: Ronald L. Squillacioti
  • Patent number: 8954125
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 10, 2015
    Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Publication number: 20140346949
    Abstract: The invention relates to an HF resonator comprising a cylindrical cavity made of a dielectric material. An inner face of the cavity has an electrically conductive coating which is divided into a first inner coating and a second inner coating by an electrically insulating gap that encircles a lateral face of the cavity in an annular manner. An outer face of the cavity has an electrically conductive first outer coating and an electrically conductive second outer coating. The first outer coating and the second outer coating are electrically insulated from each other. The HF resonator comprises a device that is provided for applying a high-frequency electric voltage between the first outer coating and the second outer coating.
    Type: Application
    Filed: September 5, 2012
    Publication date: November 27, 2014
    Inventors: Michael Back, Oliver Heid, Michael Kleemann
  • Patent number: 8884725
    Abstract: This disclosure provides implementations of electromechanical systems (EMS) resonator structures, devices, apparatus, systems, and related processes. In one aspect, a device includes an evanescent-mode electromagnetic-wave cavity resonator. In some implementations, the cavity resonator includes a lower cavity portion and an upper cavity portion that together form a volume. The cavity resonator also includes an in-plane lithographically-defined resonator structure having a portion that is located at least partially within the volume to support one or more evanescent electromagnetic wave modes. In some implementations, an upper surface of the resonator structure is connected with the upper cavity portion while a lower mating surface is connected with the lower cavity portion.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: November 11, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Sang-June Park, Ravindra V. Shenoy
  • Patent number: 8884723
    Abstract: A TE011 cavity filter assembly is disclosed. The system includes at least one resonator operating in TE011 mode having a resonant frequency. The at least one resonator may include a cavity comprising an inner diameter and a cavity length. The at least one resonator may also include a first metal disc inside the cavity. The first metal disc may include a disc diameter and a void in the metal disc, which includes a void diameter and a void depth. The inner diameter of the cavity may be greater than the disc diameter creating a gap with a gap width and a gap depth. The TE011 cavity filter assembly may further include positive coupling.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: November 11, 2014
    Assignee: Com Dev International Ltd.
    Inventors: Bahram Yassini, Ming Yu
  • Patent number: 8884722
    Abstract: Among other things, a circuit includes a first and a second electromagnetic resonator, each configured to operate in a transverse electromagnetic mode, and a coupling device configured to operate in the transverse electromagnetic mode, wherein the coupling device is connected to the first and second electromagnetic resonators and inductively couples the first and second electromagnetic resonators.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 11, 2014
    Inventors: Baharak Mohajer-Iravani, Mahmoud Amin El Sabbagh
  • Patent number: 8860532
    Abstract: An integrated cavity filter/antenna system includes a substrate, a cavity filter formed in or on the substrate. A first cavity resonator is in or on the substrate that is enclosed by metal walls. At least a second cavity resonator is formed in or on the substrate that is enclosed by metal walls. An inter-resonator coupling structure couples energy between the first cavity resonator and the second cavity resonator. An antenna is integrated with one of the cavity resonators so that the antenna acts as both a port of the cavity filter and as a radiating element for the filter/antenna system. A connector is coupled to one of the cavity resonators for coupling energy into the filter/antenna system.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 14, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Xun Gong, Yazid Yusuf
  • Patent number: 8830556
    Abstract: One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 9, 2014
    Assignee: The Regents of the University of California
    Inventors: David R. Smith, David Schurig, Anthony F. Starr, Jack J. Mock
  • Patent number: 8807078
    Abstract: A plasma microwave resonant cavity used for a plasma chemical vapor deposition (PCVD) apparatus comprises a resonant cavity housing and a waveguide device connected with the cavity housing. Two ends of the cavity housing are provided with coaxial through-holes along the axial direction of the cavity. A glass inner liner is arranged through the through-holes at the two ends, and runs through a cavity body and the through holes at the two ends. The glass inner liner comprises a glass cylinder and glass stop rings arranged at the two ends of the glass cylinder. One or two ends of the glass cylinder are provided with external threads. The glass stop rings are connected with the ends of the glass cylinder by screw holes formed on the glass stop rings.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 19, 2014
    Assignee: Yangze Optical Fibre and Cable Company Ltd.
    Inventors: Jinyan Zhang, Ruichun Wang, Xianhui Xia
  • Patent number: 8797124
    Abstract: Various exemplary embodiments relate to a support assembly for a planar filter. The assembly includes a u-shaped housing with angled surfaces at the inner corners of the u-shape, a first dielectric plate having a first angled surface in contact with one of the angled surfaces of the housing, a second dielectric plate having a second angled surface in contact with the other angled surface of the housing, at least one compressible ring, and a cover. The planar filter is supported between the first dielectric plate and the second dielectric plate. The cover compresses the compressible ring to apply downward force on the first and second dielectric plates. The downward force is translated to an inward force by the angled surfaces of the housing. The angled surfaces of the housing apply an inward force on the first dielectric plate and the second dielectric plate.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 5, 2014
    Assignee: Alcatel Lucent
    Inventors: Timothy Bernhardt, Jari Taskila, Yunchi Zhang
  • Patent number: 8704613
    Abstract: A cavity filter having two series of resonance chambers bilaterally connected between an antenna port and two opposing signal input/output ports, each series of resonance chambers having the last resonance chamber thereof connected to the antenna port and the first resonance chamber thereof connected between the respective signal input/output port and the associating last resonance chamber to perform cross-coupling feedback, improving the quality of the signal received by the signal receiver using the cavity filter and enhancing signal transmission performance.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 22, 2014
    Assignee: Universal Microwave Technology, Inc.
    Inventors: Wei-Hong Hsu, Chien-Chih Lee, Jhih-Wei Wang, Wei-Chin Hsu
  • Patent number: 8674630
    Abstract: An on-axis rf power coupler for a superconducting particle accelerator includes a coaxial coupler tube that passes through a rf waveguide stub connected to a rf power source. The coupler tube is movable in translation along the axis of the beam path by a piezoelectric drive to permit variation of the coupling between the rf power source and the resonant signal in the accelerator. A tubular rf window extending through the waveguide stub, together with a vacuum bellows assembly connected to the coupler tube, isolate the vacuum inside the accelerator cavity from the vacuum in the rf waveguide and stub. A choke joint in the wall of the waveguide selectively passes unwanted HOM signals out of the waveguide stub and away from the accelerator cavity, where they are dissipated by ferrite tiles on the coupler tube. The upstream end of the coupler tube and a tubular extension of the accelerator cavity form a coaxial line for introducing rf power into the accelerator.
    Type: Grant
    Filed: October 27, 2012
    Date of Patent: March 18, 2014
    Inventor: Wayne Douglas Cornelius
  • Patent number: 8674784
    Abstract: A microwave pulse compressor has an elongated, cross-sectionally oversized waveguide resonator for decreasing the attenuation of the resonator, thereby increasing the resonator's QO The increased Q of the resonator guide results in more stored energy and greater output pulse power. The pulse compressor is symmetrically constructed to suppress high order modes that can be generated in oversized waveguides.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 18, 2014
    Inventor: Ray M. Johnson
  • Patent number: 8665039
    Abstract: A microwave cavity filter is configured for operation in the dual TE22N mode to realize a very high Q factor at very high frequency ranges. The microwave filter is formed from using one or more cylindrical cavities in which two orthogonal field polarizations of the TE22N mode are excited and coupled together by means of a coupling element. Different combinations of inter-cavity irises provide for both direct and cross-coupling of aligned field polarizations in adjacent cavities, as required, to realize complex filter functions. The irises may be formed in either a side or end wall of the cavities for both collinear and planar mount configuration. Negative mode coupling also allows for transmission zeros to be realized on either side of the filter passband.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: March 4, 2014
    Assignee: COM DEV International Ltd.
    Inventors: Bahram Yassini, Ming Yu
  • Patent number: 8604897
    Abstract: Various embodiments of the present invention are directed to metamaterial-based devices and to methods of fabricating metamaterial-based devices. In one embodiment, a metamaterial-based device comprises a channel layer, a top metallic layer, and a bottom metallic layer. The channel layer has a top and a bottom surfaces, and at least one channel configured to transmit at least one material. The top metallic layer has a top surface and a bottom surface attached to the top surface of the channel layer and has a first lattice of openings extending between the top and bottom surfaces of the top metallic layer. The bottom metallic layer has a top surface and a bottom surface, wherein the top surface of the bottom metallic layer is attached to the bottom surface of the channel layer.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre Bratkovski, Wei Wu
  • Publication number: 20130283892
    Abstract: Cavity resonator comprising: a cavity having a fluid entrance and a fluid exit forming a fluid flow path through the cavity. A shorting plate within the cavity arranged within the fluid flow path. The cavity resonator may be used in a system for detecting properties of a fluid, where the system also comprises a fluid supply, a high frequency supply, and a detector for detecting one or more resonant frequencies of the cavity resonator.
    Type: Application
    Filed: July 22, 2011
    Publication date: October 31, 2013
    Inventor: Alan Parker
  • Publication number: 20130278359
    Abstract: This disclosure provides implementations of electromechanical systems (EMS) resonator structures, devices, apparatus, systems, and related processes. In one aspect, a method includes providing a first substrate and a second substrate. In some implementations, the first substrate includes a cavity ceiling, an array of dielectric spacers, and an assembly platform arranged adjacent the array of dielectric spacers opposite the cavity ceiling surface. The assembly platform includes a plurality of post tops. In some implementations, the second substrate has an array of cavities and an array of resonator posts. In some implementations, the method includes mating the first substrate with the second substrate, connecting the post tops with the posts to form an array that includes a plurality of evanescent-mode electromagnetic wave cavity resonators, wherein at least a statically-defined magnitude of a gap distance between the distal surface of each post top and the cavity ceiling is defined by the dielectric spacers.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Sang-June Park, Ravindra V. Shenoy
  • Patent number: 8463342
    Abstract: Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 11, 2013
    Assignee: Uchicago Argonne, LLC
    Inventors: James H. Norem, Michael J. Pellin
  • Publication number: 20130127569
    Abstract: A method for manufacturing a resonant tube is provided in the present invention, which comprises: mechanically mixing 88-98 wt. % of iron-nickel alloy powder, 1-8 wt. % of carbonyl iron powder, and 1-8 wt. % of carbonyl nickel powder to form a uniform powder mixture; molding the uniform powder mixture to form a resonant tube blank; and continuously sintering and annealing the resonant tube blank. Also provided in the present invention are a resonant tube and a cavity filter. The method for manufacturing a resonant tube provided in the present invention significantly enhances production efficiency while greatly reducing consumption of raw materials. Moreover, the resonant tube provided in the present invention reduces, to the greatest extent, segregation of alloy components and coarse and uneven microstructures, thereby increasing the performance and stability of the corresponding products.
    Type: Application
    Filed: June 1, 2011
    Publication date: May 23, 2013
    Applicant: Shenzhen Tatfook Network Technology Co., Ltd.
    Inventors: Kelun Zhao, Fengping Shen, Bingbing Wan, Yanzhao Zhou
  • Patent number: 8410792
    Abstract: A resonator arrangement has a conductive, semi-open outer housing, at an interior of which a conductive bar is provided disposed coaxially to the housing. At one end of the bar in a direction of a housing bottom, the bar has a die and, together with a dielectric and the housing bottom, forms a capacitor. The bar is short-circuited to the housing at another end, so that the bar and housing together form an LC oscillator circuit. Also disclosed is a method for analyzing a sample using a resonator arrangement.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 2, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Norbert Klein, Svetlana Vitusevich, Serhiy Danylyuk
  • Publication number: 20130033342
    Abstract: A plasma resonant cavity, including a cylindrical resonant cavity casing, cutoff waveguides, and a waveguide inlet circumferentially formed on the cylindrical resonant cavity casing. The cutoff waveguides are arranged at two ends of the cylindrical resonant cavity casing and employ a movable end cover structure. An intermediate through hole is formed on each cutoff waveguide with the movable end cover structure, and a raised round table is arranged on an inner end surface of the cutoff waveguide and configured with the resonant cavity.
    Type: Application
    Filed: October 9, 2012
    Publication date: February 7, 2013
    Applicant: YANGTZE OPTICAL FIBRE AND CABLE COMPANY, LTD.
    Inventor: Yangtze Optical Fibre and Cable Company, Ltd.
  • Publication number: 20130029848
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes foaming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Patent number: 8337764
    Abstract: A recess waveguide microwave chemical plant for production of ethene from natural gas and a process for production of ethene using the plant. The plant includes a recess waveguide, a mode transducer and coupling orifice plate, an adjustable short-circuiting plunger, and a chemical reactor; wherein with the recess waveguide as a main body, the mode transducer and coupling orifice plate is at the left side of the recess waveguide, the adjustable short-circuiting plunger is at the right side of the recess waveguide, and the chemical reactor is across the recess waveguide.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: December 25, 2012
    Inventors: Hongsheng Yang, Dekun Sun
  • Patent number: 8309925
    Abstract: A method comprising polarizing and coupling an electromagnetic beam to a first-order transverse electric (TE1) mode with respect to a parallel plate waveguide (PPWG) integrated resonator comprising two plates and a cavity, sending the electromagnetic beam into the PPWG integrated resonator to excite the cavity by the TE1 mode and cause a resonance response, and obtaining wave amplitude data that comprises a resonant frequency, and obtaining the refractive index of fluids filling the cavity via the shift in resonant frequency.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: November 13, 2012
    Assignee: William Marsh Rice University
    Inventors: Rajind Mendis, Daniel M. Mittleman
  • Publication number: 20120242425
    Abstract: Embodiments provide a novel fabrication method and structure for reducing structural weight in radio frequency cavity filters and novel filter structure. The novel filter structure is fabricated by electroplating the required structure over a mold. The electrodeposited composite layer may be formed by several layers of metal or metal alloys with compensating thermal expansion coefficients. The first or the top layer is a high conductivity material or compound such as silver having a thickness of several times the skin-depth at the intended frequency of operation. The top layer provides the vital low loss performance and high Q-factor required for such filter structures while the subsequent compound layers provide the mechanical strength.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Inventors: IAN BURKE, JASON COOK, AHMAD KHANIFAR
  • Patent number: 8188799
    Abstract: Provided is a microelectromechanical system (MEMS) that includes a first structure and second structure. The first structure and second structure may each include a first substrate and a second substrate. The first substrate of each structure may have first and second surfaces that face each other. The first substrate may include a via etching hole pattern penetrating the first surface and the second surface and a first non-via etching hole pattern penetrating the first surface. The second substrate of each structure may have third and fourth surfaces that face each other. The second substrate may include a second non-via etching hole pattern penetrating the third surface in a position corresponding to the via etching hole pattern of the first substrate. In the microelectromechanical system (MEMS) the second surface of the first substrate and the third surface of the second substrate may be bonded together.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: May 29, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan-wook Baik, Seog-woo Hong, Hwan-soo Suh
  • Publication number: 20120094839
    Abstract: Niobium or its alloy based Superconducting Radio Frequency (SCRF) Cavities involving atleast one laser beam welded components in the SCRF cavity welded from inside surface of the wall of cavity directed to achieving more than half the thickness to full depth penetration with minimum HAZ, minimizing distortion and shrinkage. The method ensures improved weld quality and surface finish substantially free of any weld defects. Also disclosed is the welding nozzle system and welding rigs adapted to facilitate such laser welding of the Niobium or its alloy based Superconducting Radio Frequency (SCRF) Cavities. The invention is thus directed to enhancing productivity, ensuring consistent quality and reliability, enhanced weld penetration with minimum HAZ, smooth finish of weld joints at possible reduced costs.
    Type: Application
    Filed: November 3, 2009
    Publication date: April 19, 2012
    Applicant: THE SECRETARY DEPARTMENT OF ATOMIC ENERGY, GOVT. OF INDIA
    Inventors: Prashant Khare, Brahma Nand Upadhyay, Sindhunil Barman Roy, Chandrakant Pithawa, Vinod Chandra Sahni, Purushottam Das Gupta, Pradeep Kumar Kush
  • Publication number: 20120068792
    Abstract: A microwave cavity filter is configured for operation in the dual TE22N mode to realize a very high Q factor at very high frequency ranges. The microwave filter is formed from using one or more cylindrical cavities in which two orthogonal field polarizations of the TE22N mode are excited and coupled together by means of a coupling element. Different combinations of inter-cavity irises provide for both direct and cross-coupling of aligned field polarizations in adjacent cavities, as required, to realize complex filter functions. The irises may be formed in either a side or end wall of the cavities for both collinear and planar mount configuration. Negative mode coupling also allows for transmission zeros to be realized on either side of the filter passband.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Inventors: Bahram Yassini, Ming Yu
  • Patent number: 8089006
    Abstract: A circuit includes an input signal line, a high performance resonant element connected to the input signal line, and an output signal line connected to the high performance resonant element. The high performance resonant element is a via.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Gaucher, Young Hoon Kwark, Christian Schuster
  • Patent number: 8088714
    Abstract: A method for production of hollow bodies, in particular for radio-frequency resonators is shown and described. The object to provide a hollow bodies and a resonator, respectively, having improved electrical properties is achieved by a method comprising the following steps: Providing a substrate having a monocrystalline region, defining a cut area through the substrate, fitting markings on both sides of the cut area, producing two wafers by cutting along the cut area, wherein the wafers are completely removed from the monocrystalline region, forming the wafers into half-cells, wherein the half-cells have a joining area, joining together the half-cells to form a hollow body, wherein the joining areas bear on one another, and wherein the markings on the half-cells are oriented with respect to one another on both sides of the joining area as on both sides of the cut areas.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: January 3, 2012
    Assignee: Deutsches Elektronen-Synchrotron Desy
    Inventors: Xenia Singer, Waldemar Singer, Johannes Schwellenbach, Michael Pekeler
  • Publication number: 20110309900
    Abstract: A resonator cavity for supporting a plurality of resonant modes and filtering electromagnetic energy includes a cavity and a resonator element with a mounting flange. The cavity is defined by a top end wall, a bottom end wall and a sidewall and has a longitudinal axis along its length is defined. The resonator element is positioned within the cavity along the longitudinal axis and includes a mounting flange. The resonator element is only in physical contact with the cavity through the mounting flange at a mounting location and where at least one resonant mode of the electromagnetic energy exhibits a local minimum. The dimensions of the cavity and the resonator element are selected so that the associated electromagnetic energy is defined by an electromagnetic field pattern that substantially repeats itself at least twice along the length of the resonator.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 22, 2011
    Applicant: COM DEV International Ltd.
    Inventors: Antonio Panariello, Ming Yu, Mihai Vladimirescu, William A. Fitzpatrick
  • Publication number: 20110260811
    Abstract: The elementary filter of the HBAR type includes two resonators (20, 22) of the HBAR type which are each formed by a transducer (8) and a substrate (12) which are coupled in a suitable manner by electroacoustic waves. The first resonator (20), the second resonator (22) and the coupling element (28) by way of evanescent waves include the same monobloc acoustic substrate (12) which is arranged facing and coupled to the piezoelectric transducer (8) by waves having the same longitudinal or transverse vibration mode through the same reference electrode (10).
    Type: Application
    Filed: November 5, 2009
    Publication date: October 27, 2011
    Applicants: Centre Natianl De La Recherche Scientifique (C.N.R.S), UNIVERSITE DE FRANCHE COMTE
    Inventors: Dorian Gachon, Sylvain Ballandras
  • Patent number: 7982561
    Abstract: A resonator system is presented that has first and second cavity resonators for use in an RF amplifying system employing an RF amplifier device having an output circuit and an RF signal broadcasting antenna coupled to the output circuit. The resonators are interposed between the amplifying device output terminal and the antenna. The first resonator is comprised of a transmission line being a length of two coaxial conductors and tuned to the 3rd harmonic of the operating frequency (3fo). Each resonator has first and second opposing ends with the first end being an open end and the second end being a shorted end. The open end of the first resonator is connected to the output terminal of the RF amplifying device. The second resonator is connected in series with the first resonator and is tuned to the fundamental operating frequency (fo).
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: July 19, 2011
    Assignee: Harris Corporation
    Inventor: Geoffrey Norman Mendenhall
  • Patent number: 7948334
    Abstract: An apparatus includes a shell member having an interior width, where the shell includes a closed end and an open end, and a nut that includes a plurality of laterally extending resilient leg. The legs define an outer width of the nut, and when the legs are in a relaxed state the outer width of the nut is greater than the interior width of the shell. The nut is adapted for at least partially entering the open end of the shell member, such that the legs are placed in a tensioned state in which the legs define the outer width to be smaller than or equal to the interior width of the shell. The apparatus also includes a base plate adapted for receiving the shell member and securing the shell member to the base plate with the closed end of the shell facing away from the base plate through cooperation with the nut when the nut is at least partially within the shell member.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: May 24, 2011
    Assignee: Radio Frequency Systems, Inc.
    Inventors: Adam J. Jones, Samuel Parent
  • Publication number: 20100308925
    Abstract: A micromachined air-cavity resonator, a method for fabricating the micromachined air-cavity resonator, and a band-pass filter and an oscillator using the same are provided. In particular, a micromachined air-cavity resonator including a current probe fabricated together when the air-cavity resonator is fabricated, and a groove structure for rejecting detuning effect when an external circuit of a package substrate is coupled to the current probe, a millimeter-wave band-pass filter using the same, and a millimeter-wave oscillator using the same are provided. The micromachined air-cavity resonator includes a cavity structure which comprises a current probe simultaneously formed through a fabrication process, and a groove structure; and a package substrate integrated with the cavity structure. Thus, the micromachined air-cavity resonator can be easily fabricated by etching a silicon substrate and easily integrated to the package substrate using the flip-chip bonding.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 9, 2010
    Inventors: Sang Sub Song, Kwang Seok Seo
  • Patent number: 7830215
    Abstract: A method for manufacturing a piezoelectric oscillator includes the steps of: forming a first semiconductor layer above a substrate; forming a second semiconductor layer above the first semiconductor layer; forming a first opening section that exposes the substrate by removing the second semiconductor layer and the first semiconductor layer in an area for forming a support section; forming the support section in the first opening section; forming a driving section that generates flexing vibration in an oscillation section above the second semiconductor layer; patterning the second semiconductor layer to form the oscillation section having the supporting section as a base end and another end provided so as not to contact the supporting section, and a second opening section that exposes the first semiconductor layer; and removing the first semiconductor layer through a portion exposed at the second opening section by an etching method, thereby forming a cavity section at least below the oscillation section, wher
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: November 9, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Takamitsu Higuchi, Juri Kato, Yasuhiro Ono
  • Publication number: 20100231232
    Abstract: Systems and methods to stir an electromagnetic (EM) field of an EM reverberation chamber are disclosed. A particular system includes an EM reverberation chamber. The system also includes a transmit antenna and a receive antenna operable to generate an EM field within the EM reverberation chamber. The system further includes a variable charged particle source to stir the EM field by varying introduction of charged particles into the EM field.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Applicant: The Boeing Company
    Inventors: Daniel P. Jackson, Dennis M. Lewis, Jason A. Koehn, Dennis A. Russell
  • Patent number: 7777599
    Abstract: Methods and apparatus for controlling characteristics of a plasma, such as the spatial distribution of RF power and plasma uniformity, are provided herein. In some embodiments, an apparatus for controlling characteristics of a plasma includes a resonator for use in conjunction with a plasma reactor, the resonator including a source resonator for receiving an RF signal having a first frequency; a return path resonator disposed substantially coaxially with, and at least partially within, the source resonator; and an outer conductor having the source resonator and the return path resonator disposed substantially coaxially with, and at least partially within, the outer conductor, the outer conductor for providing an RF ground connection.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Matthew L. Miller, Olga Regelman, Kenneth S. Collins, Kartik Ramaswamy, Kallol Bera
  • Patent number: 7760054
    Abstract: An RF cavity is provided with a plurality of tubes that are formed into a tubular cage in a predefined shape to define the RF cavity. A selected number of tubes and a selected tube diameter are provided to form a confinement cage for the RF fields within the RF cavity defined by the tubes. The multiple, small metal tubes are selectively bent to form different cavity shapes and sizes as needed to accelerate the particles and function as a confinement cage for the RF fields within the RF cavity defined by the tubes. The cost to fabricate RF cavities using the tubular cage design is significantly lower than the cost of producing a solid cavity using conventional fabrication technology.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: July 20, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: John W. Lewellen, John Noonan, Terry L. Smith, Geoff Waldschmidt
  • Patent number: 7741934
    Abstract: A device and method is provided that includes a window for coupling a signal between cavities of a device or between cavities of different devices. A wall or microstructure is formed on a surface and defines a cavity. The window is formed in the wall and comprises at least a portion of the wall and is electrically conductive. The cavity can be sized to resonate at various frequencies within the terahertz portion of the electromagnetic spectrum and generate an electromagnetic wave to carry the signal. The window allows surface currents to flow without disruption on the inside surface of the cavity.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 22, 2010
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson
  • Publication number: 20100052824
    Abstract: A radio frequency filter comprising: housing body having input/output connectors and containing space which is divided into spaces by means of diaphragm; at least one resonator rod arranged in the housing; housing cover coupled to the housing body; wherein the housing body and the housing cover are coupled to each other by laser welding. The radio frequency filter according to the present invention can reduce PIMD due to reduce Contact Nonlinearity, and inhibit to erode away because the laser welding method dissolve different metallic materials each other and take a convalent bond, and reduce its manufacturing process time and cost because it is unnecessary drilling a hole and fastening a screw to fasten the housing and the housing cover each other and can simplify its manufacturing process and raise productivity because only irradiate laser beam on irradiated area of the housing cover.
    Type: Application
    Filed: December 29, 2006
    Publication date: March 4, 2010
    Applicant: KMW INC.
    Inventors: Duk-Yong Kim, Chang-Woo You, Il-Doo Jang, Heang-Suk Choi, Byung-Chul Kim