By Motion Detection Patents (Class 342/28)
  • Publication number: 20150138010
    Abstract: A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
    Type: Application
    Filed: April 24, 2012
    Publication date: May 21, 2015
    Inventors: Nicolas Bikhazi, William F. Young, Hung D. Nguyen
  • Patent number: 9030351
    Abstract: A land-based Smart-Sensor System and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed Smart-Sensor System is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) an IBM CELL supercomputer to process the collected data in real-time. The Smart Sensor System can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 12, 2015
    Assignee: Vista Research, Inc.
    Inventors: Phillip A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 9024802
    Abstract: An automatic frequency control is used to keep a continuous wave (CW) transmission tuned to the resonant frequency of a resonant microwave patch antenna (RMPA). Changes in loading and the bulk dielectric constant of the mixed media in front of the RMPA will affect its resonant frequency and input impedance. A significant shift in the measured input impedance is interpreted as an object moving nearby, and the phase angle of the measured input impedance is used to estimate the direction of an object's movement.
    Type: Grant
    Filed: April 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Stolar, Inc.
    Inventor: Larry G. Stolarczyk
  • Patent number: 9019148
    Abstract: A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: April 28, 2015
    Assignee: Sandia Corporation
    Inventors: Nicolas Bikhazi, William F. Young, Hung D. Nguyen
  • Patent number: 9008584
    Abstract: A method and system are described for estimating an environment surrounding a wireless communication system, the environment including at least one inflector that inflects transmitted signals. An observation generator receives an input signal transmitted from a transmitter to a receiver via a wireless communication channel and also receives system state information pertaining to at least one of the receiver, the transmitter and the inflector. An observation processor uses observations from the observation generator to estimate at least one property of the inflector based on the received input signal and the system state information.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 14, 2015
    Assignee: Cohda Wireless Pty. Ltd.
    Inventors: Paul Dean Alexander, David Victor Lawrie Haley, Alexander James Grant
  • Patent number: 9000973
    Abstract: A personal electronic device such as a smart phone can include a micro-impulse radar (MIR).
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 7, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, Jr.
  • Publication number: 20150084805
    Abstract: Some embodiments are directed to techniques that mitigate the problems of range walk where fast moving objects are detected using pulsed target detection systems having relatively long dwell times. A pulse generator for a pulsed target detection system controls generation of a series of pulses to be transmitted by the target detection system. The time between pulses and pulse characteristics are controlled such that any range migration due to target movement in the time between pulses of said series is substantially equal and opposite to any variation in range-Doppler coupling between the pulses due to said target movement. By controlling the transmitted pulses in this way, any potential variation in range cell due to target motion is offset by an equal and opposite variation in range-Doppler coupling, whatever the target radial velocity. The techniques are particularly applicable to radar systems.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 26, 2015
    Inventor: William Nicholas Dawber
  • Patent number: 8988275
    Abstract: A low energy radar comprising a radar signal generator generating a radar signal, a transmitter transmitting the radar signal via a transmitting antenna, a receiving array including plurality of receiving antennas and a plurality of receivers, each antenna being coupled with a corresponding receiver, each of at least selected ones of the receivers receives a respective signal corresponding to reflections of the transmitted radar signal from a scene, a processor including a radar signal processor, the radar signal processor determines a scene reflections map, the scene reflections map includes values representing reflection characteristics from each selected location in the scene, a detector, detecting objects in the scene and the corresponding locations thereof according to the scene reflection map and a clutter map, the clutter map includes values representing clutter reflection characteristics from each selected location in the scene, and a power controller, after the transmitter transmitted the radar signa
    Type: Grant
    Filed: January 31, 2010
    Date of Patent: March 24, 2015
    Assignee: Elbit Systems Land and C4I Ltd.
    Inventors: Aviel Kisliansky, Guy Picha, Amit Isseroff
  • Patent number: 8976056
    Abstract: Autonomous Underwater Vehicles (AUV) collect and transmit information about ice floe thickness; this is combined with SYNTHETIC APERTURE RADAR images from satellites to identify and track dangerously thick regions of ice. The overlayed data is presented graphically to allow tracking of the thick ice regions over time. This information is used to alert drilling platforms in icy ocean conditions of pending ice floe dangers.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 10, 2015
    Assignee: ConocoPhillips Company
    Inventors: Rolf Christer Broman, Dominique P. Berta, Khalid A. Soofi, Peter G. Noble
  • Patent number: 8963767
    Abstract: A method for detecting the motion of object by ultra-wideband radar imaging and system thereof to be used to present the motion of object in a reference gray-level image by using the delay time to analyze the distance between the detected position of object and the detecting position to compare the time-varying distance variation between the reference distance and the detecting distance. The system includes a transmitter module, a receiver module and a signal processing module. The transmitter module is used to transmit a first ultra-wideband signal from a detecting position to the object. The receiver module is used to receive a second ultra-wideband signal reflected from the object in the detecting position. The signal processing module is used to analyze the signal delay time of the second ultra-wideband signal received in the detecting position to analyze the detecting distance between the second ultra-wideband signal and the detecting position.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: February 24, 2015
    Assignee: National Taiwan University
    Inventors: Pai-Chi Li, Tsung-Chuan Chen
  • Patent number: 8912950
    Abstract: This invention relates to sense through the wall radar. A main channel of a radar system (12) is operated at a frequency capable of penetrating opaque barriers such as the wall (24) of a building (22) to sense targets (16) therein. The main channel performance may be impaired by multipath interference, i.e., radar returns resulting from targets (20) outside the building (22) illuminated by reflection from the wall (24). A guard channel of the radar, operating at a higher frequency which does not penetrate the wall (24), is used to identify targets (20) outside the building (22) and suppress the multipath interference they produce in the main channel.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 16, 2014
    Assignee: Raytheon Company
    Inventor: Scott E. Adcook
  • Publication number: 20140361920
    Abstract: Systems, methods, and devices for cooperative intrusion detection are described herein. For example, one or more embodiments include completing a radar scan with a network of outer perimeter radar nodes, detecting an intrusion event with the network of outer perimeter radar nodes, notifying at least one inner perimeter radar node in a network of inner perimeter radar nodes of the intrusion event, activating the at least one inner perimeter radar node from an idle mode in response to the notification of the intrusion event, and completing a radar scan with the at least one inner perimeter radar node upon activation.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: SrinivasaRao Katuri, Steve Huseth, Amit Kulkarni
  • Patent number: 8909382
    Abstract: An occupancy detection system includes a motion detector, one or more sound detectors and a lighting controller configured to turn on and off one or more lighting devices in a defined area based on detected occupancy states. Lighting control circuitry determines occupancy states based on motion detector output signals and sound detector output signals, and further controls associated lighting devices to be turned ON or OFF in accordance with determined occupancy states and an automatically adaptable timeout period. The timeout period is automatically adjusted in accordance with newly recorded time stamps for lighting status changes, based on a second order occupancy distribution analysis such as a Gaussian probability distribution function, with an occupancy curve adjusted for each newly recorded set of time stamps and the timeout period being adjusted according to the mean and variance of the occupancy curve.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: December 9, 2014
    Assignee: Universal Lighting Technologies, Inc.
    Inventor: Kaveh Malakuti
  • Patent number: 8890677
    Abstract: A system capable of monitoring an area and detecting a disturbance with the area. The system has a plurality of ultra-wide band radio frequency tags, each of the tags including a digital signal processing module configured to monitor changes in radio frequency multipath properties of received packets transmitted by at least one other of the tags. Changes in the radio frequency multipath properties may be caused by a disturbance indicative of an object in the vicinity of the tags. A corresponding method is also disclosed.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 18, 2014
    Assignee: Zebra Enterprise Solutions Corp.
    Inventor: Dan Raphaeli
  • Patent number: 8884809
    Abstract: A personal electronic device is configured to provide enhanced user awareness of the environment responsive to data from a micro-impulse radar (MIR).
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 11, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, Jr.
  • Patent number: 8878718
    Abstract: A normalization processing circuit normalizes a position of a complex demodulation signal on a complex plane from an A/D converter, and outputs a normalized complex demodulation signal after the normalization to a multiple-dimensional feature extractor. The multiple-dimensional feature extractor calculates a feature quantity that changes when a person intrudes, a feature quantity that changes in wind and rain, and a feature quantity that changes when a spatially isolated intense electric field exists. A discriminator discriminates that a person has intruded based on the feature quantities of three dimensions.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koichi Ikuta, Naoki Aizawa, Kenji Inomata, Hiroshi Kage, Kazuhiko Sumi
  • Patent number: 8872674
    Abstract: A method of using a directional sensor for the purposes of detecting the presence of a vehicle or an object within a zone of interest on a roadway or in a parking space. The method comprises the following steps: transmitting a microwave transmit pulse of less than 5 feet; radiating the transmitted pulse by a directional antenna system; receiving received pulses by an adjustable receive window; integrating or combining signals from multiple received pulses; amplifying and filtering the integrated receive signal; digitizing the combined signal; comparing the digitized signal to at least one preset or dynamically computed threshold values to determine the presence or absence of an object in the field of view of the sensor; and providing at least one pulse generator with rise and fall times of less than 3 ns each and capable of generating pulses less than 10 ns in duration.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 28, 2014
    Inventor: Balu Subramanya
  • Patent number: 8866663
    Abstract: In exemplary implementations of this invention, a radio signal is transmitted between a transmitter and a receiver. Either the transmitter, or receiver, or both, have a directional antenna. When organic tissue passes between (or is stationary between) the transmitter and receiver, the tissue causes a reduction of the received signal strength (RSS) of the signal, as compared to a baseline RSS. The larger the amount of tissue, the greater is the reduction of the RSS. By analyzing the degradation of the signal, information about organic tissue between the transmitter and receiver may be determined. For example, the number of persons passing through a physical threshold may be determined. Or the fact that one person is walking faster than, and catching up with, a second person as they pass between the transmitter and receiver may be determined.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Nadav Aharony, Michael Siegel
  • Publication number: 20140306839
    Abstract: An automatic frequency control is used to keep a continuous wave (CW) transmission tuned to the resonant frequency of a resonant microwave patch antenna (RMPA). Changes in loading and the bulk dielectric constant of the mixed media in front of the RMPA will affect its resonant frequency and input impedance. A significant shift in the measured input impedance is interpreted as an object moving nearby, and the phase angle of the measured input impedance is used to estimate the direction of an object's movement.
    Type: Application
    Filed: April 13, 2013
    Publication date: October 16, 2014
    Inventor: Larry G. Stolarczyk
  • Patent number: 8854251
    Abstract: Provided is an object identification device and a method for the same that are capable of identifying a three-dimensional object and a road surface static object, irrespective of situations. The object identification device identifies an object, based on a transmission signal and a reflection signal caused by the object reflecting the transmission signal. The object identification device includes: a measurement section configured to measure at least one of the relative distance and the relative velocity with respect to the object; an intensity detection section configured to detect the intensity of the reflection signal; and an object identification section configured to identify the object which can be an obstacle object, based on at least one of the relative velocity and the variation in the relative distance, and on the variation in the intensity.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Setsuo Tokoro
  • Publication number: 20140292555
    Abstract: A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
    Type: Application
    Filed: November 18, 2013
    Publication date: October 2, 2014
    Inventors: Peter C Haugen, Gregory E. Dallum, Patrick A. Welsh, Carlos E. Romero
  • Publication number: 20140253363
    Abstract: There is provided an apparatus that detects a moving object which includes an interface unit to receive, from a radar, measurement data of a distance from the radar and a reception level signal reflected by an object located at the distance from the radar; a background data updating unit to detect the reception level signal that is greater than or equal to a first threshold from each of a plurality of the measurement data, a background value that indicates a generation frequency for levels of the reception level signal that become greater than or equal to the first threshold; a moving object detecting unit to detect the object as a moving object, the object having the background value that is less than a background value of a stationary object that is located in same distance of the object.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 11, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Junko KAJIKI
  • Patent number: 8830114
    Abstract: A mobile object detecting apparatus includes first radiation detecting means; and second radiation detecting means for radiating an electromagnetic wave having the same frequency as the electromagnetic wave radiated by the first radiation detecting means such that the radiated electromagnetic wave passes near a point in the first radiation detecting means from which the electromagnetic wave is radiated, and detecting a standing wave which is generated due to reflection of the radiated electromagnetic wave at an object; wherein a distance, over which the electromagnetic wave radiated by the first radiation detecting means travels until it reaches near the first radiation detecting means, corresponds to a distance of an integral multiple of a wave length of a half cycle of the electromagnetic waves radiated by the radiation detecting means plus a wave length of a predetermined period which is smaller than the half cycle.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoyoshi Yasue, Tomoyoshi Kushida
  • Publication number: 20140247179
    Abstract: The present invention relates to a motion detector device comprising a receiver arranged for reception of at least one electromagnetic signal constituted by a corresponding transmitted electromagnetic signal being transmitted by a corresponding source and influenced by a corresponding channel. The motion detector device comprises predetermined information regarding each transmitted electromagnetic signal. The motion detector device further comprises analyzing means arranged to analyze all components of the received signal to determine how certain parameters of each transmitted electromagnetic signal are influenced by each corresponding channel by means of the predetermined information. The analyzing means is also arranged to analyze the temporal variation of said certain parameters during a certain time. It is determined if said temporal variation exceeds a predetermined threshold. The present invention also relates to a corresponding method.
    Type: Application
    Filed: October 19, 2011
    Publication date: September 4, 2014
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Johan Furuskog, Jonas Medbo, Markus Ringström
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Patent number: 8779966
    Abstract: A system includes: a radar scanner disposed to scan the interior of a container; an interrogator in communication with the scanner; and a processing system in communication with the interrogator, in which the processing system displays information about the interior of the container. A method includes: mounting a radar scanner antenna to a container so as to scan the interior of the container; connecting a coupler to the scanner so that the scanner communicates scanning data via the coupler to the exterior of the container. Another method includes: coupling an interrogator and radar processing system to a scanner mounted on a container; and processing radar scan data from the interior of the container. Another method includes: linking a radar processing system via a communications link to an interrogator that is coupled to a scanner mounted on a container; and processing radar scan data from the interior of the container.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: July 15, 2014
    Assignee: Tialinx, Inc.
    Inventors: Farrokh Mohamadi, Mikko Oijala, Paul Strauch
  • Patent number: 8762082
    Abstract: A movement detection system is provided with a wireless terminal, and a movement detection device connectable to the wireless terminal via a wireless network such that the wireless terminal receives signals used for detection at a predetermined frequency from the movement detection device, and transmits verification signals in response to each of the detection signals. The movement detection device includes a measurement portion that measures the signal strength of the verification signals transmitted by the wireless terminal, and a detection portion that detects spatial movement of the wireless terminal based on the signal strength of the verification signals measured by the measurement portion.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: June 24, 2014
    Assignee: Sony Corporation
    Inventor: Yoshifumi Nishida
  • Publication number: 20140159941
    Abstract: Provided is a device for detecting intruding objects that enables the detection of intruding objects without requiring antenna switching. Delay units (102) use different delay amounts to delay signals received at each of a plurality of antennas (110). A signal synthesis unit (103) synthesizes the delayed signals. A frequency conversion unit (106) converts the synthesized signal frequency to a baseband. A wave detection unit (107) detects the signal that has undergone frequency conversion. A radar profile generation unit (104) uses the detected signal to generate a profile formed from the distance from the antenna, and the signal strength at each distance from the antenna. A detection processing unit (105) detects a peak in the profile at which the signal strength exceeds a preset threshold value, and determines whether an intruding object is present in a detection region on the basis of the detected peak.
    Type: Application
    Filed: February 14, 2013
    Publication date: June 12, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Makoto Yasugi, Hirofumi Nishimura
  • Patent number: 8749373
    Abstract: Energy harvesting devices provide power to devices of emergency equipment stations (e.g., fire extinguisher station, fire alarm pull station, defibrillator station, etc.) distributed throughout a facility to monitor one or more internal or external conditions (e.g., identifiable objects detected near the station, presence of an obstruction restricting access to the station, etc.) and relay information about the monitored conditions to a central station.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: June 10, 2014
    Assignee: en-Gauge, Inc.
    Inventor: Brendan T. McSheffrey
  • Patent number: 8730087
    Abstract: A passive detector (10) includes a receiver (11) configured to collect passive radiation (12) in an environment, where detailed information about a portion of the passive radiation is estimated as a baseline of the passive energy. The passive energy is generated by a passive source unrelated to the detector. A monitor (24) is configured to measure a fluctuation in the baseline. A decision module (34) is coupled to the monitor to determine whether the fluctuation represents a presence or motion in the environment. Detection methods are also disclosed.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: May 20, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Alessio Filippi, Biju Kumar Sreedharan Nair, Willem Franke Pasveer, Teun Martinus Johannes van Berkel
  • Patent number: 8721554
    Abstract: A method and system for cancelling body movement effect for non-contact vital sign detection is described. The method begins with sending on a first electromagnetic wave transceiver a first electromagnetic signal with a first frequency to a first side of a body, such as a person or animal. Simultaneously using a second electromagnetic wave transceiver a second electromagnetic signal is sent with a second frequency to a second side of a body, wherein the first frequency and the second frequency are different frequencies. A first reflected electromagnetic signal reflected back in response to the first electromagnetic wave on the first transceiver is received and a first baseband complex signal is extracted. Likewise a second reflected electromagnetic signal reflected back in response to the second electromagnetic wave on the second transceiver is received and a second baseband complex signal is extracted.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 13, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jenshan Lin, Changzhi Li, Ya-Chi Liu
  • Publication number: 20140125510
    Abstract: A method for detecting the motion of object by ultra-wideband radar imaging and system thereof to be used to present the motion of object in a reference gray-level image by using the delay time to analyze the distance between the detected position of object and the detecting position to compare the time-varying distance variation between the reference distance and the detecting distance. The system includes a transmitter module, a receiver module and a signal processing module. The transmitter module is used to transmit a first ultra-wideband signal from a detecting position to the object. The receiver module is used to receive a second ultra-wideband signal reflected from the object in the detecting position. The signal processing module is used to analyze the signal delay time of the second ultra-wideband signal received in the detecting position to analyze the detecting distance between the second ultra-wideband signal and the detecting position.
    Type: Application
    Filed: December 24, 2012
    Publication date: May 8, 2014
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: PAI-CHI LI, TSUNG-CHUAN CHEN
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8682821
    Abstract: A method of detecting movement includes using a radar sensor to monitor a space, and receiving an output signal from the radar sensor. A Fourier transform is performed on the output signal to produce a frequency domain signal spectrum. The frequency domain signal spectrum is transformed into an acoustic domain signal. It is decided whether the output signal is indicative of movement of a predetermined object or a non-human animal dependent upon at least one feature of the acoustic domain signal and at least one spectral feature of the signal spectrum.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 25, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Diego Benitez, Zhaozhang Jin
  • Patent number: 8666656
    Abstract: An object detection device includes: an ultrasonic sensor for transmitting a signal and further receiving reflected signals of the transmitted signal; a delay-sum processing unit for generating two-dimensional distance information in which the reflected signals received by the ultrasonic sensor are delay-summed in a plurality of reference planes set in advance; a distance information integration unit for generating integrated distance information in which the two-dimensional distance information in the plurality of reference planes generated by the delay-sum processing unit is summed in a vertical direction to the reference planes; and an object detection unit for detecting an object at a position where an intensity in the vertical direction is equal to or larger than a threshold value by referring to an intensity in the vertical direction of the integrated distance information generated by the distance information integration unit.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Mikami, Takashi Hirano, Marika Niiyama
  • Patent number: 8638253
    Abstract: Embodiments disclosed herein include a radar sensor device for detecting movement and velocity of external objects within or around a particular radar sensor field. The radar sensor field can use an array or cluster or radar sensors, including compact (portable by hand) radar sensors that function as network nodes within a wireless, low-energy ad hoc network. Radar sensor devices can use vibration as a means of communicating power status, functionality, and progress of installation of a particular radar unit. Such a vibration can be executed at a particular predefined cadence, rhythm, or other pattern, to indicate a powered-on state, active network connectivity, and other device states. Such a radar sensor device provides silent and non-visible status indication for quick and efficient deployment.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 28, 2014
    Assignee: BBN Technologies Corp.
    Inventor: Paul Dryer
  • Patent number: 8624605
    Abstract: The present invention exploits extreme sensitivity to initial conditions in ray-chaotic enclosures to create a method to distinguish nominally identical objects through their unique “wave fingerprints.” The fingerprint can be measured through transmission of a pulsed microwave signal as a function of carrier frequency and time. When internal components are re-arranged, the Electromagnetic Fingerprints (EMF) changes in significant ways. The EMF can be detected by direct injection measurements of the enclosure or through remote measurement.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 7, 2014
    Assignee: University of Maryland, College Park
    Inventors: Sameer Hemmady, Steven M. Anlage
  • Publication number: 20130328712
    Abstract: A system for detecting a change in position of at least one object within an at least partially enclosed space, the system including at least one transmitter repeatedly producing at least two mutually distinguishable standing waves in the at least partially enclosed space at mutually exclusive and mutually alternating times, at least one receiver receiving reflected energy of the at least two mutually distinguishable standing waves, the reflected energy from the at least two mutually distinguishable standing waves having mutually different amplitudes which have a difference therebetween, and a computerized processor receiving outputs from the at least one receiver and calculating changes in the difference between the mutually different amplitudes, which changes indicate the change in position of the at least one object.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 12, 2013
    Inventor: Boris Zhevelev
  • Patent number: 8604964
    Abstract: A system for determining the movement of a swaying structure, on which a receiver is fixedly mounted, is proposed, wherein at least three reference transmitters having known and fixed positions are provided and transmit the transmission signals received by the receiver at defined carrier frequencies. In addition, an evaluation unit is provided, which determines measured phase values from the received signals, taking into account the defined carrier frequency, wherein the distance from the reference transmitters and the changes in position of the receiver and therefore of the swaying structure can be calculated from said phase values.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: December 10, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Andreas Eidloth, Norbert Franke
  • Patent number: 8593331
    Abstract: Example methods, apparatuses, and articles of manufacture are disclosed herein that may be utilized to facilitate or otherwise support RF ranging-assisted local motion sensing based, at least in part, on measuring one or more characteristics of a range between communicating devices in one or more established RF links.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 26, 2013
    Assignee: QUALCOMM Incorported
    Inventors: Ming-Chang Tsai, Amal Ekbal, David Jonathan Julian, Chong U. Lee
  • Patent number: 8593250
    Abstract: The invention relates to an access control device (1) having at least one access barrier element, to which at least one read unit and/or sensor unit for acquiring legitimation and/or security features is assigned, the access barrier elements and the read and sensor units each having a data connection to a computer unit (5), which compares the acquired or read features to stored data and opens or keeps closed the access barrier according to a preset. Proceeding from the problem that in the case of access control devices (1) of this type, it is only possible to react to changed requirements or a changed security condition by cumbersome re-parameterization of the facility, an additional operating element (8), which is assigned to the computer unit (5), is proposed in the context of the invention, using which it is possible to select between various security steps by simply adjusting the operating element (8).
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Kaba Gallenschuetz GmbH
    Inventor: Josef Schorn
  • Patent number: 8593279
    Abstract: System (10) for detecting the position of a mobile or immobile entity (20) in a defined space (30), characterized in that it includes: means (40) of detecting the presence of said entity in at least two partially overlapping observation areas (Z1, Z2) of said space, said means being adapted for collecting at least one piece of immobile presence information (Ip) and one piece of movement information (Im) of said entity in each of said observation areas, processing means (50) which are adapted for carrying out logic operations on at least a portion of said information collected for each of said observation areas, decision means (60), which are connected to the processing means and adapted for controlling an action on the basis of a logic signal generated by the processing means.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 26, 2013
    Assignees: Office National d'Etudes et de Recherches Aerospatiales (ONERA), ISITEK
    Inventors: Philippe Dreuillet, Gérard Bobillot, Luc Vignaud, François Tardivel, Florin Paun
  • Patent number: 8587472
    Abstract: A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 19, 2013
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Peter C. Haugen, Gregory E. Dallum, Patrick A. Welsh, Carlos E. Romero
  • Patent number: 8576116
    Abstract: Systems, methods and apparatus related to a high speed, high dynamic range and low power consumption radar system are provided herein. The radar system may include an analog correlator which combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The radar system may further include a matched filter for determining a match of a portion of a received PCR signal and producing an output signal in response to further improve the speed of detection of the radar system.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Patent number: 8576110
    Abstract: A method of detecting a target in a room using a radar system having a transmitter for irradiating the object, a sensor for receiving reflected radiation, and circuitry for analyzing the reflected radiation to determine at least one characteristic thereof, the method including determining at least one parameter for each wall of a plurality of walls of a room containing the target; determining possible signal paths between the target and the sensor for paths including up to N reflections based on the at least one parameter of each wall and the location of the sensor; calculating target image locations based on the possible signal paths; and processing the received radiation to determine a target location based on target image locations.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 5, 2013
    Assignee: Raytheon Company
    Inventor: Mark L. Valentine
  • Patent number: 8576664
    Abstract: A moving object detection system is provided with an existence detection part, an integrating part and an existence judgment part. Based on first and second detection signals, the existence detection part calculates a rotation angle of each transition factor that is obtained from the first and second detection signals and rotates around the origin in a two-dimensional coordinate system. The existence detection part is configured so that the rotation angle becomes less than 90 degrees. The integrating part integrates each rotation angle to obtain an integrated angle. The existence judgment part judges whether or not a moving object approaching or leaving a receiver of the device exists in a detection area based on the integrated angle and a threshold angle.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Fumihiro Kasano, Toshimasa Takagi, Hidehiko Fujikawa, Toru Mugiuda
  • Patent number: 8576112
    Abstract: A multifunction airborne radar device includes a plurality of transmit antenna modules and/or receive antenna modules that are fixed relative to the aircraft, placed substantially over the surface of the aircraft so as to form transmit and receive beams, enabling targets to be detected for implementing a sense-and-avoid function. The airborne radar device may also comprise processing means for tracking the detected targets and for generating information sent to an air traffic control center and/or to a control device on board the aircraft. The processing device may also receive data relating to the aircraft, enabling the antenna beams to be adjusted and the tracking calculations to be refined.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: November 5, 2013
    Assignee: Thales
    Inventors: Patrick Garrec, Pascal Cornic, Stéphane Kemkemian
  • Patent number: 8552865
    Abstract: A method and apparatus are provided for automatically testing microwave instruction detection modules of a security system. The method includes the steps of detecting intruders within a protected space by monitoring a Doppler output of a signal extraction circuit coupled to a microwave transceiver module, varying a frequency of direct current power pulses applied to the microwave transceiver module, detecting a difference in magnitude of the Doppler output of the signal extraction circuit over the varied frequency and comparing the detected difference with a fault threshold level.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: October 8, 2013
    Assignee: Honeywell International Inc.
    Inventors: Tianfeng Zhao, Mingzhi Xzao, Lei Qin, Hansen Gu
  • Patent number: 8542109
    Abstract: An intrusion detection system that provides foliage penetration is disclosed employing an array of field disturbance transceivers operating at UHF frequencies. The array of transceivers generate a multiplicity of electromagnetic wave fields between nearby units and detect the presence of intruders by detecting disturbances in these fields. The emitted UHF signals used to generate the electromagnetic wave fields are also used to provide the communication link between transceivers in the array and to a control station. The control station facilitates the operation of the array from a remote monitoring site. A unique method of array deployment provides multiple opportunities to detect an intruder and secondarily provides redundant communication links in case of a sensor failure. Automatic means of setting detection thresholds based on environmental conditions assures a high probability of detection along with a low false alarm rate.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: September 24, 2013
    Assignee: Flir Systems, Inc.
    Inventors: Walker Butler, John Edward Bjornholt
  • Patent number: 8538669
    Abstract: Methods and apparatus are provided for transmitting incursion alerts to a plurality of in-flight aircraft in accordance with preconfigured pilot preferences. The apparatus comprises a data store module containing data sets against which the pilot preferences are evaluated during flight, including weather, airspace and flight restrictions, ground delay programs, and air traffic information. The apparatus further includes a flight path module containing route and position information for each aircraft. An incursion alert processing module evaluates the flight path, data store, and pilot preferences and generates incursion alerts which are transmitted to each aircraft during flight, either directly or via ground based dispatchers or flight operations personnel.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 17, 2013
    Assignee: Honeywell International Inc.
    Inventors: Anand Agarwal, David Brabham, Trip Redner, SatyaBhaskar Payasam